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Limitations of a superchiral field
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Recently, Tang and Cohen [Y. Tang and A. E. Cohen, Science 332, 333 (2011)] proposed and demonstrated
the use of “superchiral” electromagnetic fields to enhance optical enantioselectivity. Their work generated
much excitement as enantioselective signals are typically quite small, and it appeared that the enhancement
factor could be extremely large. In this paper we explicitly show the limitations of such fields by including
the magnetic susceptibility term. This term is small and is ignored in most cases compared to the electric
polarizability term. However, for the fields used, the enhancement was obtained at the electric field energy node.
Due to conservation of field energy, the magnetic field energy is then maximum, and the magnetic susceptibility
contribution can no longer be ignored. This then is what limits the enhancement of the optical enantioselectivity.
For a counterpropagating left- and right-circularly polarized light field, as used in the aforementioned experiment,
we show that this fundamentally limits the enhancement to one or two orders of magnitude in general, determined
by the ratio of the magnetic susceptibility to the electric polarizability of the material used. We also generalize
the dissymmetry factor to include optical rotation effects present in chiral media, as opposed to fields being in
vacuum. In the process, we generalize Lipkin’s “Z000 zilch” (or “optical chirality”) to that for a linear medium.
This generalization shows that chirality of the material cannot be completely separated from chirality of the
field and that opposite enantiomers are symmetric in terms of the dissymmetry factor enhancement. Finally, an
analogy between ellipsometric chiroptical signal enhancement and enhanced optical enantioselectivity using a
standing wave chiral field is discussed. Our analysis and generalization can be used as a guide for future searches
of locally enhanced chiral fields.
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I. INTRODUCTION

Optical activity stems from chiral molecules interacting
differently to left-circularly polarized light (LCPL) versus
right-circularly polarized light (RCPL). Enantiomers, which
are nonsuperimposable mirror images of each other, are usu-
ally distinguished by circular dichroism (CD) spectroscopy,
which measures the differential absorption rates. Because of
this link between handedness of the materials and handedness
of the fields, optical activity spectroscopy is typically used
to provide important stereoscopic structural information about
chemical and biological systems. However, chiral enantiomers
are difficult to distinguish due to their small differences
in response to LCPL and RCPL (10−6–10−4 smaller than
absorption).

A metric appropriate for measuring the enantioselectivity
of a system is the dimensionless dissymmetry factor. This was
proposed by Kuhn and is defined as

g = εL − εR

ε
= εL − εR

1
2 (εL + εR)

, (1)

where the superscripts L and R are for LCPL and RCPL,
respectively, and ε is the decadic molar extinction coefficient.
The dissymmetry factor can be described as the ratio of CD to
the conventional absorption. The dissymmetry factor g is then
a proper criterion, given the available instrumental sensitivity,
for determining whether the CD is measurable for a particular
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absorption band [1]. Recently, another type of dissymmetry
factor was considered to determine possible enhancements of
chiral fields in Refs. [2] and [3]. Their definition is essentially
the same,

g ≡ A+ − A−
1
2 (A+ + A−)

, (2)

where A± is the absorption rate of left (+)- or right (−)-handed
fields.

Tang and Cohen, in Refs. [2] and [3], have recently
proposed a creative method to enhance enantioselectivity using
what they termed a “superchiral” optical field, where a standing
wave was created by reflecting a circularly polarized light
(CPL) to create two oppositely handed, counterpropagating
CPLs. In this paper, we refer to this arrangement as a standing
wave chiral field (SWCF). They began with what they termed
the “optical chirality” C, as defined originally by Lipkin (Z000

“zilch”) [3,4]:

C ≡ ε0

2
E · ∇ × E + 1

2μ0
B · ∇ × B. (3)

This and other zilches are conserved quantities in vacuum,
according to the Maxwell equations. However, Lipkin and his
contemporaries dismissed this zilch and others as physically
irrelevant (although they did note that their zilch set has
opposite signs for opposite CPLs) [4–7]. Recently, others
have investigated this optical chirality and its connection to
the helicity and angular momentum of the field further [8,9].
In particular, Cameron, Barnett, and Yao have interpreted
Lipkin’s zilches to represent the “angular momentum” of
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the curl of the electromagnetic field instead of the angular
momentum of the field itself [10,11].

The dissymmetry factor defined in Eq. (2) is then shown to
be [3]

g = gCPL

(
cC

2ωUe

)
, (4)

where gCPL is the dissymmetry factor for a CPL, c is the
speed of light, C is the optical chirality, ω is the angular
frequency, and Ue is the time-averaged electric energy density.
In Eq. (4), the material properties (gCPL) can be separated from
the incident electromagnetic (EM) field properties (in paren-
theses). Thus, to enhance the enantioselective dissymmetry
factor, the field chirality term, (cC)/(2ωUe) can be increased
by reducing the electric energy density. Reference [3] proposes
to accomplish this by creating the SWCF. Then, by placing the
chiral molecules at the node of the electric field energy density,
because C/Ue is inversely proportional to the amplitude of
the net electric field component at the node, the dissymmetry
factor is increased compared to its CPL value. The idea was
ingenious in its simplicity.

The dissymmetry factor g for the experiment in Ref. [2]
was then proposed to be

g

gCPL
� 1 + √

R

1 − √
R

, (5)

where R ≡ (E2/E1)2 is the reflectivity of a mirror used to
generate the SWCF, with E2 being the electric field amplitude
of the reflected wave and E1 being the amplitude of the incident
electric field. Thus, according to this proposed formula, by
selecting a highly reflective mirror, the enhancement factor can
be quite large, if not infinite. The theory was further expanded
to include the quadrupole contribution in oriented samples,
which was shown to provide the same enhancement [12].

This theory was subsequently tested experimentally, by
conducting the SWCF experiment proposed [2]. A mirror
with reflectivity R = 0.72 was used and their results showed
that gmax/gCPL was 10.6 ± 0.6 for the “p” enantiomer and
11.6 ± 0.6 for the “m” enantiomer. This was about 5%–13%
different from the theoretical value of 12.2 from Eq. (5). Thus,
an order of magnitude improvement in the dissymmetry factor
was achieved when compared to a standard CD spectroscopic
measurement.

After this theory for SWCF to increase enantioselectivity
was published [3,13], Hendry et al. independently demon-
strated a 106 enhancement in chiroptical refractive index
differences between LCPL and RCPL, that is, optical rotatory
dispersion (ORD), than that obtained by just using CPLs. This
effect was demonstrated using two-dimensional nanocrosses
with different “handedness” in the cross directions. They also
called their fields “superchiral,” following the terminology
from Ref. [3]. Using the same optical chirality C, they stated
that C is increased by about two orders of magnitude than that
from CPL’s at the near fields of the nanostructures used. They
then suggested that the other four orders of magnitude might
come from steep gradients of the structure, attributable to the
electric-dipole electric-quadrupole contribution, though this is
not a certainty. Following their experimental work, Hendry
et al. presented a modal matching theory to describe their

nanodevices by analyzing when and how the chirality C can
be maximized for an array of nanoslits [14].

These works have generated much interest in highly twisted
fields [15] and a renewed interest in Lipkin’s zilch [8–11].
These ideas and results have been favorably accepted in
the community, due to the simplicity and creativity as well
as the possibility of greatly enhancing an inherently small
measurement. Reference [2] has significant merit in that it
looked at separating chiral properties of materials from the
incident EM fields and was able to propose and implement
an experiment that is theoretically and experimentally easy
to understand and clear. It provided a way to creatively
enhance the dissymmetry factor while giving physical meaning
to the conserved quantities that Lipkin and colleagues once
dismissed to be of little interest physically.

II. LIMITATIONS OF “SUPERCHIRAL” FIELDS

The heart of this paper is in showing explicitly the limita-
tions of nodally enhanced optical enantioselectivity. Reference
[3] briefly notes that the achiral χ |B|2 response maintains the
condition of |g| � 2 (which holds by definition), where χ

represents the magnetic susceptibility. However, this magnetic
term is never reinserted to correct the dissymmetry factor.
Also, the dissymmetry factor enhancement g/gCPL = (1 +√

R)/(1 − √
R) shows no limit nor dependence on the mate-

rial. The χ |B|2 term was ignored, as commonly done, due to its
typically small magnitude compared to the α|E|2 term, where α

is the electric polarizability. Due to the unlimited enhancement
factor (albeit from a weakened signal), Tang and Cohen called
such fields “superchiral”. (Since no limits have been placed on
this enhancement factor, it is easy to think the enhancement
can be arbitrarily large, as is implied by Eq. (5) [8]).

In Ref. [3], it is stated that a 400-fold enhancement may be
possible with R = 0.99, or that a silver mirror with R = 92%
may lead to a 48-fold enhancement in gmax. Hence, Ref. [2]
stated that their chiral enhancement of ∼10–11 was not a
fundamental limit. They continued that greater than a 10×
enhancement may be obtained at the expense of lower overall
excitation rate simply by choosing a mirror with higher
reflectivity.

By the Cauchy-Schwarz inequality, and by definition, the
enhancement of the dissymmetry factor must be finite (see
Appendix A). In this paper, we show that there is a fundamental
limit to the enhancement, even with perfect measurement
devices, and it is determined by the material chosen. We
demonstrate this by showing that the χ |B|2 response must
be included consistently. This term is important, since the
denominator in Eq. (2) should be related to the full EM field
energy density, which is constant for a standing wave. In fact,
Bliokh and Nori correctly stated that if Ue was replaced by
the EM total energy density Utotal, the ratio C/Utotal would
be bounded [8]. The final form of the dissymmetry factor in
Ref. [3], where the enhancement comes from the denominator
being Ue not Utotal, was accepted as complete, however. We
show that Ue should be replaced by (Ue + γUb) in the dis-
symmetry factor, where γ is the weighting factor between the
magnetic field energy density to electric field energy density.

