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Propagation of subcycle pulses in a two-level medium: Area-theorem breakdown and pulse shape
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We solve the problem of ultrashort pulse propagation in a two-level medium beyond the rotating-wave (RWA)
and slowly varying-envelope approximations. The method of solution is based on the Maxwell-Bloch equations
represented in the form that allows one to switch between RWA and general (non-RWA) cases in the framework
of a single numerical algorithm. Using this method, the effect of a subcycle pulse (containing less than a
single period of field oscillations) on the two-level medium was analyzed. It is shown that for such short pulses,
the clear breakdown of the area theorem occurs for the pulses of large enough area. Moreover, deviations from
the area theorem appear to be strongly dependent on the pulse shape that cannot be observed for longer few-cycle
pulses.
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I. INTRODUCTION

As the light pulses produced with modern laser techniques
become shorter, so that their duration becomes comparable
with the period of optical field oscillation, the necessity
of an adequate theoretical description of the propagation
of such ultrashort pulses in different systems tends to be
more and more obvious. One of the basic models of an
optical medium is a two-level medium, the fundamental
model of a resonantly absorbing medium. The case of pulses
containing only a few cycles of field oscillations implies
that the analysis of the pulse dynamics in the two-level
medium should be carried out beyond the popular and standard
approximations—the slowly varying-envelope approximation
(SVEA) and the rotating-wave approximation (RWA). The
study of few-cycle pulse propagation under such generalized
conditions (beyond SVEA and RWA) has been under way
since the mid-1990s and has given a number of important
results. For example, the main effects previously known, such
as self-induced transparency (SIT), 2π soliton formation, and
4π pulse splitting, were reported to be valid for the few-cycle
pulse though some additional features in the dynamics of the
two-level medium were found as well [1–3]. Among other
results one can mention the spectral transformations due to
the intrapulse four-wave mixing [2], the local-field effects
on the few-cycle pulse propagation [4,5], the generation of a
single-cycle soliton in a subwavelength structure consisting of
the two-level medium [6], and the creation of the quasisolitons
in a waveguidelike resonantly absorbing nanostructure [7].
The most recent achievements include the effects of the chirp
[8–10] and the so-called counterrotating terms in the Bloch
equations [11] on femtosecond pulse propagation.

In this paper we study the validity of the area theorem
for even shorter (subcycle) pulses. Previously Hughes [12]
discovered the breakdown of the area theorem for the few-cycle
pulses of large area (2πn with n � 3), while for lower areas
this theorem is still able to predict the profile change of the
pulse accompanied by its splitting [13]. Later Tarasishin et al.
[3] reported that the half- and quarter-cycle 2π pulses leave
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some small residual excitation inside the two-level medium.
Here we show that these deviations from the area theorem are
much more noticeable at larger areas of the incident subcycle
pulses and we trace appearance of the theorem breakdown with
a shortening of the pulse. Moreover, these deviations appear to
be strongly dependent on the pulse shape. The effect of pulse
form on the excitation probability of the two-level system is
known for nonresonant excitation (see, for example, the work
by Conover [14] and references therein). However, we consider
strictly resonant pulses, their shape being important only for
the number of cycles less than unity.

The structure of the paper is as follows. In Sec. II we
establish the Maxwell-Bloch equations to be numerically
solved and give the main parameters of calculations. In
Sec. III, comparing our results with the results known from
the literature, we prove that the method based on the equations
stated in the previous section can be applied to simulate
ultrashort pulse propagation beyond the RWA and SVEA.
Section IV is devoted to the study of subcycle pulse interaction
with the two-level medium, namely to the issues of the area
theorem breakdown and the influence of pulse shape. Finally,
in Sec. V we give a short conclusion.

II. MAIN EQUATIONS AND PARAMETERS

Light propagation in the two-level medium beyond the
RWA and SVEA is given by the Maxwell-Bloch equations
as follows [2,15]:

∂2E

∂z2
− 1

c2

∂2E

∂t2
= 4π

c2

∂2P

∂t2
, (1)

dρ12

dt
= iω0ρ12 + i

μ

h̄
Ew − γ2ρ12, (2)

dw

dt
= −4

μ

h̄
EImρ12 − γ1(w + 1), (3)

where E is the electric field of a light wave, ρ12 the off-resonant
density matrix element (atomic polarization), w = ρ22 − ρ11

the inversion (population difference), ω0 the frequency of
atomic resonance, μ the dipole moment of the quantum
transition, γ1 and γ2 the rates of relaxation of population
and polarization, respectively, c the speed of light, and h̄ the
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Planck constant. Here the macroscopic polarization of the two-
level medium is P = 2μCReρ12 with C as the concentration
(density) of two-level atoms. The symbols Re and Im stand for
taking of real and imaginary parts, respectively.

