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Enhanced all-optical switching with double slow light pulses
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We experimentally demonstrate an all-optical switching (AOS) scheme based on double slow light (DSL)
pulses, in which one pulse is switched by another due to the cross-Kerr nonlinearity. The interaction time is
prolonged by optically dense atomic media and matched group velocities. The interaction strength is maintained
at a high level by keeping both fields at their electromagnetically-induced-transparency resonances to minimize
the linear loss. In the AOS without the DSL scheme, the group velocity mismatch sets an upper limit on the
switching efficiency of two photons per atomic cross section as discussed by Harris and Hau [Phys. Rev. Lett.
82, 4611 (1999)]. Compared to that limit, we have obtained an enhanced switching efficiency by a factor of
3 with our DSL scheme. The nonlinear efficiency can be further improved by increasing the optical depth of
the medium. Our work advances low-light-level nonlinear optics and provides essential ingredients for quantum
many-body physics using strongly interacting photons.
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I. INTRODUCTION

Photons are ideal carriers of quantum information due to
their high propagation speed and weak coupling nature. How-
ever, a strong nonlinear interaction between photons is crucial
in many quantum information processing applications. Atomic
medium in the presence of electromagnetically induced trans-
parency (EIT) [1] provides an avenue to obtaining strong
nonlinear photon-photon interactions. The four-level N-type
system is a basic EIT-based scheme for the implementation
of nonlinear optical processes, such as all-optical switching,
cross-phase modulation, and four-wave mixing [2–4]. It has
been predicted to allow nonlinear optical processes at energies
per area of a few photons per atomic cross section [3,4]. In the
N-type system, the probe pulse is a slow light but the switching
pulse propagates at the vacuum speed of light. This group
velocity mismatch sets an upper limit to the interaction time
and thus the nonlinear efficiency. To overcome this limitation,
the double slow light (DSL) scheme has been proposed [5–9].
In the DSL scheme the nonlinear efficiency is determined by
the group delay time, which in principle has no upper limit but
only depends on the achievable optical depth (OD).

Previously, we have demonstrated a DSL scheme in cold
cesium atoms [10]. The cross-Kerr nonlinearity is obtained
through two five-level asymmetric M-type systems [11,12].
Although we have implemented the DSL scheme in that
study, the performance of the cross-phase modulation did
not overcome the N-type limit [10]. The reason is the
accompanying linear loss in the switching EIT system, in
which a two-photon detuning is introduced to induce the
cross-Kerr nonlinearity. The gain in the interaction time is
canceled by the loss in the interaction strength. We here
demonstrate an improved DSL scheme that allows for a
nonzero cross-Kerr nonlinearity but with both weak fields
kept at their EIT resonances. This scheme takes the full
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advantage of the DSL. We study the nonlinear process of
all-optical switching (AOS), controlling the attenuation of
probe pulses by switching pulses, which is related to the
imaginary part of the cross-Kerr susceptibility [13,14]. In the
N-type scheme with both pulses firing at the same time, a
maximum switching efficiency of two photons per atomic cross
section is needed to induce an attenuation of the probe to e−1

[13]. With our scheme, we obtain a significant enhancement
of the AOS efficiency over that obtained with our previous
DSL scheme [10]. In addition, it allows us to overcome the
N-type switching limit by a factor of 3. If this DSL scheme
can be combined with tightly transverse confinement [15], it
will offer the opportunity to realize single-photon-level optical
devices [3,4,11], as well as the intriguing quantum many-body
physics utilizing strongly interacting photons [16–18].

A schematic diagram of our DSL and AOS scheme is
shown in Fig. 1(a). The population is prepared in states |1〉 and
|6〉 by the optical pumping method. The probe and control 1
(switching and control 2) form a �-type EIT for the states |1〉
to |3〉(|6〉 to |8〉). The five states |1〉 to |5〉 and the other five |6〉
to |10〉 form two sets of asymmetric M-type systems (denoted
by M1 and M2) as shown in Figs. 1(b) and 1(c) [11,12].
In our improved AOS scheme, we apply a small magnetic
field in the laser propagation direction to lift the Zeeman
degeneracy. We keep all laser fields on their one-photon
resonances with respect to the right � section in the two
M-type systems. Therefore, both EIT systems are on their
two-photon resonances. However, the left � sections are
two-photon detuned due to the difference in Zeeman shifts.
Thus the cross-Kerr susceptibilities are nonzero even with
both EIT systems on their two-photon resonances.