Due to conservation of field energy, when Ue is minimum,
Ub is maximum, and we can no longer ignore χ |B|2. Usually
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it is acceptable to ignore χ |B|2 (� α|E|2) but not at or near
the node of the electric field energy. Typically electric dipole
selection rules exclude the magnetic dipole transitions, but
this is an approximation, and in reality the magnetic dipole
terms still contribute [13,16,17]. “Dipole-forbidden” transi-
tions occur with probabilities smaller by powers of Rmol/λ ∼
1/1000 than dipole-allowed transitions (Rmol ∼ 0.2–1 nm
is the size of the molecule) [13]. Since these transitions with
the magnetic dipole term is used for the SWCF, it would be
consistent to include this term in all equations.

In addition, the formalism reported earlier assumed C and
the EM fields to be in vacuum, when in reality they are in a
chiral medium that shows chiroptical effects, including ORD.
We considered a chiral medium for C and EM fields. This
allowed us to expand the definition of C and the derivation for
g to linear medium instead of vacuum. We have included this
generalization to be complete and to determine the effects of
the chiral medium on the dissymmetry factor enhancement of
opposite enantiomers.

In regards to the experiment by Hendry et al., where an
enhancement of 106 was observed, we note that only up to 102

factor was attributable to electric-magnetic dipolar interaction
[18]. This is consistent with our model. The other four orders of
magnitude appear to be from evanescent near-field modes [8]
and is not included in our discussion because we focus on the
far-field limit.

III. DISSYMMETRY FACTOR g DERIVATIONS:
KEY POINTS

We now derive the generalized dissymmetry factor g for
linear medium. Here we provide the key steps and results
and leave other details to the appendixes. Initially, we follow
Ref. [3] and also utilize Barron’s semiclassical perturbation
model for chiroptical effects [1].

A. Assumptions

We assume isotropic linear medium. We also assume that
there are no free charges or current densities, so that the
multipole moments are induced from the incident EM fields
only. We derive our equations for monochromatic EM fields,
with angular frequency ω, noting that arbitrary fields may be
Fourier transformed into linear combinations of monochro-
matic fields. We consider the change of chirality due to the
EM fields, while the set of molecules being measured remains
the same. Although the electric dipole moment p → ±p from
spatial inversion, since we are interested in the parity change
of the EM fields, only E → ±E, since either the fields or the
enantiomers change, not both, for a given measurement.

B. Induced dipole moments

Beginning with Barron’s induced multipole moments, we
derive the complex induced electric (p̃) and magnetic (m̃)
dipole moments (see Appendix B):

p̃ � α̃Ẽ + G̃B̃, m̃ � χ̃ B̃ − G̃Ẽ. (6)

Here, Ẽ and B̃ are the complex electric and magnetic field
vectors, respectively. The polarizability tensors all become
scalars for an isotropic medium: α̃ is the complex electric

polarizability, χ̃ is the complex magnetic susceptibility, and G̃

is the complex mixed electric-magnetic dipole polarizability.
The electric-quadrupole moment averages to zero for isotropic
samples and is not included here, even though it has the same
magnitude as the magnetic dipole [19,20].

Quantities with a tilde are complex. For example, α̃ =
α′ + iα′′, with α′,α′′ ∈ R. To obtain the physical, that is, real,
electric field vector E, we simply take the real part of the
complex field:

E = Re{Ẽ} = 1
2 [Ẽ + Ẽ∗]. (7)

Similarly, we can obtain the physical (real) B, p, and m. It is
important to be careful when obtaining physical quantities
from the multiplication of complex quantities. In Eq. (6),
we should take the real part of each side to obtain physical
quantities.

Note that Eq. (6) is equivalent to Eq. (2) of Ref. [3]:

p̃ � α̃Ẽ − iG̃TCB̃, m̃ � χ̃ B̃ + iG̃TCẼ, (8)

where G̃TC is the “G̃” used in Ref. [3].
In our paper, we follow Barron’s notations, together with

notations from Ref. [3], which are consistent with each
other for the most part. However, they differ in the mixed
electric-magnetic dipole polarizability G̃, and we have chosen
to use Barron’s notation for added clarity on the exact quantum
multipole moments involved. The relationship between G̃TC

and our G̃ is simply

G̃ = −iG̃TC. (9)

What will be more useful is the relationship between the
real and imaginary components of G̃:

G̃ = G′(g) − iG′(f ), (10a)

G̃TC = G′
TC + iG′′

TC, (10b)

with

G′(g) = Re{G̃} = G′′
TC = Im{GTC}, (11a)

G′(f ) = − Im{G̃} = G′
TC = Re{GTC}. (11b)

These relationships can be obtained from Eqs. (E26), (6), and
(8).

To avoid confusion, it is important to note that here, G′
does not denote the real part of G̃, as in α̃ = α′ + iα′′. For
example, G′(f ) is not the real part of our G, although G′(g)
is. To avoid further confusion, we refrain from using G′,
other than G′

TC, and instead use it with arguments only, for
example, G′(f ), G′(g). We have maintained this notation
since it is the actual G′ polarizability given in Ref. [1],
where g and f inside the parentheses are the absorption and
dispersion line-shape functions, respectively (Appendix C).
The orientationally averaged isotropic molecular property
terms α̃,χ̃ ,G̃ in Eq. (6) are derived in detail in Appendixes
D and E .

C. Absorption rate, A±

Work done by EM fields in the presence of electric and
magnetic dipoles is

WEM = p · E + m · B. (12)
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The rate of energy absorbed by such dipoles then is the
sum of the rate of electric dipole absorption in electric
field [v·(Electric Force) = v·(qE) = ṗ · E] and the rate of
magnetic dipole absorption of angular energy in the magnetic
field (ṁ · B).

So the total absorption rate of the molecules can be written
as in Ref. [3]:

A± = 〈ṗ · E + ṁ · B〉t , (13)

where the time average was taken (〈· · · 〉t ), since optical
frequencies ν = c/λ ∼ 1015 Hz are typically too fast to
measure instantaneously. The (+) and (−) superscripts are for
left-handed and right-handed EM fields, respectively, which
come from spatial inversion, for which E is odd and B
is even.

We use e−iωt harmonic time dependence (HTD), as used in
Refs. [1] and [3], with general monochromatic complex EM
fields and complex dipoles:

Ẽ(t) = ±Ẽ0 e−iωt , B̃(t) = B̃0 e−iωt , (14a)

p̃(t) = p̃0 e−iωt , m̃(t) = m̃0 e−iωt . (14b)

To simplify our equations, we do not include the time
dependence explicitly, but it should be remembered that these
are time-dependent fields and induced dipoles. For a given set
of molecules, we are interested in the parity change for the EM
fields, so E → ±E.

We now substitute Eqs. (14) into Eq. (13), keeping in mind
that the real parts of p and m must be taken, before multiplying
to the real parts of E and B, respectively:

A± = 〈ṗ · E + ṁ · B〉t
= 1

4

〈
d(p̃ + p̃∗)

dt
· (Ẽ + Ẽ∗) + d(m̃ + m̃∗)

dt
· (B̃ + B̃∗)

〉
t

= ω

2
Im(p̃ · Ẽ∗ + m̃ · B̃∗). (15)

We can then substitute Eqs. (6) into Eq. (15) to arrive at a
similar result as in Ref. [3]:

A± � (α′′|Ẽ|2 + χ ′′|B̃|2) + G′(g) ω Im[(Ẽ±)∗ · B̃], (16)

where we used Re(G̃) = G′(g) from Eq. (11a).
We have included the ± sign for odd parity of the E field,

in the last step. For a given enantiomer, this is where the CD
sign change occurs. This is strictly true only for vacuum, as
is shown in the next section. The molecular property terms
α′′,χ ′′, and G′(g) are fixed for a given set of molecules.

D. Including generalized optical chirality Cg for linear media

So far, we have verified the results in Ref. [3]. The only
approximation used was that the multipole moments used in
Eqs. (6) and (13) were sufficient. We now begin to deviate from
the theory in Ref. [3], and develop a more general theory from
which the results from Ref. [3] can be derived under certain
conditions. Using the results from Appendix F, we write A±
in terms of the generalized optical chirality Cg:

A± � ω

2
(α′′|Ẽ|2 + χ ′′|B̃|2) − G′(g)

2

ε
C±

g , (17)

where

Cg ≡ ε

2
E · (∇ × E) + 1

2μ
B · (∇ × B). (18)

This quantity is time-independent and valid for linear medium,
with no free current or charges. Here it is worth mentioning that
Cameron, Barnett, and Yao suggest that a “helicity density”
should be used in lieu of the optical chirality (the Z000

zilch) since the former actually has the dimensions of angular
momentum per unit volume [10,11]. Together with the fact that
Cg is not a purely optical property for a linear medium, the term
“optical chirality” may require some qualifications. However,
since for monochromatic fields, the helicity densities and the
zilches are simply proportional to one another by the square of
the angular frequency, for our discussion we continue to use
Cg and refer to it as the optical chirality.