Our aim is to rewrite Eqs. (1) to (3) in such a manner
that they would allow direct comparison of the calculations
conducted with and without the RWA in the framework of a
single numerical algorithm. To reach this aim, we represent the
electric field and atomic polarization as E = {A exp[i(ωt −
kz)] + c.c.}/2 and ρ12 = p exp[i(ωt − kz)], respectively, but
the complex amplitudes A and p are not assumed to be
slowly varying. Here ω is the central frequency of radiation,
k = ω/c is the wave number, and c.c. stands for complex
conjugated term. Introducing dimensionless arguments τ =
ωt and ξ = kz and the dimensionless field amplitude 	 =
(μ/h̄ω)A (normalized Rabi frequency), we come to the set of
equations

∂2	
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− ∂2	

∂τ 2
− 2i

∂	

∂ξ
− 2i

∂	

∂τ
= 6ε

(
∂2p

∂τ 2
+ 2i

∂p
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− p

)
,

(4)

dp

dτ
= iδp + i

2
(	 + s	∗e−2i(τ−ξ ))w − γ ′

2p, (5)

dw

dτ
= i(	∗p − 	p∗) + is

(
	pe2i(τ−ξ ) − 	∗p∗e−2i(τ−ξ ))

− γ ′
1(w + 1), (6)

where δ = �ω/ω = (ω0 − ω)/ω is the frequency detuning,
γ ′

1,2 = γ1,2/ω are the normalized relaxation rates, and ε =
ωL/ω = 4πμ2C/3h̄ω is the dimensionless parameter of in-
teraction between light and matter (or normalized Lorentz
frequency). Finally, the auxiliary two-valued coefficient s

marks the situation considered: s = 0 corresponds to the RWA
(absence of “rapidly rotating” terms), while s = 1 is related to
the general case. In this paper we numerically solve Eqs. (4)
to (6), so that we have the possibility of switching between
the general (non-RWA) and RWA cases by simply choosing
the appropriate value of the single parameter. The numerical
approach is essentially the same as in our previous publications
[16–19] where the relatively long pulses were studied in the
limit of the RWA (but not the SVEA in the wave equation).
Therefore, we do not discuss the details of the method and
refer the reader to those works.

We adopt the following parameters of the medium and
light throughout the paper: the relaxation rates γ1 = 1 and
γ2 = 10 ns−1 are large enough so that we are in the regime
of coherent light-matter interaction; the detuning δ = 0 (exact
resonance); the light wavelength λ = 2πc/ω = 0.83 μm; and
the strength of light-matter coupling ωL = 1011 s−1 which is
much less than the radiation frequency. These material param-
eters mean that one needs to take relatively long thicknesses of
the two-level medium (L � λ) to observe the transformations
of the few- or subcycle pulse envelope. Therefore we do not
discuss here the effects of pulse profile changing considered
previously for the relatively stronger coupling conditions
(ωL ∼ 1012–1013 s−1) [2,3,12]. Moreover, in the strong cou-
pling limit, when the peak Rabi frequency 	0ω is comparable
to or less than the Lorentz frequency, one needs to take into
account the so-called local field effects [17]. In our research

we can neglect them, since the opposite inequality takes place
(	0ω � ωL). The estimation shows that a single-cycle 2π

soliton in a collection of two-level atoms with dipole moments
μ ∼ 1 D should have the peak amplitude of about 0.4 GV/cm.
The required concentration in this case is C ≈ 2 × 1019 cm−3.
Obviously, the results of the calculations can be rescaled for
another set of parameters without loss of generality.

In this paper we consider the pulses of two different
shapes: the hyperbolic secant 	 = 	psech(t/tp) and Gaussian
	 = 	p exp(−t2/2t2

p). The duration of the pulse tp is defined
through the number of cycles N as tp = NT/f , where T =
λ/c is the period of electric field oscillations, and f is the
coefficient which depends on the pulse form and describes
its full width at half maximum (FWHM). For the hyperbolic
secant pulse we have f = 2arccosh

√
2, while for the Gaussian

shape f = 2
√

ln 2. The peak (normalized) Rabi frequency 	p

is measured in the units of 	0 corresponding to the area of
2π , so that for the hyperbolic secant pulse one should take
	0 = λ/πctp and for the Gaussian pulse 	0 = λ/

√
2πctp.