II. THEORETICAL ANALYSIS

Before discussing the experiment, we first consider a theo-
retical analysis of the AOS based on the DSL scheme to grasp
essential idea. Under the slowly varying envelope approxima-
tion and considering to the first-order dispersion, the Maxwell
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FIG. 1. (Color online) (a) Relevant energy levels for 133Cs atoms
and laser excitations in the presence of a magnetic field. (b), (c) The
M-type five-level systems formed by states |1〉 to |5〉 (M1) and |6〉 to
|10〉 (M2).

equations for the probe and switching fields are [19,20],

∂�p(s)

∂z
+ 1

v
p(s)
g

∂�p(s)

∂t
= i

kp(s)

2
χp(s)�p(s), (1)

where �p(s) = −μ12(67)Ep(s)

h̄
, kp(s), v

p(s)
g , and χp(s) are the Rabi

frequency, wave vector, group velocity, and susceptibility of
the probe (switching) field, respectively. The susceptibility
is proportional to the density matrix element that can be
obtained by solving the optical Bloch equation (OBE) [10].
Because the energy level scheme is relatively complicated,
we consider the following simplifications in the probe
and switching susceptibilities to capture the major physics.
We have performed a numerical calculation of the OBE for
the ten-level system shown in Fig. 1(a). Both the steady-state
and transient calculations have been performed. From the
calculation, we find that the overall atomic responses from
ρ21 and ρ98 resemble the results from a simple five-level
system like the M1 only. The difference in the cross-Kerr
susceptibility of probe (χ (3,ck)

p ) for the actual ten-level system
to the simplified five-level M1 system is less than 15% with
the typical experimental parameters. Thus, χ (3,ck)

p � χ
(3,ck)
p,M1

.
Detailed analysis and explanation to support this point are
shown in the Appendix. In the experiment, we are only
concerned with the nonlinear loss of the probe due to
the switching. The linear and self-Kerr susceptibilities for
the probe are not considered. In addition, we consider the
cases with �p � �s such that only the nonlinear loss of
the probe due to the switching needs to be considered but
not the opposite. Under such an assumption, the cross-Kerr
contributions to χs is negligible and χs can be approximated
by the linear susceptibility, χ

(1)
s,M2

. The analytic form of χ
(3,ck)
p,M1

and χ
(1)
s,M2

can be derived using perturbation theory and are
shown below [10,12],

χ
(3,ck)
p,M1 = npσp

2kp

−i(iδ4 − γ )
/4[
(iδp − (
 + γ )/2)(iδ2 − γ ) + �2

c1/4
][

(iδ3 − (
 + γ )/2)(iδ4 − γ ) + �2
c2/4

] , (2)

and

χ
(1)
s,M2

= nsσs

2ks

−i(i(δs − δc2) − γ )


[iδs − (
 + γ )/2][i(δs − δc2) − γ ] + �2
c2/4

.

(3)
The notations np(s),σp(s),
,γ indicate the atomic density in
state |1〉 (|6〉), the absorption cross section for the probe
(switching) transition, the excited state decay rate and the
ground-state decoherence rate, respectively. δp(s) is the probe
(switching) detuning and the multiphoton detunings are δ2 =
δp − δc1,δ3 = δ2 + δs,δ4 = δ3 − δc2.

Considering a coordinate transformation that copropa-
gates with the switching pulse, the Maxwell equation for
the switching field can be solved to be [20], �s(z,t) =
�s(0,t − z

vs
g
)exp( i

2ksχ
(1)
s z). Inserting this result into Eq. (1)

and considering similar transformation for the probe pulse,
assuming v

p
g = vs

g and considering the cross-Kerr effect only,
the probe solution is [12,19],

�p(z,t)

�p(0,τ )
= exp

[
i

2
kp

∫ z

0
dz′χ (3,ck)

p |�s(0,τ )|2e−ksIm(χ (1)
s z′)

]
,

(4)

where τ = t − z

v
p
g

. Thus the intensity transmission for a square
probe pulse due to the nonlinear loss is,

Tp = exp

{
−kpIm

(
χ (3,ck)

p

)|�s0|2
ksIm

(
χ

(1)
s

) [
1− exp

(−ksIm
(
χ (1)

s

)
L

)]}
,

(5)

where L is the sample length. From Eqs. (4) and (5), one
observes that when Im(χ (1)

s ) is minimized (i.e., the switching
field is at its EIT resonance) the nonlinear switching on the
probe is maximized. This fact highlights the main point of
our DSL scheme.

