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Detecting modified vacuum fluctuations due to the presence of a boundary by means of the
geometric phase
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We study the geometric phase acquired by an inertial atom whose trajectories are parallel to a reflecting
boundary due its coupling to vacuum fluctuations of electromagnetic fields, by treating the atom as an open
quantum system in a bath of the fluctuating vacuum fields, and show that the phase is position dependent as
a result of the presence of the boundary which modifies the field quantum fluctuations. Our result therefore
suggests a possible way of detecting vacuum fluctuations in experiments involving geometric phase.
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Quantum theory has profoundly changed our conception
of vacuum as a synonym of nothingness. As an inevitable
consequence necessitated by the uncertainty principle, vacuum
fluctuates and thus may have rich structures. An intriguing
issue is what are the physical consequences of vacuum fluc-
tuations that exist all the time and whether these fluctuations
can be directly detected. In this regard, let us note that the
effects of vacuum fluctuations in free space may not be always
observable, let alone a direct observation, since some physical
quantities, energy for instance, are not well defined in vacuum
and one has to invoke certain renormalization schemes to make
them finite. However, changes in the vacuum fluctuations, e.g.,
those caused by the presence of boundaries, usually exhibit
normal behaviors and can produce observable effects. The
Lamb shift [1] and the Casimir [2] (and the Casimir-Polder
[3,4]) effects are the two most well-known examples, which
have been precisely measured. Other examples of novel effects
that arise as a result of the vacuum fluctuations include
but are by no means limited to the light-cone fluctuations
when gravity is quantized [5], the Brownian motion of test
particles in an electromagnetic vacuum [6], and modifications
of radiative properties of atoms in cavities such as the
natural lifetimes and energy-level shifts which have been
demonstrated in experiments [7]. In this paper, we show
that the vacuum fluctuations may also be directly detected
through the measurement of geometric phase. As a related
issue of vacuum fluctuation detection, it is worth noting
that the quantum vacuum fluctuation in the position of a
mechanical system has recently been clearly detected using
a nanomechanical resonator [8].

The geometric phase is an important concept in quantum
theory. In 1984, Berry studied the dynamics of a closed
quantum system whose Hamiltonian varies adiabatically in
a cyclic way, and found that there is, besides the familiar
dynamical phase, an additional phase due to the geometry of
the path enclosed during the unitary evolution of the system in
the parameter space [9]. Ever since the inception, the geometric
phase has aroused broad interest and has been extensively
studied, both theoretically and experimentally [10]. Recent
concerns about the geometric phase mainly focus on its
potential of performing fault-tolerant quantum computation
[11]. Because of the inevitable interactions between the qubits

and the environment, a pure state will generically be driven
to a mixed state. To deal with the effect of the environment,
many attempts have been made which generalize the geometric
phase of a closed system undergoing a unitary evolution to
an open quantum system which undergoes a nonunitary one
[12–16]. Remarkably, experiments have demonstrated both the
geometric phase of a mixed state undergoing a cyclic unitary
evolution [17,18] and that of an open system undergoing
nonunitary one [19].

In fact, the impact of environment on the geometric phase
is a crucial issue in any practical implementations of quantum
computing. The effects of different kinds of decoherence
sources on the geometric phase have been analyzed [20–24].
It is remarkable that when the temperature is absolute zero,
there is still a correction to the geometric phase caused by the
environment, i.e., a reservoir of vacuum fluctuations [22–24].
However, this kind of inevitable vacuum fluctuation induced
geometric phase is in general unobservable, since any phase
variation is observed usually via some kind of interferometry
between the involved state and certain selected reference states
which are both inseparably and equally coupled to vacuum.
Nevertheless, if, somehow, vacuum fluctuations are modified,
then the geometric phase of the nonunitary evolution of an
open system caused by its coupling to vacuum may become
potentially observable. Here, we show that the modification of
vacuum fluctuations induced by the presence of boundaries
provides such a possibility to unveiling quantum vacuum
fluctuations via geometric phase. At this point, it is worth
noting that geometric phase has recently been proposed as a
possible way to detect the Unruh effect in Ref. [25] and later
in Ref. [26].