The calculational region includes the two-level medium of
thickness L surrounded by the vacuum regions of length
0.64 μm. The medium is supposed to be initially in the ground
state (w = −1).

III. TESTING THE CALCULATION APPROACH

First of all, we need to ascertain that the method based on
solving of Eqs. (4) to (6) correctly describes propagation of
the light pulses in the two-level medium. There are two such
tests that are to be considered further.

(i) The limit of long pulses. In this situation one expects
that the calculations at s = 1 and s = 0 give approximately
the same result. To prove these expectations, we launch the
Gaussian 3π pulse of 50 cycles (the duration tp ≈ 83 fs)
into the two-level medium of thickness L = 100λ = 83 μm.
We also carry out the calculations according to the numerical
scheme of Ref. [16] to check the consistency with the RWA
case realized in our previous works [16–19]. Figure 1(a) shows
the intensity profile of such a long pulse transmitted through
the layer of thickness L = 100λ; calculations were performed
by Eqs. (4) to (6) at s = 1. One of the main features of such
a long pulse dynamics is seen: the pulse is compressed while
forming the constant-form soliton [18]. Simulations of the
RWA scheme show the agreement with the profile of Fig. 1(a).
The plots in Figs. 1(b) and 1(c) demonstrate the accuracy of
this agreement: the difference between the intensity profiles
obtained for s = 1 and s = 0 is as low as several hundredth
of I0 (the unit of intensity equal to 	2

0), while the discrepancy
between the calculations by two RWA schemes does not
exceed 10−4I0, respectively. This proves the correctness of
our approach in the long pulse limit.

(ii) Behavior of inversion in the case of a few-cycle pulse.
Since the shape of the few-cycle pulse varies too slowly as
it propagates, our second test deals with the time variation
of the inversion w at the entrance of the two-level medium.
To excite the medium, the two-cycle 2π Gaussian pulse is
used (its duration is about 3.32 fs). The results of calculations
are demonstrated in Fig. 2. The difference between s = 1
and s = 0 cases is clearly seen and reaches values as large
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FIG. 1. (a) The profile of the Gaussian 50-cycle 3π pulse
transmitted through the two-level medium of length L = 100λ.
Calculations were carried out for the general case (s = 1). (b) The
difference between the intensity profiles obtained for s = 1 and s = 0.
(c) The difference between the intensity profiles calculated by two
different RWA schemes: the scheme of Eqs. (4) to (6) at s = 0 and
that of Ref. [16]. Intensities are normalized by I0 = 	2

0.

as 0.15. The inversion profile calculated without the RWA
shows also the feature characteristic for the few-cycle pulse
propagation—the steplike flattenings corresponding to the
extremes of the time derivative of the electric field [1]. Finally,
Fig. 2(c) is the evidence of the precise correspondence between
the calculation at s = 0 and the RWA calculations according
to the previously used approach. Thus, we conclude that
our numerical method based on Eqs. (4) to (6) allows one
to reproduce the main peculiarities of long- and short-pulse
propagation discovered previously and can be used to study
the subcycle pulses beyond the RWA.

IV. RESULTS ON SUBCYCLE PULSES

Let us apply the method described above to simulate
propagation of subcycle pulses in the two-level medium. The
main parameter to be traced is the final state of inversion
(FSI) denoted here by wf . It is the steady value of inversion
in which the medium appears after passage of the incident
pulse. The area theorem implies that FSI depends on the pulse
area: if the starting state of inversion is ws = −1 (two-level
system in the ground state), then for the pulse area nπ one
will have wf = 1 or −1 at odd and even values of integer n.
Figure 3(a) shows the dynamics of inversion at the entrance of
the two-level medium under the influence of the 3π subcycle
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FIG. 2. (a) Dynamics of the inversion at the entrance of the
two-level medium excited by the Gaussian two-cycle 2π pulse.
Calculations were carried out both for the general case (s = 1) and for
the RWA (s = 0). (b) The difference between the inversion profiles
obtained for s = 1 and s = 0. (c) The difference between the inversion
profiles calculated by two different RWA schemes: the scheme of
Eqs. (4) to (6) at s = 0 and that of Ref. [16].