From the definitions of the Rabi frequency, we note that
�2

s0τs = Nsσs


A
for square pulses, where τs , Ns , σs , and A are the

duration of the switching pulse, number of switching photons,
absorption cross section for switching transition, and the laser
cross section, respectively. Eq. (5) can be written as,

Tp = exp

(
−ψ

Ns

A
σs

)
, (6)

where ψ is a parameter characterizing the nonlinear switching
efficiency. This form also holds for different pulse waveforms
and schemes but with different ψ . Next, we consider the
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Gaussian waveform for both pulses. The maximum efficiency
ψ at the probe peak for the N-type system is [4]

ψ = 1

2
erf

(√
4ln2αp


τs�
2
c1

)
, (7)

where τs is the intensity FWHM duration of the switching pulse
and αp is the OD for the probe. In the DSL scheme, we tune
the magnetic field to a value such that χ (3,ck)

p is operated under
maximum switching conditions. With δp = 0 and δ2 = 0, it can
be shown from Eq. (2) that the maximum switching condition
occurs when the two-photon detuning for the left � section in
the M1 system is equal to �c2/2 with respect to the |5〉 → |4〉
transition. The maximum value of kpIm(−χ

(3,ck)
p,M1 ) is nsσs

�2
c1

if

γ � 
. From Eq. (3), it can be shown that the minimum value
of ksIm(χ (1)

s ) is nsσs
2
γ

�2
c2

. If we maintain v
(p)
g = v(s)

g and αp =
αs , then �c1 = �c2 since the group delay TD = α


�2
c
. Inserting

all these relations into Eq. (4), the efficiency ψ for the DSL
scheme is,

ψ = 1

τs

√
4ln2

π

1 − exp
( − 2γ αs


�2
c2

)
2γ

. (8)

It is evident that ψ is proportional to αs at low αs and is
saturated to a value determined by γ at high αs .

However, this estimation of ψ is too optimistic if one
considers to the second-order dispersion, which causes
pulse broadening and reduction in amplitude and thus a
degradation of ψ [10,21]. Considering to the second-order
dispersion, the intensity temporal width for a pulse passing
through an EIT medium is broadened by a factor of β =√

1 + 16 ln 2α
2/τ 2�4
c and the peak intensity is reduced by

a factor of 1/β2 [10,21]. If we include this effect for the
switching into Eq. (4), the efficiency ψ is,

ψ = npσp


τs�
2
c1

√
4 ln 2

π

∫ L

0

exp
(− 2γ


�2
c2

nsσsz
)

1 + 16 ln 2
2

τ 2
s �4

c2
nsσsz

dz. (9)

The broadening effect on the probe pulse is not considered
because it will be normalized away. Based on Eq. (9), one can
show that at a fixed OD there is an optimum �c that maximizes
ψ . With higher ODs, both the optimum �c and maximum ψ

shift to higher values. The square of the optimum �c and the
maximum ψ scale with

√
αp [5,22].

III. EXPERIMENTAL SETUP

Our experiment was performed with a two-dimensional
magneto-optical trap (MOT) [23]. We typically trap (1–
3) × 109 atoms with a total trapping power of 240 mW and
a repumping power of 25 mW. The length of the atomic
cloud is ∼2 cm. We use a combination of techniques to
increase the ODs including the temporal dark MOT and optical
pumping. Before turning off the quadruple magnetic field of
the MOT for performing the measurements, the intensity of
the repumping beam of MOT is reduced by a factor of ∼30
for 4 ms to increase the atom density. The optical pumping is
performed by applying both control fields for 0.5 ms before
the measurements. In the cases that we need to adjust the
population ratio among the state |1〉 and |6〉, we apply one

additional optical pumping beam with a frequency of 3 MHz
red-detuned to the |F = 3〉 → |F ′ = 4〉 σ+−transition. The
OD ratio among the probe and switching transitions can be
adjust by varying the intensity of this laser beam. Typical ODs
for the probe and switching transitions are around 50–100.