The system we study contains an inertial two-level atom in
interaction with a bath of fluctuating quantum electromagnetic
fields in vacuum at a fixed distance to a reflecting boundary.
The Hamiltonian of the whole system takes the form H =
Hs + Hφ + H ′. Here Hs is the Hamiltonian of the atom, which,
for simplicity, is taken to be Hs = 1

2 h̄ω0σ3, where σ3 is the
Pauli matrix, and ω0 is the energy-level spacing of the atom. Hφ

is the Hamiltonian of the electromagnetic field, of which the
explicit form is not relevant here. In the multipolar coupling
scheme [27], the interaction Hamiltonian H ′ takes the form
H ′(τ ) = −er · E(x(τ )) = −e

∑
mn rmn · E(x(τ ))σmn, where e
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is the electron electric charge, er the atomic electric dipole
moment, and E(x) the electric-field strength. Here, the dipole
moment must be kept fixed with respect to the proper
frame of reference of the atom; otherwise, the rotation of
the dipole moment will bring in extra time dependence in
addition to the intrinsic time evolution [28]. Since neither r
nor E(x) is a world vector, the interaction Hamiltonian H ′
is ambiguous when we deal with the situation of moving
atoms. However, we can write the interaction Hamiltonian
H ′ in a coordinate invariant form as H ′ = −erμFμν(x) uν ,
where Fμν is the field strength, rμ is a four-vector such that
its temporal component in the frame of the atom vanishes and
its spatial components in the same frame are given by r, and
uν is the four velocity of the atom. Since we choose to work
in the frame of the atom, uν = (c,0,0,0), and this coordinate
invariant interaction Hamiltonian reduces to the form given
above [28,29]. The dynamical evolution of the two-level-atom
subsystem will be studied in the paradigm of open quantum
systems. Here, let us note that the theory of open quantum
systems has been fruitfully applied to understand, from a
perspective different from the traditional, the Unruh, Hawking,
and Gibbons-Hawking effects, in Refs. [30–32], respectively.

The initial state of the whole system is characterized by
the total density matrix ρtot = ρ(0) ⊗ |0〉〈0|, in which ρ(0)
is the initial reduced density matrix of the atom, and |0〉 is
the vacuum state of the field. In the frame of the atom, the
evolution in the proper time τ of the total density matrix ρtot

satisfies

∂ρtot(τ )

∂τ
= − i

h̄
[H,ρtot(τ )]. (1)

We assume that the interaction between the atom and the field
is weak. In the limit of weak coupling, the evolution of the
reduced density matrix ρ(τ ) can be written in the Kossakowski-
Lindblad form [30,33–35],

∂ρ(τ )

∂τ
= − i

h̄
[Heff,ρ(τ )] + L[ρ(τ )], (2)

where

L[ρ] = 1

2

3∑
i,j=1

aij [2σjρσi − σiσjρ − ρσiσj ]. (3)

The matrix aij and the effective Hamiltonian Heff are deter-
mined by the Fourier and Hilbert transforms of the correlation
functions,

G+(x − y) = e2

h̄2

3∑
i,j=1

〈−|ri |+〉〈+|rj |−〉〈0|Ei(x)Ej (y)|0〉,

(4)

which are defined as follows:

G(λ) =
∫ ∞

−∞
dτ eiλτG+(x(τ )), (5)

K(λ) = P

πi

∫ ∞

−∞
dω

G(ω)

ω − λ
. (6)

Then the coefficients of the Kossakowski matrix aij can be
expressed as

aij = Aδij − iBεijkδk3 − Aδi3δj3, (7)
in which

A = 1
4 [G(ω0) + G(−ω0)], B = 1

4 [G(ω0) − G(−ω0)]. (8)

The effective Hamiltonian Heff contains a correction term, the
so-called Lamb shift, and one can show that it is given by
replacing ω0 in Hs with a renormalized energy level-spacing
 as follows [30]:

Heff = 1

2
h̄σ3 = h̄

2

{
ω0 + i

2
[K(−ω0) − K(ω0)]

}
σ3. (9)

Assuming the initial state of the atom is |ψ(0)〉 =
cos θ

2 |+〉 + sin θ
2 |−〉, one can show that the time-dependent

reduced density matrix of the atom is given by

ρ(τ ) =
(

e−4Aτ cos2 θ
2 + B−A

2A
(e−4Aτ − 1) 1

2e−2Aτ−iτ sin θ

1
2e−2Aτ+iτ sin θ 1 − e−4Aτ cos2 θ

2 − B−A
2A

(e−4Aτ − 1)

)
, (10)

which evolves nonunitarily. The geometric phase for a mixed
state under a nonunitary evolution can be defined as [15]

γg= arg

(
N∑

k=1

√
λk(0)λk(T )〈φk(0)|φk(T )〉e− ∫ T

0 〈φk (τ )|φ̇k(τ )〉dτ

)
,

(11)

where λk(τ ) and |φk(τ )〉 are the eigenvalues and eigenvectors
of the reduced density matrix ρ(τ ). In order to find the
geometric phase, we first calculate the eigenvalues of the
density matrix (10) to get λ±(τ ) = 1