We now consider our generalization of EM fields in a linear
medium, not vacuum. This is done by realizing that for linear
medium, due to ORD, the index of refraction may be (±)-
dependent, which affects the relationship between E and B.
This is due to nL and nR , the indices of refraction for LCPL and
RCPL, respectively, being different and present. It is important
to note that n+ and n− are not the same as nR or nL. This
strictly depends on how we define the (±) configuration for
our general EM field arrangement.

To clarify these points and for completeness, we note that
Cg has a handedness included in it, as it is odd under parity
because of the curl operator (or from the original E field in the
previous equations). The handedness of Cg also includes the
effects from ORD. We thus include the following clarifying
definition:

C±
g ≡

[
ε

2
E · (∇ × E) + 1

2μ
B · (∇ × B)

]±

=
[
ε±

2
E± · (∇ × E)± + 1

2μ± B± · (∇ × B)±
]

≈ ±
[
ε+

2
E+ · (∇ × E)+ + 1

2μ+ B+ · (∇ × B)+
]

, (19)

where (+) superscript is for “left-handed” and (−) is for “right-
handed.” For linear medium, the permittivity and permeability
are different for oppositely handed EM fields, due to optical
rotation; this is also why B ∼ (n/c)E was written with a
(±) superscript above. The relationship between left-handed
optical chirality (C+

g ) and right-handed optical chirality (C−
g )

is seen to be

C+
g ≈ −C−

g . (20)

They are not equal because we are considering chiral media.
We then substitute Eq. (19) into Eq. (17) to rewrite the

absorption rate as follows:

A± � A±
a + A±

c , (21a)

where

A±
a ≡ ωα′′ 2

ε± [〈Ue〉±t + γ ±〈Ub〉±t ] ≡ ωα′′ 2

ε± U±
γ , (21b)

A±
c ≡ −G′(g)

2

ε± C±
g , (21c)
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A±
a ,A±

c being the “achiral” and “chiral” absorption rates,
respectively (though neither is purely achiral nor chiral,
precisely speaking), and

γ ± ≡ (n±)2χ ′′

c2α′′ � 0. (21d)

In Eq. (21b), the time averages of the electric field energy
density (Ue) and the magnetic field energy density (Ub) are [21]

〈Ue〉t =
〈
ε

2
|E|2
〉
t

= ε

4
|Ẽ|2, (22a)

〈Ub〉t =
〈

1

2μ
|B|2
〉
t

= 1

4μ
|B̃|2. (22b)

Equations (21) are one of the main results of this paper and
are used to correctly derive the generalized dissymmetry factor
g. The parameter γ is what limits the enhancement effect of
the dissymmetry factor, as is shown later in Sec. IV E. From
its definition, and from Eqs. (E9) and (E18), we see that for
positive absorption line shape, this is a positive real quantity.
For a second-order process, where higher-order processes such
as stimulated emission are not involved, the absorption line-
shape function g included in χ ′′ and α′′ is positive for positive
frequencies. Also, the range of γ is typically ≈(10−6–10−4)
as shown in Appendix G.

Equations (21) were written in this form to provide a
somewhat more physically intuitive explanation of the various
components involved than Eq. (17). We see from Eq. (21b)
that the achiral contribution comes from a combination of EM
field energy densities that is slightly different from the total
EM field energy density. It is also dependent on the electric
polarizability (α ∼ |μ|2 [Eq. (E9)]), which is typically the
largest contribution to the achiral signal. From Eq. (21c), the
chiral contribution is mainly dependent on the optical chirality
Cg that, according to Ref. [3], determines the degree of chiral
asymmetry in the rate of excitation for molecules. We also see
that it is dependent on G′(∼Im(〈μ · m〉) [Eq. (E28)]), which
is the main contribution to CD and ORD signals [1,19].

Before ending this section, we provide the following
equation for Uγ , obtained by comparing Eqs. (17) and (21b),
which will be useful for future calculations:

2

ε± U±
γ = 1

2

(
|Ẽ±|2 + χ ′′

α′′ |B̃±|2
)

. (23)

E. Generalized dissymmetry factor g

We substitute Eqs. (21) into the definition of the dissym-
metry factor, g, given in Eq. (2):

g ≡ A+ − A−
1
2 (A+ + A−)

� ωα′′( 2
ε+ U+

γ − 2
ε− U−

γ

)− G′(g)
(

2
ε+ C+

g − 2
ε− C−

g

)
1
2

[
ωα′′( 2

ε+ U+
γ + 2

ε− U−
γ

)− G′(g)
(

2
ε+ C+

g + 2
ε− C−

g

)]
= 1

2
gCPL

{ 4
gCPL

(
2
ε+ U+

γ − 2
ε− U−

γ

)+ c
ωn0

ave

(
2
ε+ C+

g − 2
ε− C−

g

)
(

2
ε+ U+

γ + 2
ε− U−

γ

)+ gCPL
4

c
ωn0

ave

(
2
ε+ C+

g + 2
ε− C−

g

)
}

,

(24)

where

n0
ave ≡ (nave)CPL = 1

2 (nL + nR) (25)

is the average index of refraction for a dissymmetry factor
measurement for CPL, since we include this in

gCPL = −4
G′(g)n0

ave

α′′c
. (26)

Equation (26) was obtained from Eq. (A1) [using Eqs. (B7a)
and (B7f)], for an isotropic linear medium. The molecular
property terms α′′ and G′(g), from Eqs. (E9) and (E28),
were used since the dissymmetry factor was defined using
the absorption rate.

It is worth noting that the CPL dissymmetry factor, gCPL, is
constant for a monochromatic field. Therefore, it only needs
to be measured once to be used in the general dissymmetry
factor g of Eq. (24). Equation (24) is the other main result of
this paper. It is the general dissymmetry factor g for arbitrary
EM fields in a linear medium.

For n+ ≈ n− or nL ≈ nR:

ε± → ε, U±
γ → Uγ ,

(27)
γ ± → γ, C−

g → −C+
g .

We can then approximate the dissymmetry factor from Eq. (24)
as

g ≈ 1

2
gCPL

{ 4
gCPL

(0) + c
ωn0

ave

2
ε
[C+

g − (−C+
g )]

2
ε
(Uγ + Uγ ) + gCPL

4
c

ωn0
ave

(0)

}

= −
(

G′(g)

α′′

)(
2C+

g

ω [〈Ue〉t + γ 〈Ub〉t ]
)

. (28)

This is a more physically intuitive equation than Eq. (24).
Similar to the absorption rate A±, from which it was derived,
the dissymmetry factor signal g is increased when the chiral
components G′ and Cg, which are mainly composed of
molecular and field properties, respectively, are increased.
Likewise, the dissymmetry factor is decreased when the achiral
components α′′ and EM energy densities, composed mostly of
molecular and field properties, respectively, are increased.

For γ → 0 and EM fields in vacuum, as expected, this is
reduced to the result in Ref. [3]:

g → −
(

G′′
TC

α′′

)(
2C

ω〈Ue〉t

)
. (29)

We note that although this dissymmetry factor nicely separates
the purely molecular property (G′′

TC/α′′) from the purely field
property (2C)/(ω〈Ue〉t ), this is, however, an approximation. It
is not possible to separate the molecular properties in γ and Cg

from the EM field properties in the generalized dissymmetry
factor, as seen even in Eq. (28); the coupling is more complex
for the general case in Eq. (24).

F. Application to dissymmetry factor for CPL

Now, let us verify the validity of Eq. (24) by considering
the dissymmetry factor for CPL. Let us first change the (±)
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notation for CPL. (+) → (L) for LCPL and (−) → (R) for
RCPL. We first note that for CD measurements, to properly
normalize,

|EL| = |ER| ≡ E. (30)

From Eqs. (22a), (23), (H2), (H3b), and (H3c),

U (L/R)
e → ε(L/R)

2
E2, (31a)

2

ε(L/R)
U (L/R)

γ →
(

1 + χ ′′

α′′
(n(L/R))2

c2

)
E2. (31b)

Using these, we first obtain the components

(
2

εL
UL

γ ∓ 2

εR
UR

γ

)
=
{

(1 ∓ 1) + χ ′′

α′′c2
[(nL)2 ∓ (nR)2]

}
E2,

(32)

for g and obtain from Eq. (F5)

(
2

εL
CL

g ∓ 2

εR
CR

g

)
= 2ω

c
(nL ± nR)E2. (33)

Now we combine all of this into Eq. (24):

g � 1

2
gCPL

{ 4
gCPL

(
2
εL UL

γ − 2
εR UR

γ

)+ c
ωn0

ave

(
2
εL CL

g − 2
εR CR

g

)
(

2
εL UL

γ + 2
εR UR

γ

)+ gCPL

4
c

ωn0
ave

(
2
εL CL

g + 2
εR CR

g

)
}

= 1

2
gCPL

{
4

gCPL
γ CPL

ave

[ 4nave	n

(n2)ave

]+ 4

2
[
1 + γ CPL

ave

]+ gCPL
	n
nave

}

≈ 2gCPL

⎧⎨
⎩

4 γ CPL
ave

gCPL

(
	n
nave

)+ 1

2
(
1 + γ CPL

ave

)+ gCPL
	n
nave

⎫⎬
⎭ , (34)

where

γ CPL
ave ≡ γ L + γ R

2
= (n2)aveχ

′′

c2α′′ , (35a)

(n2)ave ≡ (nL)2 + (nR)2

2
, (35b)

nave ≡ nL + nR

2
, (35c)

	n ≡ nL − nave = nL − nR

2
, (35d)

	n = nave − nR. (35e)

Note that nave = n0
ave was necessary to obtain the +1 term in the

numerator for Eq. (34), so the n0
ave defined in Eq. (25) was the

correct average index of refraction for gCPL. Another subtlety
is that (n2)ave �= (nave)2, although it is a good approximation
to say (n2)ave ≈ (nave)2.