One master laser is frequency-stabilized to the cesium
absorption line. It injection locks one slave laser and one
vertical-cavity surface-emitting laser (VCSEL), which is
current modulated around 9 GHz. The VCSEL injection locks
another slave laser at its +1 sideband. Thus, the two slave
lasers maintain a good mutual coherence with a frequency
offset of about the ground-state hyperfine splitting of cesium.
The control, switching, and probe beams are all derived from
the two slave lasers. Some acousto-optic modulators (AOMs)
are used to generate the laser fields at desired frequencies. The
probe and switching beams are combined through a polarizing
beam splitter. They are coupled into a polarization-maintaining
fiber to ensure perfect overlapping for good AOS. The probe
and switching beams are converted to circular polarizations by
a quarter wave plate. They are focused to a waist of 50 μm
within the atomic cloud with a Rayleigh length of ∼1 cm. The
control beams are coupled with the probe and switching beams
through two beam splitters. All laser beams propagate along
the long axis of the atom clouds. The diameters of the control
beams are ∼4 mm to cover the atomic cloud. The control beams
intersect with the probe and switching beams by ∼10. After
the MOT, the probe and switching beams pass through another
quarter wave plate to be converted into linear polarizations.
They are split by a polarizing beam splitter and then detected
by two photomultiplier tubes (PMTs, Hamamatsu H6780-20)
with an overall efficiency of 40% and 28% for the probe
and switching, respectively. A series of irises, pinholes, and
multimode fibers are used to minimize the leakage of the strong
control beams into the PMTs with overall extinction ratios of
better than 70 dB.

The stray magnetic field is compensated by three pairs of
coils to less than 3 mG. Some electronics are used to quickly
damp the current through the MOT coils within 0.5 ms. We
avoid placing metallic components near the MOT region in
order to minimize the inhomogeneous magnetic field produced
by the induced eddy current. With such arrangements, the
ground-state decoherence rate is kept to 1 × 10−3 
 level,
which is determined from the EIT spectral fitting. In our DSL
scheme, we have to apply a magnetic field of a few Gauss
along the long axis of the atom clouds. We apply a pulsed
magnetic field with a duration of 2 ms during the MOT off
period to minimize the perturbation on the MOT. A capacitor
in addition with one power supply are used to apply the current
through one pair of compensation magnetic coils with an e−1

time constant of ∼0.2 ms. The MOT is off for 1.5 ms for
the AOS experiment at a 50-Hz repetition rate. We apply two
subsequent probe pulses and one switching pulse in coincident
with the second probe pulse. The power ratio of the second
to the first probe pulse reflects the nonlinear loss due to the
switching pulse.

IV. RESULTS AND DISCUSSIONS

We first measure the transmission spectrum of the probe
versus the detuning of the switching field (δs) without a
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FIG. 2. (Color online) (a), (b) Tp versus δs . (c), (d) Switching
transmission versus δs . (a) and (c) [(b) and (d)] were taken without
(with) the presence of a (1.9 G) magnetic field. The δs here are laser
detunings with respect to the magnetic-field-free resonant frequency
of transition |6〉 → |7〉. The blue traces in (a) and (b) [(c) and (d)]
indicate the theoretical curves obtained using Eq. (5) (EIT line shape).
The parameters {αp,αs,�c1,�c2,�s,γ } are {65, 47, 0.41
, 0.52
,
0.14
, 0.0022
}, respectively.