2 (1 ± η), in which η =√
ρ2

3 + e−4Aτ sin2 θ and ρ3 = e−4Aτ cos θ + B
A

(e−4Aτ − 1). It
is easy to see that λ−(0) = 0. As a result, contribution only

comes from the eigenvector corresponding to λ+,

|φ+(τ )〉 = sin
θτ

2
|+〉 + cos

θτ

2
eiτ |−〉, (12)

where

tan
θτ

2
=

√
η + ρ3

η − ρ3
. (13)

The geometric phase can then be calculated directly using
Eq. (11),

γg = −

∫ T

0
cos2 θτ

2
dτ. (14)

Now, we calculate the geometric phase of an atom in the
vicinity of a reflecting boundary. To do so, we need the two
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point functions for the electric fields, which can be found from
those of the four-potentials,

Dμν(x,x ′) = 〈0|Aμ(x)Aν(x ′)|0〉 = D
μν

0 (x,x ′) + D
μν

b (x,x ′),
(15)

in which D
μν

0 (x,x ′) is the two-point function in the Minkowski
vacuum without boundaries, and D

μν

b (x,x ′) is the correction
induced by the presence of the boundary which can be
calculated using the method of images. In the Feynman gauge,
we have, at a distance z from the boundary,

D
μν

0 (x,x ′) = h̄

4π2ε0c

ημν

[(ct − ct ′ − iε)2 − (x − x ′)2 − (y − y ′)2 − (z − z′)2]
, (16)

D
μν

b (x,x ′) = − h̄

4π2ε0c

ημν + 2nμnν

[(ct − ct ′ − iε)2 − (x − x ′)2 − (y − y ′)2 − (z + z′)2]
, (17)

where ημν = diag(1, − 1, − 1, − 1), nμ = (0,0,0,1), and
ε → +0. The electric field two-point functions can be ex-
pressed as a sum of the Minkowski vacuum term and a
correction term due to the boundary:

〈Ei(x(τ ))Ej (x(τ ′))〉 = 〈Ei(x(τ ))Ej (x(τ ′))〉0

+〈Ei(x(τ ))Ej (x(τ ′))〉b, (18)

where

〈0|Ei(x(τ ))Ej (x(τ ′))|0〉0

= h̄c

4π2ε0
(∂0∂

′
0δij − ∂i∂

′
j )

× 1

(x − x ′)2 + (y − y ′)2 + (z − z′)2 − (ct − ct ′ − iε)2
,

(19)

〈0|Ei(x(τ ))Ej (x(τ ′))|0〉b
= − h̄c

4π2ε0
[(δij − 2ninj )∂0∂

′
0 − ∂i∂

′
j ]

× 1

(x − x ′)2 + (y − y ′)2 + (z + z′)2 − (ct − ct ′ − iε)2
.

(20)

Here ∂ ′ denotes the differentiation with respect to x ′.
Let us now consider an atom moving in the x direction with

a constant velocity v at a distance z from the plane, so the
trajectory is given by

t(τ ) = γ τ, x(τ ) = x0 + vγ τ, y(τ ) = y0, z(τ ) = z,

(21)

where γ = (1 − v2/c2)−
1
2 . Here let us note that the electric-

field two-point functions, Eqs. (18)–(20), and the trajectory
Eq. (21) are described in the laboratory frame. Since the
evolution of the atom is studied in the frame of the atom, a
Lorentz transformation is required to get the electric-field two-
point functions in the proper frame of the atom from Eq. (18) to

Eq. (20):

〈0|Ei(x(τ ))Ej (x(τ ′))|0〉0 = h̄c

π2ε0

δij

(c�τ − iε)4
,

〈0|Ex(x(τ ))Ex(x(τ ′))|0〉b = 〈0|Ey(x(τ ))Ey(x(τ ′))|0〉b
= − h̄c

π2ε0

c2�τ 2 + 4z2

[(c�τ − iε)2 − 4z2]3
,

〈0|Ez(x(τ ))Ez(x(τ ′))|0〉b = h̄c

π2ε0

1

[(c�τ − iε)2 − 4z2]2
.