The orders of magnitude for the parameters in Eq. (34)
are given in Appendix G and are summarized and adapted

below:

γ � 10−6–10−4, (36a)

	n/n � 10−3–10−2, (36b)

gCPL � 10−3–10−2, (36c)

γ

gCPL

	n

n
� 10−6–10−4 � γ, (36d)

gCPL
	n

n
� 10−6–10−4 � γ. (36e)

Using Eqs. (36) in Eq. (34), we can see that parameters that are
of order γ can be dropped when compared to order 1. Then,

g → 2gCPL × { 1
2

} = gCPL. Q.E.D. (37)

We derived the dissymmetry factor for CPL using the full
Eq. (24) to demonstrate that the details are correct in the
equation. This was to show in detail where terms can be
dropped and why, with accuracy. However, it could also be
more easily derived from Eq. (28) using Eqs. (F5) and (H2):

gCPL ≈ −
(

G′(g)

α′′

)(
2CL

g

ω[〈Ue〉t + γ 〈Ub〉t ]CPL

)

= −
(

G′(g)

α′′

)(
4Uen

L

cUe(1 + γ )

)

≈ −4

(
G′(g)

α′′

)(nave

c

)
. Q.E.D. (38)

Ue is constant over time for CPL. We have also ig-
nored (γ 〈Ub〉t = γUb) since it is smaller than Ue by γ ≈
(10−6–10−4). This is allowed here because Ub and Ue are
equal and constant for a single CPL. As mentioned before,
this is not always allowed, particularly for the standing wave
case (SWCF).

IV. DISSYMMETRY FACTOR FOR STANDING WAVE
CHIRAL FIELD

We now derive the dissymmetry factor for the SWCF
arrangement in Refs. [2] and [3], where counterpropagating
LCPL and RCPL generate a standing wave. We have assumed
that the reflection at the mirror (z = 0 in Figs. 8 and 9
from Appendix H) occurs at normal incidence. Otherwise,
polarization changes can occur with CPL becoming elliptically
polarized (EP) [22]. We maintain the assumption in Refs. [2]
and [3] that the boundary conditions of the chiral molecules
may be ignored, despite the chiral material being thin and at a
slight wedge angle.

A. Preparatory calculations

Much of the detail is contained in Appendix H. To calculate
the dissymmetry factor in Eq. (24), we are interested in the
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quantities(
2

ε+ C+
g ∓ 2

ε− C−
g

)
,

(
2

ε+ U+
γ ∓ 2

ε− U−
γ

)
.

The former measures the difference or sum of the chirality of
the EM fields for the two (±) SWCF arrangements. The latter
measures the differential or total average absorption of the EM
fields for these two arrangements.

From Eqs. (H9) and (H19), we have(
2

ε+ C+
g ∓ 2

ε− C−
g

)

= −2ω

c

[−nL
(
E2

1 ∓ E′
2

2)+ nR
(
E2

2 ∓ E′
1

2)
+ (nL − nR)(E1E2 ∓ E′

1E
′
2) cos(zktot)

]
. (39)

Combining Eqs. (H13) and (H21), we obtain(
2

ε+ U+
γ ∓ 2

ε− U−
γ

)
= {[E2

1 ∓ (E′
2)2
]
(1 + γ L) + [E2

2 ∓ (E′
1)2
]
(1 + γ R)

+ 2(E1E2 ∓ E′
1E

′
2)(
√

γ Lγ R − 1) cos(ktotz)
}
, (40)

where E1(E′
1) and E2(E′

2) are the amplitudes of the incident
LCP (RCP) and reflected RCP (LCP) electric fields used to
generate the SWCF.

B. Difference measurement scheme

For CD experiments, which is how the dissymmetry factor
is measured, we can set the incident field amplitudes to be
the same for (+) and (−) configurations. The irradiance
(“intensity”) of the incident fields are matched, for proper
normalization, during calibration. Inside a chiral medium, the
irradiances of the EM fields are actually different, since energy
depends on the permittivity and permeability of the material,
which in turn depend on the handedness of the fields. However,
the EM field irradiances are typically calibrated in an achiral
medium, in which case matching the irradiances is equivalent
to matching the field amplitudes. Hence, we can assume that
the incident EM field amplitudes are equal.

Therefore,

|E1| = |E′
1| = E1, (41)

from which it follows that

|E2| = |E′
2| = E2, (42)

since the reflectivity is also the same:

R(+) = R(−) = R ≡ (E2/E1)2. (43)

We can then write Eq. (40) as(
2

ε+ U+
γ − 2

ε− U−
γ

)
= (E2

1 − E2
2

)
[γ L − γ R], (44a)(

2

ε+ U+
γ + 2

ε− U−
γ

)
= (E2

1 + E2
2

)
[2 + γ L + γ R]

+ 4E1E2(
√

γ Lγ R − 1) cos(ktotz).

(44b)

We can also write Eq. (39) as(
2

ε+ C+
g − 2

ε− C−
g

)
= 2ω

c

[(
E2

1 − E2
2

)
(nL + nR)

]
, (45a)

and (
2

ε+ C+
g + 2

ε− C−
g

)

= 2ω

c
(nL − nR)

[
E2

1 + E2
2 − 2E1E2 cos(zktot)

]
. (45b)

C. Simplification using R and averaged parameters

Let us now write Eqs. (44) and (45) in terms of the
reflectivity R. We substitute γ CPL

ave , (n2)ave, kave, n0
ave, and 	n,

using Eqs. (35a), (35b), (H12), (25), and (35d), respectively.
For Uγ ,

1

(E1)2

(
2

ε+ U+
γ − 2

ε− U−
γ

)

= 2(1 − R)γ CPL
ave

(
2	n

n0
ave

)[(
n0

ave

)2
(n2)ave

]
, (46a)

and

1

(E1)2

(
2

ε+ U+
γ + 2

ε− U−
γ

)
= 2(1 + R)

[
1 + γ CPL

ave

]
+ 4

√
R

(
γ CPL

ave
nLnR

(n2)ave
− 1

)
(cos[2kavez]). (46b)

For Cg,

1

(E1)2

1

kave

(
2

ε+ C+
g − 2

ε− C−
g

)
= 4(1 − R) (47a)

and

1

(E1)2

1

kave

(
2

ε+ C+
g + 2

ε− C−
g

)

= 4

(
	n

n0
ave

)
[1 + R − 2

√
R(cos[2kavez])]. (47b)

D. Generalized dissymmetry factor g for SWCF

We finally substitute Eqs. (46) and (47) into the general
formula, Eq. (24). The dissymmetry factor g for the standing
wave formed by counterpropagating CPLs (SWCF) is then

g =
⎧⎨
⎩

(1 − R)
[
4γ CPL

ave
n0

ave	n

(n2)ave
+ gCPL

]
(1 + R)

[
1 + γ CPL

ave + 1
2gCPL

	n
n0

ave

]+ 2
√

R
[
γ CPL

ave
nLnR

(n2)ave
− 1 − 1

2gCPL
	n
n0

ave

]
cos(2kavez)

⎫⎬
⎭ . (48)

063834-7



JOSEPH S. CHOI AND MINHAENG CHO PHYSICAL REVIEW A 86, 063834 (2012)

It is important to note that other than gCPL or γ CPL
ave , in

Eq. (48), 	n and n0
ave always appear together as the ratio

(	n/n0
ave). gCPL and γ CPL

ave can be obtained by measuring
the CPL dissymmetry factor and g/gCPL, while (	n/n0

ave)
can be obtained by measurement or by Kramers-Kronig
transformation of the CD spectrum (see Appendix I). All
three remain fixed for a given sample, independent of the EM
fields.

We rewrite the parameters involved here, for convenience:

gCPL = −4
G′(g)n0

ave

α′′c
, (49a)

R ≡ (E2/E1)2 = (E′
2/E

′
1)2, (49b)

γ CPL
ave ≡ γ L + γ R

2
, (49c)

γ (L/R) ≡ (n(L/R))2χ ′′

c2α′′ � 0, (49d)

n0
ave ≡ 1

2 (nL + nR), (49e)

	n ≡ nL − nR

2
(	n : positive or negative), (49f)

nL = n0
ave + 	n, (49g)

nR = n0
ave − 	n, (49h)

(n2)ave ≡ (nL)2 + (nR)2

2
, (49i)

kave ≡ kL + kR

2
= ω

c
n0

ave. (49j)

Coles and Andrews recently derived a quantum elec-
trodynamics version of the absorption rate difference [9].
Their analysis looked at the numerator term, that is, our
(A+ − A−), for counterpropagating beams. However, their
A+ and A− were the absorption rates for the two oppositely
handed enantiomers, not the difference between the two SWCF
arrangements as measured in Ref. [2]. They also found terms
with (nL − nR) dependence, similar to our result, though
they are for different contributions to the dissymmetry factor,
since it is a different dissymmetry factor. They also have a
shot noise term that is position-dependent, which they state
corresponds to the nodal enhancement term seen in Refs. [2]
and [3].