magnetic field. Both pulses have square waveforms with a
duration of 20 μs. The input power of the probe and switching
pulses are 2.0 and 13.5 nW, respectively. The output power
of the two pulses during 12 to 20 μs are recorded. The
transmission spectrum for the switching is shown in Fig. 2(c).
This is a typical EIT spectrum for optically dense atomic
samples. The ratio of the probe power with and without the
presence of the switching (Tp) versus δs is shown in Fig. 2(a).
Using our previous DSL scheme, we would choose δs at the
values indicated by the dashed lines in Figs. 2(a) and 2(c).
Given such detunings, the switching efficiency for the probe
is maximized. However, the switching almost attenuates to
zero after passing through the medium because it is two-
photon detuned. Figures 2(b) and 2(d) show the probe and
switching transmission spectra after applying a magnetic field
of ∼1.9 G. The striking difference is that the switching can be
operated at its EIT resonance, while the probe can be operated
at its maximum switching point simultaneously. The AOS
efficiency is significantly enhanced because the attenuation
of the switching is greatly reduced by keeping at its EIT
resonance. The enhancement in the AOS efficiency is typically
around a factor of 5–7 compared to our previous DSL scheme.
The solid lines in Figs. 2(a) and 2(b) indicate the plots obtained
with Eq. (5). The simple model fits the data reasonably well.
The slight deviation in the line shape and degree of switching
may due to the over simplification in the susceptibilities.

Next, probe and switching pulses with a Gaussian
waveform and a FWHM duration of 2μs are applied in
the experiment. We apply a magnetic field and tune it to a
magnitude such that the AOS effect is at its maximum. We tune
the group velocities of the two pulses to matching conditions
by adjusting the OD ratio among the probe and switching
transitions as described in the previous section. Figures 3(a)
and 3(c) show the typical data for DSL scheme. The energies
of the probe and switching pulses are 5 and 55 fJ, respectively.
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FIG. 3. (Color online) (a), (b) [(c), (d)] Probe (Switching)
transmission versus time. The input probe (switching) pulses are also
shown (blue). They are scaled down by 25% for clarity in (a) and (b).
(a) and (c) were taken with the DSL scheme under a magnetic field
of 1.9 G. (b) and (d) were taken with the N-type scheme. Gaussian
fitting curves for the delayed probe pulses are shown in (a) and (b).
The parameters {αp,αs,�c1,�c2} are {51, 77, 0.46
, 0.53
} for both
cases. The delayed probe pulse with the switching off in (a) is a little
weaker than that in (b). This is due to the off-resonant excitation of
control 2 through the |F = 4, m = 4〉 → |F ′ = 5, m = 5〉 transition
which degrades γ . In (d), the switching pulse for the N-type system
is attenuated a little. Part of the attenuation (∼20%) is due to the
imperfect optical pumping with a residual population in state |6〉.
Another part (∼10%) is due to the nonlinear switching loss from the
probe.

The ratio of the amplitude of delayed probe pulses with and
without the presence of the switching pulses (Tp) characterizes
the degree of nonlinear switching at the probe peak. A typical
plot of Tp versus Ns for the DSL scheme is shown in the red
circle trace of Fig. 4(a). Equation (6) describes Tp at a fixed
switching intensity. To quantitatively fit the data for Tp versus
Ns , we have to consider the Gaussian intensity distribution of
the laser beams and perform the transverse averaging. With
such a consideration, we obtain Tp = 1−exp[ψ(Ns/A)σs ]

ψ(Ns/A)σs
[24].

0 20 40 60 80 100
0

0.5

1

1.5

2

Optical Density for Probe

S
w

itc
hi

ng
 E

ffi
ci

en
cy

(b)
0 200 400 600

0

1

2

0  0.5 1  1.5 2  
0

0.2

0.4

0.6

0.8

1

(a)

Number of Switching Photons 

P
ro

be
 T

ra
ns

m
is

si
on

x105

x10−5

FIG. 4. (Color online) (a) Tp versus Ns for the DSL (red
circles) and N-type (blue squares) schemes. The parameters
{αp, αs, �c1, �c2} are {73, 81, 0.54
, 0.60
} for the DSL scheme.
The parameters {αp, �c1} are {79, 0.54
} for the N-type scheme. (b)
1/N0 versus αp for both the DSL (red circle) and N-type (blue square)
schemes. The solid lines are the theoretical curves using Eqs. (7) and
(9). The parameters {�c1, �c2, γ } are {0.55
, 0.55
, 0.0012
} for
the DSL scheme. The parameters {�c1, τs} are {0.93
, 2μs} for the
N-type scheme.
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We fit Tp versus Ns to the relation Tp = 1−e−Ns /N0

Ns/N0
, where

N0 = A
ψσs

. The fits to the data are very good as shown by
the solid lines in Fig. 4(a). Although we can determine the
absolute efficiency ψ by knowing the beam waist (∼50μm),
we also perform the same measurements for the N-type system
formed by states |1〉 to |4〉 and do a relative comparison in ψ

to avoid possible systematic problem. The ratio of 1/N0 for
the two schemes reflects their efficiency ratio.