(22)

The correlation function and its Fourier transform can be
calculated as follows:

G+(x) =
∑

i

e2

h̄2 |〈−|ri |+〉|2〈0|Ei(x)Ei(y)|0〉, (23)

G(λ) =
∑

i

e2|〈−|ri |+〉|2λ3

3πε0h̄c3
[1 − fi(λ,z)]θ (λ), (24)

where

fx(λ,z) = fy(λ,z) = 3c3

16λ3z3

[
2λz

c
cos

2λz

c
+

(
4λ2z2

c2
− 1

)

× sin
2λz

c

]
, (25)

fz(λ,z) = 3c3

8λ3z3

[
2λz

c
cos

2λz

c
− sin

2λz

c

]
, (26)

and θ (λ) is the standard step function. Thus the coefficients
of the Kossakowski matrix aij and the effective level spacing
of the atom can be written as

A = B = γ0

4

∑
i

αi[1 − fi(ω0,z)], (27)

 = ω0 + γ0

2πω3
0

∑
i

P

∫ ∞

0
dω ω3αi[1 − fi(ω0,z)]

×
(

1

ω + ω0
− 1

ω − ω0

)
, (28)

where γ0 = e2|〈−|r|+〉|2ω3
0/3πε0h̄c3 is the spontaneous

emission rate in vacuum without boundaries, and
αi = |〈−|ri |+〉|2/|〈−|r|+〉|2. Then the geometric phase
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can be found using Eq. (14),

γg= −
∫ T

0

1

2

(
1− 1 − e4Aτ + cos θ√

e4Aτ sin2 θ + (1 − e4Aτ + cos θ )2

)
dτ.

(29)

So, the phase accumulates as the system evolves, although
the accumulation with time is not linear as in the unitary
evolution case. For a single period of evolution, the result of
this integral can be analytically expressed as

γg = 

ω0
[F (2π ) − F (0)], (30)

where function F (ϕ) is defined as

F (ϕ) = −1

2
ϕ − 1

8A
ln

(
−1

2
Q2 + e4Aϕ/ω0 + S(ϕ)

)

− 1

8A
sgn(Q) ln[2Q2e−4Aϕ/ω0 − Q2

+ 2QS(ϕ)e−4Aϕ/ω0 ], (31)

in which S(ϕ) =
√

e8Aϕ/ω0 − e4Aϕ/ω0Q2 + Q2, Q =
1 + cos θ , and sgn(Q) is the standard sign function.

In order to examine the behaviors of this phase, we perform,
for small γ0/ω0, which is true in our current discussions as we
will see later, a series expansion of the geometric phase for a
single quasicycle and find, to the first order,1

γg ≈ −π (1 − cos θ ) − π2 γ0

2ω0

∑
i

αi[1 − fi(ω0,z)]

× (2 + cos θ ) sin2 θ. (32)

The first term −π (1 − cos θ ) in the above equation is
what we would have obtained if the system were isolated
from the environment, i.e., a bath of fluctuating vacuum
electromagnetic fields, and the second term is the cor-
rection induced by the interaction between the atom and
the environment. Here fi(ω0,z) are oscillating functions
of distance z with a position-dependent amplitude. For an
atom polarized in an arbitrary direction, the polarizations
of the atom in the tangential directions and in the normal
direction of the boundary contribute differently to the cor-
rection of the geometric phase. If the atom is polarized in
the tangential direction, as the atom approaches the boundary
(z → 0), the correction of the geometric phase vanishes, since
fx(ω0,z) and fy(ω0,z) approach zero, which can be attributed
to the fact that the tangential components of the electric
field vanish on the conducting plane. However, if the atom is
polarized in the normal direction, fz(ω0,z) → −1 as z → 0,
and the correction of the geometric phase is twice that of the
free space case. This can be understood as the fact that the
reflection at the boundary doubles the normal component of
the fluctuating electric field. When the distance z approaches
infinity, the modulation functions fi(ω0,z) approach zero, and
the result reduces to that of the unbounded Minkowski vacuum
case. So, due to the modification of the vacuum fluctuations

1Here we have omitted the Lamb shift terms, since it is obvious that
these terms contain a factor γ0/ω0 and they will only contribute to
the phase at the second and higher orders of γ0/ω0.

caused by the reflecting plane, the vacuum fluctuation induced
geometric phase becomes position dependent. Now let us
estimate how large the phase difference is. If we assume that
|〈−|r|+〉| is of the order of the Bohr radius a0, and ω0 is of the
order of E0/h̄, where E0 = −e2/8πε0a0 is the energy of the
ground state, then γ0/ω0 is of the order of 10−6. For a fixed z,
the environment induced geometric phase [the second part of
Eq. (32)] reaches its maximum when θ ≈ 1.354, which is in
the vicinity of θ = π/2, i.e., an equal superposition between
the ground and excited state. (The numerical results below are
based on θ = π/2.)