pulse, i.e., for the number of cycles N � 1. It is seen that for the
single-cycle pulse (N = 1) the FSI approximately (though not
exactly) corresponds to the value predicted by the area theorem
(wf = 1). As the duration of the pulse decreases (N = 0.75
and 0.5), the breakdown of the area theorem becomes apparent:
such a short pulse simply cannot guarantee the full cycle
of inversion dynamics, so that w finally appears somewhere
in between −1 and 1. The concrete value of wf strongly
depends on the pulse shape. We considered two different
variants—secant hyperbolic and Gaussian pulses—and see
that the difference between the FSI in these two variants
grows as the pulses become shorter. For comparison, we also
calculated the RWA curves for the half-cycle pulses [see the
lower right panel in Fig. 3(a)]. In this case the area theorem
is strictly valid for the pulses of any shape. In other words,
the importance of the rapidly rotating terms in the Bloch
equations increases for ultrashort pulses and results not only
in the breakdown of the area theorem, but also in the strong
dependence of the medium dynamics on the pulse form. This is
seen in the dependence of wf on the number of cycles N shown
in Fig. 3(b): for the Gaussian subcycle pulses, wf deviates
faster from the area theorem than in the case of sech pulses.
This result seems to be rather surprising, since the field profiles
of sech and Gaussian half-cycle pulses seem to be not so much
different (see the inset) to lead to such a large difference in
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FIG. 3. (Color online) (a) Dynamics of the inversion at the
entrance of the two-level medium excited by the Gaussian and
hyperbolic secant 3π pulses of different numbers of cycles N . (b) The
corresponding dependence of the FSI wf on the number of cycles.
FSI was determined at the time point t = 50tp . The inset shows the
field profiles of the half-cycle 3π pulses of the Gaussian and sech
shapes.

wf (�wf ≈ 0.35). Thus, in the range of subcycle pulses, even
a small distinction in the pulse shape may result in a strong
change of the medium dynamics. This should be taken into
account when performing experiments with subcycle pulses
and gives an additional parameter to control the state of the
medium.

The next issue is the dependence of the above described
breakdown of the area theorem on the pulse area. Let us
calculate the FSI for different areas of the incident half-cycle
pulse (N = 0.5). The results for the Gaussian and hyperbolic
secant forms are presented in Fig. 4 as well as the RWA data
which are the same for both pulse profiles. It is seen that at
small areas all three curves approximately coincide and only
small deviations from the area theorem occur as was reported
previously [3]. But at the areas above 2π the curves rapidly
diverge, so that the large-area half-cycle pulses carry the
medium to the state with the level population which depends
on the shape of the pulse. Moreover, the positions of minima

FIG. 4. (Color online) The dependence of the FSI wf on the
area of the half-cycle pulses of the Gaussian and hyperbolic secant
shapes. The results for the RWA case are given for comparison. FSI
was determined at the time point t = 50tp .

and maxima of inversion also shift from the usual values. This
is especially clearly seen for the second minimum: while it
is the area of 4π in the RWA case, it is significantly lower
in the general case—about 3.9π for the hyperbolic secant
pulse and even 3.7π for the Gaussian one. It is also worth
noting that the curve for the sech shape is closer to the RWA
dependence in the vicinity of 3π areas, but the situation turns
out to be opposite in the vicinity of 5π where the curve for the
Gaussian pulse approaches the values consistent with the area
theorem. The need of large areas (�2π ) to observe the strong
deviations from the area theorem can be explained by the fact
that the medium affected by the subcycle pulse does not have
enough time to develop the full cycle of dynamics when it
includes more than a single excitation and deexcitation.

V. CONCLUSION

In summary, we have implemented and tested the numerical
approach which allows one to solve the Maxwell-Bloch
equations beyond the RWA and SVEA. This method was used
to study the effects of the interaction of the subcycle pulses
with the two-level medium. For such pulses containing less
than one period of optical field, we have found that (i) the
breakdown of the area theorem becomes apparent at areas
larger than 2π , and (ii) the result of light-matter interaction
strongly depends on the pulse shape. Our research was focused
on the study of the medium dynamics so that we have not
considered the effects of subcycle pulse profile change such
as the formation of an asymmetric wave form [3]. Another
interesting issue worth to be studying further is the possibility
or impossibility of subcycle self-induced-transparency (SIT)
solitons. On the one hand, there are studies that show the
existence of few-cycle SIT solitons [20]. On the other hand,
the attempts to find a solitonic regime for subcycle pulses were
not successful so far [3]. The approach reported in this paper
can be used for a detailed study of this question.
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