E. Simplified dissymmetry factor g0 for �n = 0

To gain a clearer understanding of the complicated dis-
symmetry factor in Eq. (48), we first simplify g for 	n = 0.
This turns out to be a fairly good approximation to the full,
generalized dissymmetry factor because 	n/n0

ave is typically
very small.

When 	n = 0, we have the following relations from
Eqs. (49):

n0 ≡ n0
ave

∣∣
(	n=0) = nL = nR, (50a)

(n0)2 = (n2)ave

∣∣
(	n=0), (50b)

γ0 ≡ γ CPL
ave

∣∣
(	n=0) = γ L = γ R. (50c)

Then Eq. (48) simplifies to

g0 ≡ g(	n/n0 = 0) = gCPL

×
{

(1 − R)

(1 + R)(1 + γ0) + 2
√

R(γ0 − 1) cos(2kavez)

}
.

(51)

Equations (48) and (51) are the other main results of this
paper, as both determine the characteristics and limitations of
the SWCF-induced enantioselectivity measured in Ref. [2].

Note that we have kept the γ0 terms, even though it is
of order �(10−6–10−4). Dropping the γ0 terms can easily
be thought to be valid, when compared to the 1 and −1 in
Eq. (51). If these terms were dropped, we would obtain the
same formula in Ref. [3], that is, Eq. (5). However, if we write
the denominator in the form

{[〈Ue〉t ] + γ0[〈Ub〉t ]} ∝ [(1 + R) − 2
√

R cos(2kavez)]

+ γ0[(1 + R) + 2
√

R cos(2kavez)],

(52)

we see that if we pick a position z such that 〈Ue〉t is a minimum,
then 〈Ub〉t is at a maximum. Moreover, if we increase R → 1,
then 〈Ue〉t → 0 while 〈Ub〉t is both positive and finite. At this
point, which is when the seemingly arbitrary enhancement of
the SWCF occurs, the γ0 (or, γ CPL

ave ) factor plays a nontrivial and
crucial role. It limits the enhancement such that g/gCPL remains
finite, because the denominator now remains finite and away
from zero. In fact, since the denominator remains finite though
the numerator of Eq. (51) goes to zero, as R → 1, the total
enhancement g/gCPL → 0. Therefore, there is no enhancement
after a certain point, as R gets closer to 1, contrary to Refs. [2]
and [3].

Incidentally, we may ask when γ0 matters. To simplify
the discussion and to limit our point to that for maximum
enhancement, we can answer this by looking at the nodal
position of the electric field energy, that is, cos(2kavez) → 1.
Then the denominator of Eq. (52) becomes

(1 −
√

R)2 + γ0(1 +
√

R)2. (53)

So γ0 would matter when

(1 −
√

R)2 ≈ γ0(1 +
√

R)2, (54)

or, equivalently, when

√
γ0 = (1 − √

R)

(1 + √
R)

⇔
√

R = (1 − √
γ0)

(1 + √
γ0)

. (55)

This is precisely when the maximum enhancement of g0/gCPL

occurs, as is shown below.

V. STANDING WAVE CHIRAL FIELD:
NUMERICAL SIMULATIONS

Here we analyze the generalized dissymmetry factor g in
Eq. (48) for the SWCF arrangement obtained from counter-
propagating LCPL and RCPL. For context and to apply our
theory with physically relevant parameters, we use some of
the parameter values derived from the experimental data in
Ref. [2] for some of the plots and analyses.

063834-8



LIMITATIONS OF A SUPERCHIRAL FIELD PHYSICAL REVIEW A 86, 063834 (2012)

FIG. 1. Dissymmetry factor enhancement (g/gCPL) for the stand-
ing wave (SWCF) arrangement, as a function of (kavez/π ). R = 0.72,
	n/n0

ave = 0.008 18, and γ CPL
ave = 0.000 781. This plot shows that the

maximum enhancement occurs when kavez = lπ , where l ∈ Z.

A. Standing wave position z for maximum g/gCPL

Let us first determine the position z such that the dis-
symmetry factor enhancement g/gCPL is maximum. From the
simplified formula for g0 in Eq. (51), it is obvious that the
enhancement is maximized when cos(2kavez) → 1, for small
γ0. This can also be seen in the full solution for g in Eq. (48),
by recalling the orders of magnitude for the terms that multiply
cos 2(kavez). For γ0 = 0.000 781, obtained by fitting to the
measurements in Ref. [2], we can see graphically that this is
the position that maximizes the enhancement (see Fig. 1).

B. Maximum dissymmetry enhancement g/gCPL

and corresponding R

For the case when 	n/n0
ave = 0, it is possible to obtain

an analytical formula that is quite simple, for the maximum
enhancement of the dissymmetry factor g0/gCPL. From the
above section, we see that the maximum dissymmetry fac-
tor enhancement occurs when cos(2kavez) → 1. Then, using
Eq. (51), it is easy to show that a quadratic equation remains
when solving for an extremum. The enhancement has two
extrema at R = R0

extrema, where√
R0

extrema = (1 ∓ √
γ0)2

(1 − √
γ0)(1 + √

γ0)
. (56)

Since (0 < γ0 � 1) and (R < 1) the physically valid R is
that with (∓ → −) in the numerator. We can then conclude
that g0/gCPL is maximized when R = R0

max, where

R0
max =

(
1 − √

γ0

1 + √
γ0

)2

. (57)

Recall that this is the condition when γ0 is large enough to
contribute to the dissymmetry factor, as was seen in Eq. (55).
The maximum enhancement for when 	n/n0

ave = 0 is then(
g0

gCPL

)
max

= 1

2
√

γ0
. (58)

Both Eqs. (57) and (58) are very good approximations for
the general case for the physically valid range of values (see

FIG. 2. (Color online) Reflectivity R0
max = [(1 − √

γ )/(1 +√
γ )]2 and Rmax(	n/n0

ave = 0.008 18) for maximum enhancement
g/gCPL, for γ CPL

ave ∈ [10−6,10−3]. (kavez) set for Ue node. For Rmax,
gCPL = 1.42 × 10−3. Both are indistinguishable here. Solid line, Rmax;
dot-dashed line, R0

max(γ → γ CPL
ave ).

Appendix G) for gCPL and 	n/n0
ave. We will denote the general

(	n/n0
ave �= 0) R for maximum g/gCPL as Rmax. This was

numerically solved and plotted in comparison to R0
max = [(1 −√

γ0)/(1 + √
γ0)]2|γ0→γ CPL

ave
in Fig. 2. We see that both agree

quite well for the parameters given.
The maximum dissymmetry enhancement for the general

case can be written as(
g

gCPL

)
max

≈ 1

2
√

γ CPL
ave

. (59)

From Figs. 3 and 4, we can see that this is a good approximation
to the actual maximum enhancement, the latter having been
solved numerically.

We thus see that γ = (n2χ ′′)/(c2α′′) from Eq. (21d) is what
determines the maximum dissymmetry enhancement g/gCPL

for all values of the reflectivity R. This enhancement can range
from about 15 to 500, for physically reasonable values of γ .
This implies that the enhancement effect is finite.

FIG. 3. (Color online) Maximum enhancement g0/gCPL =
1/(2

√
γ ) and g/gCPL(	n/n0

ave = 0.008 18), for γ CPL
ave ∈ [10−6,10−3].

(kavez) set for Ue node. For g/gCPL, gCPL = 1.42 × 10−3. Both
are indistinguishable here. Solid line, g/gCPL; dot-dashed line,
g0/gCPL(γ → γ CPL

ave ).
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FIG. 4. (Color) Maximum enhancement g0/gCPL = 1/(2
√

γ ) and
g/gCPL(	n �= 0), for various γ CPL

ave values. (kavez) set for Ue node. The
plots provide the full range for g/gCPL and show that both agree well.
Curved blue plot, g/gCPL; constant red plot, g0/gCPL(γ → γ CPL

ave ).

VI. APPLICATION TO TANG AND COHEN’s
EXPERIMENT

A. Fit generalized g to experiment

We now apply our theory to the experiment in Ref. [2].
We first determine (	n/n0

ave) from the m- and p-enantiomer
CD measurements, via Kramers-Kronig transformation. This
is done in Appendix I . With the approximation that n0

ave ≈ 1,
we use the average value between the two enantiomers in
Eq. (I6c):

	n

n0
ave

→ 	0 = ±8.18 × 10−3, (60)

where the positive 	0 (= +8.18 × 10−3) is for the p-
enantiomer and the negative 	0 (= −8.18 × 10−3) is for the
m-enantiomer, consistent with the ORD calculations seen in
Fig. 10 in Appendix I, for the wavelength of the experiment.

The following measurements are for reflectivity R = 0.72
at λ = 543.5 nm wavelength, as reported in Ref. [2]:

(gmax)p = +1.50 × 10−2 ± 0.08 × 10−2 (SEM), (61a)

(gmax)m = −1.65 × 10−2 ± 0.08 × 10−2 (SEM), (61b)

(gCPL)p = +1.41 × 10−3 ± 0.03 × 10−3 (SEM), (61c)

(gCPL)m = −1.42 × 10−3 ± 0.04 × 10−3 (SEM), (61d)

(g/gCPL)p = 10.6 ± 0.6, (61e)

(g/gCPL)m = 11.6 ± 0.6, (61f)

where the m subscript is for the m-enantiomer, and the p

subscript is for the p-enantiomer. Note that the gCPL values
are consistent with what we would expect from the order of
magnitude estimation of Eq. (G5b).