In the N-type experiment, we turn off control 2 and optically
pump the population to state |1〉. There is a complication
related to the AOS in our N-type system due to the possibility
of forming four-wave mixing because the transition from state
|4〉 to |1〉 is allowed. According to Ref. [25], the N-type
switching results can be retained as if the transition from state
|4〉 to |1〉 is forbidden if one operates the switching at an
optimum detuning determined by the ODs and geometry. We
take the N-type data at the optimum δs for each OD. Typical
data for the N-type system are shown in Figs. 3(b) and 3(d).
The experimental parameters are the same as those in the DSL
scheme. Comparing the two traces with and without switching
pulses in Figs. 3(a) and 3(b), it is clear that the switching
efficiency for the DSL scheme is better than that of the N-type
scheme.

We then systematically measure 1/N0 versus αp in both
schemes as shown in Fig. 4(b). In the DSL scheme, we keep
αp � αs . The nonlinear efficiency for the N-type scheme
saturates to a maximum value at αp ∼ 50. This behavior
is expected and is due to the group velocity mismatch [4].
However, the nonlinear efficiency for the DSL scheme is still
increasing around this range of αp. At the highest OD, we
have achieved an enhancement in the AOS efficiency by a
factor of 3 compared to that of N-type scheme. The theoretical
curve for the N-type scheme based on Eq. (7) is shown as the
blue solid line in Fig. 4(b) with a scaling factor representing
σs/A. The theoretical maximum value of ψ for the N-type
scheme is 0.5 [4]. From Eq. (6), this corresponds to active an
attenuation of probe to e−1 by two photons per atomic cross
section. Our best switching efficiency with DSL scheme is
thus 0.67 photons per atomic cross section. The solid red line
in Fig. 4(b) indicates the plot for the DSL scheme obtained by
Eq. (9) with the same scaling factor σs/A. At very high OD
(∼300), the theoretical prediction shows that the efficiency for
the DSL scheme also approaches to a saturated value as shown
in the inset to Fig. 4(b) due to finite γ and pulse broadening.
Reducing γ , achieving a higher OD and operating at a higher
�c help to maximize ψ . As mentioned in Sec. II, the AOS
efficiency ψ based on the DSL scheme has a square root
scaling law versus OD. The AOS scheme using the stored
and stationary light has a linear scaling law for ψ versus
OD [22]. This scheme has been demonstrated recently, which
obtained a maximum enhancement of 3.6 over the N-type
limit [24].

V. CONCLUSION

In conclusion, we have demonstrated an improved DSL and
AOS scheme, which allows both EIT systems on their two-
photon resonances but with nonzero cross-Kerr nonlinearities.
Based on this scheme, we have overcome the N-type switching
limit by a factor of 3. Better nonlinear efficiency can be

obtained if higher ODs could be achieved. If focusing the
beams to the level of atomic cross section, our work implies
that it is feasible to have significant efficiency for nonlinear
optical processes at the single-photon level. Our work also
provides essential ingredients to study the many-body physics
utilizing strongly interacting photons.
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APPENDIX: NUMERICAL CALCULATION
OF THE SUSCEPTIBILITIES

We will present in this appendix the results of numerical
calculation of the optical Bloch equation for the ten-level
system shown in Fig. 1(a) with the presence of a magnetic field.
From the results we show that the overall atomic responses
from ρ21 and ρ98 resemble the results from a five-level M-type
system (M1) only. An explanation of why this is the case and
under what parameter domains this approximation is valid is
given.