Based upon the discussions above, an experiment that aims
a direct detection of vacuum fluctuations can be in principle
designed. One first prepares two-level atoms in a superposition
of upper and lower states in a Ramsey zone. The atoms are
then set in two paths which are both parallel to a reflecting
plane but with different distances from it. After a certain
time of evolution, we let atoms from different paths meet by
certain means, for example, by applying a laser pulse to atoms
from one path to change its direction of motion, and take
an interferometric measurement. For a practical experimental
implementation, we want, on one hand, the difference in the
distances of the two paths to the boundary to be large enough
so as to generate an appreciable phase variance. On the other
hand, however, we also want this difference to be negligibly
small as compared to the length of the paths parallel to the
plane, so that the phase accumulated due to the vertical motion
of the atoms before they meet can be neglected. A compromise
can be achieved for atoms whose transition frequencies are
in the microwave regime, for example, ω0∼109 s−1, which
is physically accessible [36]. If the distances to the plane of
the parallel paths are chosen respectively as ∼10−5 m and
∼10−6 m, then one can show by integrating Eq. (29) that
the geometric phase variation can reach ∼10−3 rad for an
evolution time of ∼10−3 s. In current cold atom interferometric
experiments, the speed of the atoms is ∼1 m/s, so the time
the atom moves vertically is ∼10−5 s, which is two orders
of magnitude less than the parallel evolution time, and thus
the phase accumulated during this period can be neglected.
Here we emphasize that the geometric phase is independent
of the velocity of the atom. This can be seen from the Fourier

20 40 60 80 100
z Μm

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Δ rad

FIG. 1. (Color online) Phase difference δ as a function of z. Here
z and z0 are the distances of the trajectories of the two atoms to the
plate, respectively, with parameters z0 = 1 μm, ω0 = 3 × 109 Hz,
γ0/ω0 = 10−6, and θ = π/2.
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transform of the electric-field correlation functions Eqs. (24)–
(26), which determine the coefficients of the dissipator A and B

[Eq. (8)], and then the geometric phase [Eq. (29)]. We specify
the velocity of the atom here only to ensure the geometric
phase generated by the motion in the parallel direction will
dominate. In Fig. 1, we plot the phase difference between one
atom whose trajectory is fixed at z0 = 1 μm, and the other that
varies from z = 1 μm to z = 100 μm, which shows that the
phase difference increases with the distance between the two
atoms monotonously. Now, we estimate how the geometric
phase would change when the trajectories fluctuate by an
amount δz. We assume one trajectory is fixed at z0 = 1 μm,
and the other fluctuates from z = 10 μm to z + δz = 10.1 μm.
The phase difference between the two cases is ∼10−5 rad,
which is two orders of magnitude smaller than 10−3 rad. So
the geometric phase is robust against small fluctuations of the
distances δz, as long as δz is small compared with z0. Another
effect that should be taken account of is that, in reality, a metal
plate does not reflect electromagnetic waves completely. As
a result, an excited atom also decays nonradiatively, i.e., the
energy is not only transferred to the free space as photons but
also to the absorbing metal as heat. The nonradiative decay
rate takes the well-known form γnon/γ0 = βz−3 (see, e.g.,
Ref. [37] and references therein, and Ref. [38] based on a
fully canonical quantum theory). This would have an effect on
the environment induced geometric phase as can be seen from

Eq. (32), that is, to the first order, the correction is proportional
to the spontaneous emission rate. For conductors, β is typically
of the order of ∼10−18 cm3 [37], and we are considering
z∼1 μm, so γnon/γ0∼10−6. Therefore, the contribution of the
nonradiative decay to the phase can be neglected. We must
point out, however, that a subtle issue actually exists in any
practical implementation of our proposal, that is, a cancellation
of dynamical phases that the atoms may acquire during the
evolution, which is very tricky for systems under nonunitary
evolutions like what we are considering here [39]. A possible
alternative might be to determine the geometric phase directly
in a tomographic manner by measuring elements of the
reduced density matrix of the atom rather than to perform an
interferometric experiment as what is actually pursued in [19].
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[13] E. Sjöqvist, A. K. Pati, A. Ekert, J. S. Anandan, M. Ericsson,

D. K. L. Oi, and V. Vedral, Phys. Rev. Lett. 85, 2845 (2000).
[14] K. Singh, D. M. Tong, K. Basu, J. L. Chen, and J. F. Du, Phys.

Rev. A 67, 032106 (2003).
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