From these measurements, we first take the averages of the
enhancement factors and gCPL:(

g

gCPL

)
ave

= 11.1, (62)

(gCPL)ave = ±1.42 × 10−3, (63)

where the positive (gCPL)ave(=+1.42 × 10−3) is for the p-
enantiomer and the negative (gCPL)ave(=−1.42 × 10−3) is for
the m-enantiomer.

We then set the following, in Eq. (48):

g

gCPL
→
(

g

gCPL

)
ave

= 11.1, (64a)

gCPL → (gCPL)ave = ±1.42 × 10−3, (64b)
	n

n0
ave

→ 	0 = ±8.18 × 10−3, (64c)

R → 0.72, (64d)

(kavez) → lπ (l ∈ Z). (64e)

We can now fit for the experimental data to determine γ CPL
ave .

We numerically solve for γ CPL
ave with Eqs. (64) substituted in

Eq. (48). We obtained the following value:

γ CPL
ave = 7.81 × 10−4. (65)

This is consistent with our expected order-of-magnitude
estimation in Eq. (G5a).

B. Symmetric g/gCPL with respect to opposite enantiomers

For ideal enantiomers that are oppositely handed (such
as the m- and p-enantiomers, if perfectly manufactured),
the magnitudes of 	n/n0

ave (ORD) and gCPL (from CD) are
the same, but the signs are opposite. This can be seen to be the
case from the measured gCPL in Eqs. (61c) and (61d), as well
as the ORD values in Eqs. (I6a) and (I6b).

However, the dissymmetry factors measured for the m-
and p-enantiomers in Ref. [2] [Eqs. (61a) and (61b)], appear
to have somewhat larger differences (∼10%) than that for
gCPL(∼0.7%) and 	n/n0

ave(∼7%). We investigated whether
this is from experimental errors, or whether one enantiomer
would have preferential enhancement over the other, theoreti-
cally as well, in an SWCF.

We first analyze the dissymmetry factor g in Eq. (48).
Opposite enantiomers have the following relations:

gCPL � −gCPL, (66a)

	n � −	n, (66b)

γ CPL
ave � γ CPL

ave , (66c)

n0
ave � n0

ave, (66d)

nL � nR, (66e)

(n2)ave � (n2)ave, (66f)

kave � kave. (66g)

With Eqs. (66), we see that the dissymmetry factor g in
Eq. (48) has the same magnitude but opposite signs for oppo-
site enantiomers. Then the enhancement, g/gCPL is perfectly
symmetric with respect to opposite enantiomers and should be
identical.
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FIG. 5. (Color online) 	n/n0
ave = (nL − nR)/(nL + nR) depen-

dence of g/gCPL for counterpropagating CPLs forming a stand-
ing wave (SWCF), for constant gCPL = ±1.42 × 10−3. (R = 0.72,
γ CPL

ave = 7.81 × 10−4, (kavez) set for Ue node.) Dashed line, positive
gCPL = +1.42 × 10−3; dot-dashed line, negative gCPL = −1.42 ×
10−3. For opposite enantiomers, both 	n/n0

ave and gCPL change signs.
So only the solid lines A and B are the physically valid curves, and
only one is valid for a given frequency. Curve A corresponds to the
experiment in Ref. [2].

We can also see this from Fig. 5. Each line (either dashed,
with positive slope and positive gCPL, or dot-dashed with
negative slope and negative gCPL) is a plot of the enhancement
g/gCPL as a function of 	n/n0

ave. Since gCPL also changes
signs, when 	n changes signs, implying the enantiomer with
opposite handedness is being measured instead, either the solid
triangular line “A” or “B” is the allowed plot, not both, for
a given incident light frequency. Curve A corresponds to the
experimental region in Ref. [2], for the wavelength (543.5 nm)
used. The kink at 	n/n0

ave = 0 is due to the fact that constant
gCPL was used, when in reality gCPL should also vary along the
graphs.

C. Generalized dissymmetry factor g vs reflectivity R

We conclude this section with the main plot that compares
our theory and that in Refs. [2] and [3]. This is shown in Fig. 6,
where the dissymmetry factor enhancement g/gCPL is plotted
against the reflectivity R. Here we see that there is a clear limit
to the enhancement, which is fixed for the material used, and
the enhancement goes to 0 when R = 0. We also see that both
enantiomers have the same enhancement.

The maximum enhancement can be determined numerically
from Eq. (48). For the experimental values in Ref. [2] (gCPL =
1.42 × 10−3,γ CPL

ave = 7.81 × 10−4,	n/n0
ave = 8.18 × 10−3),

the maximum enhancement (g/gCPL)max = 18.2, which is
obtained at Rmax = 0.894. This matches the maximum for
Fig. 6. This enhancement can also be approximated using
Eq. (59), which is found to be 17.9.

VII. ADDITIONAL THOUGHTS

Though we have focused our analysis on the SWCF for
counterpropagating CPLs, the limitations on the dissymmetry

FIG. 6. (Color online) Comparison of g(R)/gCPL for our theory
(dashed and dot-dashed lines) and that in Ref. [2] (dotted line) for the
counterpropagating CPLs forming a SWCF. gCPL = ±1.42 × 10−3,
γ CPL

ave = 7.81 × 10−4, 	n/n0
ave = ±8.18 × 10−3, (kavez) set for Ue

node. Positive gCPL and 	n/n0
ave are used for p-enantiomer and

negative values for m-enantiomer; the former is dashed line and the
latter is dot-dashed line, but both are identical since both enantiomers
should have same enhancement factor. The measured values and error
bars for p (lower value) and m (higher value) from Ref. [2] are shown
for R = 0.72.

factor enhancement is general. The limits should hold for any
EM field that resonantly excites a molecular system. As we
noted, γ = (n2χ ′′)/(c2α′′) in the mostly achiral term of the
absorption rate, Aa , determines the balance between the time-
averaged electric field energy density (〈Ue〉t ) and magnetic
field energy density (〈Ub〉t ), as given in Eq. (21b):

Aa ≡ ωα′′ 2
ε

[〈Ue〉t + γ 〈Ub〉t ] . (67)

Recall that it is when 〈Ue〉t ≈ γ 〈Ub〉t that the maximum
enhancement occurred for the SWCF. The achiral Aa is present
in the denominator for all dissymmetry factors that consider
electric and magnetic dipole moments. So any enhancements
that occur from nodal regions for the EM energy density should
consider both 〈Ue〉t and γ 〈Ub〉t together, and hence would be
limited by the parameter γ .

One might ask whether it is possible to set the magnetic
field energy density to be 0 by eliminating the magnetic field
B altogether. If the magnetic field component = 0 but the E
field is not, then the arbitrarily large enhancement might be
obtained as given in Eq. (5). We can answer this by recalling
that magnetic fields may be absent only for a static (dc)
electric field, according to the Maxwell equations. However,
a static field cannot generate any absorption [1]. Hence, by
conservation of EM field energy, the dissymmetry factor will
always be limited in its nodal enhancement because both terms
in Eq. (67) should always be present.

Another common question might be whether a material
with γ arbitrarily small could be used, so that Eq. (5)
might be applicable, or that the enhancement might be
increased according to Eq. (59). Recall that the numerator
of the dissymmetry factor in Eq. (24), from which the actual
enantioselective signal emerges, is dependent on G′(g). From
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Eq. (E28), G′(g) ∼ μ · m and from Eq. (E18), χ ′′ ∼ m · m.
Thus, if γ = (n2χ ′′)/(c2α′′) → 0, then G′(g) → 0 also, and
the very signal that needs to be enhanced disappears.

In fact, it is important to realize that the very enhancement
seen in the standing wave case comes at the expense of a
decreased EM field energy to induce the enantioselective
moments. We can see the signal decrease by looking at the
denominator of the dissymmetry factor. For simplicity, since
the same conclusions can be arrived for the generalized g
for SWCF in Eq. (48), we use g0 instead from Eq. (51).
Since the signal for the SWCF experiment is directly from
fluorescence, which, in turn, is proportional to the absorption,
the signal of interest is the average absorption, that is, the
denominator of the dissymmetry factor. This denominator
is then given in Eq. (53) as (1 − √

R)2 + γ0(1 + √
R)2.

Recall that at the maximum enhancement, Eq. (54) holds,
such that

Denominator of g0 → 2γ0
(
1 +

√
R0

max

)2 ≈ 8γ0. (68)

So the signal is proportional to γ0. The enhancement of g/gCPL,
on the other hand, is proportional to 1/(2

√
γ0), according to

Eq. (59). Then to compare the decrease in signal (as γ0 → 0)
to the increase in enhancement, we compare with the inverse
of (g/gCPL):

Ave. signal

1/(g/gCPL)
≈ 4

√
γ0 → 0 as γ0 → 0. (69)

This shows that the signal decreases faster than the increase in
dissymmetry enhancement when searching for molecules with
small γ .

Figure 7 shows the relationship between fluorescent signal
and various γ values, for the nodal Ue position of the SWCF.
Recall from Fig. 2 that the maximum g/gCPL enhancement
occurs around R = 0.85–1.0. Then we can look at the values
for the denominator of g0 near R = 0.85–1.0 to determine

FIG. 7. (Color online) Log plot of the denominator of g0 at the
nodal Ue position for the SWCF. A decrease in γ CPL

ave corresponds
to a decrease in the fluorescent signal by the same amount, as seen
by values where the maximum enhancement occurs (R ≈ 0.85–1.0).
Solid line, γ CPL

ave = 10−3; dot-dashed line, γ CPL
ave = 10−4; dashed line,

γ CPL
ave = 10−5; dotted line, γ CPL

ave = 10−6.

the region when the maximum dissymmetry enhancement
occurs. We see that an order of magnitude decrease in
γ CPL

ave corresponds to an order of magnitude decrease in the
fluorescent signal itself. However, from Fig. 4, an order of
magnitude of decrease in γ CPL

ave corresponds to a
√

10 ≈ 3×
increase in the enhancement (g/gCPL). So finding a material
with small γ CPL

ave eventually becomes fruitless since the signal
itself will disappear faster than the enhancement.