Before discussing the ten-level system, we first consider
the atomic response for the probe transition from ρ21 or
ρ98 in a simple five-level M-type system like M1 or M2.
In the actual energy level of cesium atoms, the population
for each excited state in one specific M-type system has the
possibility to spontaneously decay to the ground state of the
other M-type system. To model the simple five-level system
as a closed system, we scale up the spontaneous decay rate
from the excited state to the ground state belonging to the
same M-type system such that the total spontaneous decay
rate of the excited state within the same M-type system is 
.
The analytic solution for steady-state density matrix elements
ρ21 or ρ98 in a simple five-level system can be derived using
the perturbation theory. The susceptibility is proportional to
the density matrix element. The explicit expression for the
cross-Kerr susceptibility χ

(3,ck)
21 is shown in Eq. (2) while χ

(3,ck)
98

can be referred to Supplemental Material of Ref. 10. To be
more general to all possible magnitudes for the parameters,
we perform an exact numerical calculation for the simple
five-level system like the M1 or M2. We do not assume the
presence of Zeeman shifts in this calculation. However, we can
assume suitable detuning for each transition to model the
five-level system under the presence of a magnetic field. For
the M1 system, the two transitions for the right � section
are assumed to be at their one-photon resonances. The right
� section in M1 is thus at its two-photon resonance. Under
such a condition, the linear susceptibility (χ (1)) is a constant
value or zero if we assume the ground-state decoherence rate
γ to be zero. For the simplicity of analysis, we assume that
γ is zero in the numerical calculation so that the probe
susceptibility is purely due to the cross-Kerr effect. The
detunings of control 2, control 1, and the probe with respect to
the |5〉 → |4〉, |10〉 → |9〉, and |8〉 → |9〉 transition are 0.0085

, −0.127 
, and 0.127 
, respectively. These detunings are
the corresponding values when we keep the control 2, control
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FIG. 5. (Color online) (a), (b) The steady-state calculation of
Im[−χ21] and Im[−χ98] for the simple five-level M-type system M1

and M2, respectively. The Rabi frequencies �c1, �c2, �p , and �s with
respect to |3〉 → |2〉, |8〉 → |7〉, |1〉 → |2〉 and |6〉 → |7〉 are 0.40 
,
0.40 
, 0.012 
, and 0.094 
, respectively. The detunings for each
transition and the spontaneous decay rates for each excited state have
been described in the context. We assume that γ is zero and atom
density is 6 × 1010cm−3.

1, and the probe at their one-photon resonances with respect
to the |8〉 → |7〉, |3〉 → |2〉, and |1〉 → |2〉 transition in the
presence of a magnetic field of 1.9 G. In the M2 system, the
detuning for switching with respect to transition |6〉 → |7〉 is
scanned. Figures 5(a) and 5(b) show the imaginary part of
the cross-Kerr susceptibilities for χ21 and χ98 in the generic
five-level systems M1 and M2. The line shape of Im(−χ21) for
the M1 system is a typical dispersive profile for the asymmetric
five-level M-type system. The spacing of the two absorption
peaks is equal to the Rabi frequency of the control field with
respect to transition |5〉 → |4〉. The line shape of Im(−χ98) in
the M2 system shows a narrow feature plus a broad feature. The
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FIG. 6. (Color online) (a), (b), (c) The steady-state calculation of
Im[−χ21], Im[−χ98] and Im[−(χ21 + χ98)] for the ten-level system
in the presence of a magnetic field of 1.9 G. The Rabi frequencies
for each transition are the same as those in Fig. 5. (d), (e), and
(f) depict the population in states |1〉, |6〉 and |8〉, respectively. The
insets show an enlargement of the narrow feature when the switching
field is scanned through the resonance with respect to the |6〉 → |7〉
transition.

narrow feature is centered at the condition when the switching
field is scanned to the resonance of the |6〉 → |7〉 transition.
This can be understood as a multiphoton transition with a
pathway from |6〉 → |7〉 → |8〉 → |9〉. The broad feature is
due to the one-photon absorption through |8〉 → |9〉 with a
small population being optically pumped to state |8〉 by the
switching field.

Next, we consider the numerical calculation for the ten-
level system with Zeeman shifts as shown in Fig. 1(a). We
perform both the steady-state and transient calculations. The
Rung-Kutta method is used for the transient calculations. All
atomic parameters are used according to the actual cesium data.
The only exception is the spontaneous decay rate from state
|9〉 → |5〉. The ten-level system considered here is actually
incomplete because there are more Zeeman sublevels involved.
However, the simplification with only a ten-level system
is reasonable if we consider the cross-Kerr effect only to
the third-order susceptibility. There is a possibility that the
population may leave the ten-level system (e.g., spontaneous
decay from state |9〉 to ground state |F = 4,m = 1〉). We
artificially attribute the total spontaneous emission rate from
state |9〉 out of the ten-level system ( 