One last point we include is that the equations derived for
the SWCF can be generalized to elliptically polarized light
(EPL). However, it can be shown that for EPLs, it is CPL
that maximizes the dissymmetry factor enhancement. Thus,
we have not included the EPL formalism in this paper.

VIII. ANALOGY BETWEEN ELLIPSOMETRIC
CHIROPTICAL SPECTROSCOPY AND ENHANCED

OPTICAL ENANTIOSELECTIVITY

In chiroptical spectroscopy, there have been a number
of experimental schemes aimed at enhancing the sensitivity
of the chiral characterization. One of the most successful
schemes is based on the quasinull ellipsometry measurement
technique developed by Kliger and co-workers [23,24]. Re-
cently, this method was used by Helbing and Bonmarin [25]
to measure the enhanced vibrational CD spectrum. We also
showed that this ellipsometry measurement scheme with a
supercontinuum pulse, whose spectrum covers almost the
entire visible frequency region, can be used to obtain the
electronic CD spectra of transition metal chiral molecules and
J-aggregates of cyanine dyes bound to DNA [26]. Here, left-
and right-EPL fields with their major axes in the x direction,
that is, zero azimuth angle, interact with a chiral sample. By
using a high-quality polarizer placed after the sample, only
the intensity of the y component of the transmitted field
is selectively measured. Then, the experimentally measured
dissymmetry factor in this case is defined as [24]

gEP,y = ILEP,y − IREP,y

(ILEP,y + IREP,y)/2
. (70)

Using either the Jones matrix formalism or linear response
theory, one can show that the above dissymmetry factor is
approximately given by

gEP,y ∝ ε

(
4 Im(μeg·meg)

|μeg|2
)(

EyEx

E2
y

)

= ε

(
4 Im(μeg·meg)

|μeg|2
)(

1 + r

1 − r

)
, (71)

where ε is the decadic molar extinction coefficient. Here,
Ex(= |EEPL| cos η) and Ey(= |EEPL| sin η) are the electric field
amplitudes of the x and y components of the incident EPL,
and r in Eq. (71) is related to the ellipticity angle η as
η = arctan (1 − r)/(1 + r).

From Eq. (71), as the ellipticity angle η is decreased to make
the EPL closer to a linearly polarized light with polarization
direction parallel to the x axis, the dissymmetry factor given
in Eq. (71) can be dramatically enhanced. The enhancement
factor (1 + r)/(1 − r) in Eq. (71) is similar to that in Eq. (10)
for the SWCF in Ref. [3] [our Eq. (5)]. Over the years, it has
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been experimentally demonstrated that an order of magnitude
enhancement of gEP,y can be easily achieved [26]. In fact,
the underlying physics of this enhancement of the chirop-
tical measurement sensitivity is quite similar to that of the
enhancement found in the SWCF-induced enantioselectivity
in narrow regions of space. As the ellipticity angle η decreases,
the intensity of the electric field along the y axis, which is
the denominator in Eq. (71), decreases by sin2 η, which is
analogous to the decrease of the electric field energy density
[(E1 − E2)2] at the nodes of the SWCF as E2 approaches
E1. The numerator in Eq. (71) describes the mixed electric
and magnetic dipole interactions with electric and magnetic
fields, respectively. As the ellipticity angle decreases, even
though the amplitude of the y component of the electric field
decreases by sin η, that of the y component of the magnetic
field increases by cos η. The numerator in Eq. (71) is thus
proportional to sin η cos η, which is analogous to the decrease
of the optical chirality Cg[∝(E1 − E2)(E1 + E2) = (1 − R)]
that appears in the numerator of the dissymmetry factor g
in Eq. (51). In experiments, however, such a limiting case
where η approaches zero is not of interest at all, because
the detected signal intensities, both ILEP,y and IREP,y, become
extremely small in this case and the signal-to-noise ratio (SNR)
is deteriorated. Thus, experimentalists have tried to balance the
chiral spectroscopic enhancement against the signal-to-noise
diminution, carefully controlling the eccentricity of the left-
and/or right-EPLs, depending on the specific detection scheme
used.

In the quasinull ellipsometry for chiroptical spectroscopy,
since the y component of the EPL is used as the intrinsic
(phase-fixed) local oscillator (LO) field that interferes with the
chiral signal field generated by the stronger Ex component
of the incident EPL, this ellipsometric method has thus been
known as a self-heterodyne detection method [25–27]. Instead
of using the LO field inherently present in the incident EPL,
one can use an independent linearly polarized LO whose
polarization direction is parallel to the chiral signal field
(the y component of the resulting free-induction-decay field)
to enhance the interference signal intensity in an arbitrary
manner [28,29], where a Mach-Zehnder type interferometry is
employed for a phase-and-amplitude-sensitive detection of the
chiral signal field [30]. Such spectroscopic enhancement ef-
fects were shown to be experimentally measurable and the so-
called active heterodyne-detection method was used to amplify
extremely weak infrared CD (gCD ≈ 10−5) and ORD signals
for small organic chiral molecules in solutions [28,31–34].

IX. CONCLUSION

The origin behind the enhancement of the chiral asymmetry,
in the rate of excitation with locally enhanced chiral field,
is quite similar to that of the characterization of molecular
chirality, using either self- or active-heterodyne-detection
method. However, the former, employing a SWCF, can be
used to enhance the enantioselectivity in the excitation of
certain enantiomers that are localized in the nodal regions of
the field, but the latter cannot. Nonetheless, due to EM energy
conservation and the fact that the EM total energy density is
constant in the medium, there should be an upper limit of the

optical enantioselectivity that is generally set by the positivity
of the rate of excitation and the Cauchy-Schwarz inequality.

Furthermore, we have shown that the chiral asymmetry in
the rate of excitation cannot always be written as a product
of material chirality and optical chirality. We have provided
analysis for the molecular property tensors involved to quantify
the dissymmetry factor enhancements. This should provide
a guide to future studies on locally enhanced chiral fields.
We anticipate that further investigation searching for locally
enhanced chiral field in the vicinity of complex boundaries
would be highly interesting in hopes of finding a way to
enhance optical enantioselectivity in inhomogeneous catalysis
employing surface plasmonics technology.
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APPENDIX A: PROPERTIES OF THE DISSYMMETRY
FACTOR

An important result that is derived in Ref. [1] is the
dissymmetry factor for CPL, in an isotropic medium. After
orientational averaging, the dissymmetry factor for an isotropic
sample can be written in terms of molecular transition
moments (SI units):

gCPL(j ← n) = 4R(j ← n)

cD(j ← n)
, (A1)

where

R(j ← n) = Im(〈n|μ|j 〉〈j |m|n〉), (A2)

D(j ← n) = Re(〈n|μ|j 〉〈j |μ|n〉) (A3)

are the rotational strength and dipole strength of the j ← n

transition, respectively.
Also, by definition, the magnitude of the dissymmetry

factor is bounded. The Cauchy-Schwarz inequality requires
that the dissymmetry factor must be �2 in magnitude:

|g| =
∣∣∣∣2AL − AR

AL + AR

∣∣∣∣ � 2|AL − AR|
∣∣∣∣ 1

AL + AR

∣∣∣∣ � 2. (A4)

We used the fact that the largest magnitude for the dissymmetry
factor is obtained when AL = 0 and AR �= 0 or vice versa.

APPENDIX B: DERIVATION OF p AND m MULTIPOLE
EXPANSIONS

We derive Eq. (6) from the semiclassical perturbative
formulation in Ref. [1]:

p̃ � α̃Ẽ + G̃B̃, (B1)

m̃ � χ̃ B̃ − G̃Ẽ. (B2)

Note that Ref. [1] uses “μ” for the electric dipole moment,
whereas “p” is used in Ref. [3]. In this paper, μ and p are the
same and used together.
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We begin with the induced oscillating electric and magnetic
multipole moments of molecules in a complex monochromatic
EM field oscillating at angular frequency ω. This was obtained
from applying perturbation theory to the Schrödinger equation:

μ̃α = α̃αβ(Ẽβ)0 + 1
3 Ãα,βγ (Ẽβγ )0 + G̃αβ(B̃β)0 + · · · , (B3)

m̃′
α = χ̃αβ(B̃β)0 + G̃αβ(Ẽβ)0 + 1

3D̃α,βγ (Ẽβγ )0 + · · · . (B4)

It is important to be careful when obtaining physical
quantities from complex EM equations, particularly if there
are complex quantities that are multiplied. Typically, the real
parts of complex quantities are taken before multiplication,
such as in

p · E = [Re(p̃)] · [Re(Ẽ)] = [ 1
2 (p̃ + p̃∗)

] · [ 1
2 (Ẽ + Ẽ∗)

]
.