48 ) to the state |5〉 to ensure
the conservation of population inside the ten-level system.
This rate is small and its effect is expected to be small in the
pulsed experiments. Typical steady-state calculations for the
susceptibilities Im(−χ21) and Im(−χ98) are shown in Figs. 6(a)
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FIG. 7. (Color online) (a), (b), (c) The transient calculation of
Im[−χ21], Im[−χ98] and Im[−(χ21 + χ98)] for the ten-level system
under the presence of a magnetic field of 1.9 G. The Rabi frequencies
for each transition are the same as those for Fig. 5. (d), (e), and
(f) depict the population in states |1〉, |6〉 and |8〉, respectively.
The evolution time is 400/
. The insets show an enlargement of
the narrow feature when the switching field is scanned through the
resonance with respect to the |6〉 → |7〉 transition.
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and 6(b) with the presence of a magnetic field of 1.9 G. The
profile for the Im(−χ98) in the ten-level system is very similar
to that in the five-level M2 system but with a narrower line
width. The general profile for the Im(−χ21) in the ten-level
system is very similar to that in the five-level M1 system,
except that there is a narrow peak feature, which appears
when the switching field is scanned through resonance of
the |6〉 → |7〉 transition. The explanation for this additional
peak feature is related to the population exchange between
states |1〉 and |6〉 in the two M-type systems. Figures 6(d)–6(f)
show the population of states |1〉, |6〉 and |8〉 at the steady
state. In the steady-state calculation, the population will be
optically pumped out of state |6〉 by the switching field if it is
off-resonant with respect to the |6〉 → |7〉 transition. Due to the
optical pumping effect of the control 2, all populations will be
almost completely in state |1〉 in the long time limit. The probe
absorption through transition |8〉 → |9〉 is thus almost zero for
the off-resonant switching field, because there is no population
in state |8〉 for direct one-photon transition and there is no
population in state |6〉 for multiphoton transition through
the pathway |6〉 → |7〉 → |8〉 → |9〉. The probe absorption
through transition |1〉 → |2〉 is almost the same as for a
simple five-level M1 system for the off-resonant switching
field because all population are almost in state |1〉 under
such conditions. If the switching field is on resonance of
transition |6〉 → |7〉, the population in state |6〉 will stay in
the same state due to the protection of the switching’s EIT
dark resonance. Thus, the probe absorption through transition
|8〉 → |9〉 occurs for an on-resonant switching field through
one-photon transition from state |8〉 and through multiphoton
transition through the pathway |6〉 → |7〉 → |8〉 → |9〉. The
multiphoton absorption dominates because the population in

state |6〉 is much larger than that in state |8〉. Due to the
population dip in state |1〉, the probe absorption through |1〉 →
|2〉 has a peak for on-resonant switching field. The contribution
of the narrow features from Im(−χ21) and Im(−χ98) in the
ten-level system almost cancel each other and the overall
profile is thus very similar to the profile of Im(−χ21) of a
simple five-level system like M1. The degree of cancellation
of the narrow features depends mostly on the magnitudes of
the Rabi frequency of the control fields. With �c1,32 � �c2,87,
the cancellation is nearly perfect. If �c1,32 > (<)�c2,87, the
absolute magnitude of the narrow feature due to Im(−χ21) is
larger (smaller) than that due to Im(−χ98). In the experiments,
we keep �c1,32 � �c2,87 for the group velocity matching
condition, and thus the probe response by a simple five-level
M1 system is a good approximation to that for a ten-level
system. We have checked that the cancellation of the two
narrow features is good to 15% if the difference in the two
Rabi frequencies for control fields are within ±10%. The Rabi
frequencies of the probe and switching fields affect the line
width of the narrow features but there is no significant change
in the degree of cancellation.

The transient calculations with an evolution time of 400/


are shown in Fig. 7. The qualitative behavior is similar to
the steady-state calculation except that the line width of the
narrow features is wider and the degree of population exchange
is not as large as that in the steady state. The degree of
cancellation in the narrow features is, however, similar to
that of the steady-state results. The conclusion that the overall
probe absorption for the ten-level system can be approximately
modeled by that of a simple five-level system like M1 in
the suitable parameter domain also holds for the pulsed
experiments.
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