However, in the formalism provided here, the multipole
moments were constructed explicitly with complex EM fields
and complex molecular property tensors, so complex multi-
plication has been carefully considered already. To obtain the
actual physical multipole moment, μα or m′

α , which are the
real parts of their complex versions in Eqs. (B3) and (B4), we
simply take the real parts of the full formulas on the right-hand
side of each equation:

μα = Re
[
α̃αβ(Ẽβ)0 + 1

3 Ãα,βγ (Ẽβγ )0 + G̃αβ(B̃β)0 + · · · ],
(B5)

m′
α = Re

[
χ̃αβ(B̃β)0 + G̃αβ(Ẽβ)0 + 1

3D̃α,βγ (Ẽβγ )0 + · · · ].
(B6)

In the above equations, Ẽβ is the Cartesian component
of the complex electric field vector, where β = x,y,z, and
similarly for the magnetic field B; α̃ is the complex electric
polarizability, χ̃ is the complex magnetic susceptibility, and G̃

is the complex mixed electric-magnetic dipole polarizability;
m̃′ is the magnetic dipole moment, including the diamagnetic
contribution, which is the same as our m̃ in Eq. (B2); Eαβ ≡
∇αEβ , and (E)0 means that the field is taken at the molecular
origin.

Before we can define the complex dynamic molecular
property tensors given in Eqs. (B3) and (B4), we must first
define the real dynamic molecular property tensors:

ααβ = 2

h̄

∑
j �=n

ωjn

ω2
jn − ω2

Re(〈n|μα|j 〉〈j |μβ |n〉), (B7a)

α′
αβ = −2

h̄

∑
j �=n

ω

ω2
jn − ω2

Im(〈n|μα|j 〉〈j |μβ |n〉), (B7b)

Aα,βγ = 2

h̄

∑
j �=n

ωjn

ω2
jn − ω2

Re(〈n|μα|j 〉〈j |�βγ |n〉), (B7c)

A′
α,βγ = −2

h̄

∑
j �=n

ω

ω2
jn − ω2

Im(〈n|μα|j 〉〈j |�βγ |n〉), (B7d)

Gαβ = 2

h̄

∑
j �=n

ωjn

ω2
jn − ω2

Re(〈n|μα|j 〉〈j |mβ |n〉), (B7e)

G′
αβ = −2

h̄

∑
j �=n

ω

ω2
jn − ω2

Im(〈n|μα|j 〉〈j |mβ |n〉), (B7f)

Dα,βγ = 2

h̄

∑
j �=n

ωjn

ω2
jn − ω2

Re(〈n|mα|j 〉〈j |�βγ |n〉), (B7g)

D′
α,βγ = −2

h̄

∑
j �=n

ω

ω2
jn − ω2

Im(〈n|mα|j 〉〈j |�βγ |n〉), (B7h)

χαβ = 2

h̄

∑
j �=n

ωjn

ω2
jn − ω2

Re(〈n|mα|j 〉〈j |mβ |n〉)

+
∑

i

e2
i

4mi

〈n|riα riβ − r2
i δαβ |n〉, (B7i)

χ ′
αβ = −2

h̄

∑
j �=n

ω

ω2
jn − ω2

Im(〈n|mα|j 〉〈j |mβ |n〉). (B7j)

Here, the sum is over the index j ; μα , mα , �αβ are the electric
dipole, magnetic dipole, and electric quadrupole operators,
respectively; |j 〉,|n〉 are j th and nth unperturbed eigenfunction
states; ωjn = ωj − ωn and h̄ωj = Ej is the eigenvalue of the
unperturbed molecular Hamiltonian H for the j th eigenstate;
mi is the mass of the ith charge, and ei is its charge. Thus, the
dynamic molecular property tensors are sums of transitions
j ← n. Equations (B7) are given in Ref. [1] and are provided
here for the sake of completeness.

The complex (with tilde) dynamic molecular property
tensors given in Eqs. (B3) and (B4) are then defined in terms
of their real counterparts:

α̃αβ = ααβ − iα′
αβ, (B8)

and similarly for Ãα,βγ , G̃αβ , D̃α,βγ , and χ̃αβ .
A small adjustment is made for G̃αβ to properly account

for the absorption of fields and the multiplication of complex
quantities:

G̃αβ = 2

h̄

∑
j �=n

1

ω2
jn − ω2

[ωjnRe(〈n|mα|j 〉〈j |μβ |n〉)

+ iω Im(〈n|mα|j 〉〈j |μβ |n〉)]
= Gβα + iG′

βα. (B9)

For the last step, we have used Im(z∗) = − Im(z), and μ̂ and
m̂ are Hermitian operators.

To finish defining the complex dynamic molecular property
tensors, we incorporate the absorption and dispersion line-
shape functions g and f , as described in Appendix C. This is
necessary to account for resonant absorption.

Combining everything,

α̃αβ � [ααβ(f ) + iααβ (g)] − i[α′
αβ(f ) + iα′

αβ (g)], (B10)

where

ααβ(X) = 2

h̄

∑
j �=n

(Xjn)ωjnRe(〈n|μα|j 〉〈j |μβ |n〉), (B11a)

α′
αβ(X) = −2

h̄

∑
j �=n

(Xjn)ω Im(〈n|μα|j 〉〈j |μβ |n〉), (B11b)

and similarly for the other molecular tensors, where X is
replaced with g or f . Inside the sums, X is replaced with
Xjn (e.g., f → fjn) to indicate that the line-shape functions
depend on the transitions.
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For clarity, we also explicitly write the formulas for G̃αβ

and G̃αβ :

G̃αβ � [Gαβ(f ) + iGαβ (g)] − i[G′
αβ(f ) + iG′

αβ(g)], (B12)

G̃αβ � [Gβα(f ) + iGβα(g)] + i[G′
βα(f ) + iG′

βα(g)], (B13)

with

Gαβ(X) = 2

h̄

∑
j �=n

(Xjn)ωjnRe(〈n|μα|j 〉〈j |mβ |n〉), (B14a)

G′
αβ(X) = −2

h̄

∑
j �=n

(Xjn)ω Im(〈n|μα|j 〉〈j |mβ |n〉), (B14b)

Gβα(X) = 2

h̄

∑
j �=n

(Xjn)ωjnRe(〈n|mα|j 〉〈j |μβ |n〉), (B14c)

G′
βα(X) = 2

h̄

∑
j �=n

(Xjn)ω Im(〈n|mα|j 〉〈j |μβ |n〉). (B14d)

We now use the results of the isotropic rotational averaging
completed in Appendix E. From Eqs. (E10), (E19), (E30), and
(E31), and noting that the quadrupole moments average to
zero, for real wave functions we have

μ̃α → α̃(Ẽα)0 + G̃(B̃α)0 + · · · , (B15)

m̃′
α → χ̃(B̃α)0 − G̃(Ẽα)0 + · · · . (B16)

Correcting for notational differences, μ → p, m′ → m,
(B̃α)0 → B̃α , and similarly for Ẽα , we finally have

p̃ � α̃Ẽ + G̃B̃, m̃ � χ̃ B̃ − G̃Ẽ.

where α̃, χ̃ , and G̃ are scalars defined in Eqs. (E7), (E16), and
(E26), respectively.

APPENDIX C: LINE-SHAPE FUNCTIONS g AND f

We follow the formalism in Ref. [1] for this section. The
absorption and dispersion line-shape functions g and f , re-
spectively, are necessary to account for absorbing frequencies
of a radiation field.

Absorption can be accounted for by changing the frequency
(or energy) to be complex:

ωjn → ω̃jn = ωjn − 1
2 i�j , (C1)

where � is the damping factor and 1/� is the lifetime of the
excited state j . For example, for e−iωt HTD, including an
imaginary frequency effectively introduces damping:

e−iωt → e−i(ω− 1
2 i�)t = e−iωt e− 1

2 �t . (C2)

Since we are interested in the line-shape functions near
resonance, as the effect of absorption is small otherwise, we
only need to look at the difference term (ω2

jn − ω2), where
ωjn → ω̃jn:

1

ω2
jn − ω2

→ 1

(ω̃jn − ω)(ω̃∗
jn + ω)

�
(
ω2

jn − ω2
)+ iω�j(

ω2
jn − ω2

)2 + ω2�2
j

≡ f + ig. (C3)

The line-shape functions g and f are real valued:

f =
(
ω2

jn − ω2
)

(
ω2

jn − ω2
)2 + ω2�2

j

, (C4)

g = ω�j(
ω2

jn − ω2
)2 + ω2�2

j

. (C5)

We can then use the line-shape functions by setting

1

ω2
jn − ω2

→ f + ig (C6)

in Eqs. (B7). For example, for a particular transition j ← n,

ααβ → ααβ(f ) + iααβ(g), (C7)

ααβ(X) = 2

h̄
XωjnRe(〈n|μα|j 〉〈j |μβ |n〉), (C8)

and similarly for the other molecular tensors, where X is
replaced with g or f .

Note that f and g should really be fjn and gjn, since they
are dependent on the index and states j and n. Also, f and
g may be replaced with the actual line-shape functions of the
molecules. It is worth noting that because only g represents the
damping factor �, dynamic molecular property tensors that are
functions of g are responsible for the absorption of radiation.

For the molecular tensor G̃αβ , we can write

G̃αβ → 2

h̄

∑
j �=n

(fjn + igjn)[ωjnRe(〈n|mα|j 〉〈j |μβ |n〉)

+ iω Im(〈n|mα|j 〉〈j |μβ |n〉)]. (C9)

APPENDIX D: RANDOM ORIENTATIONAL AVERAGING
(ROTATIONAL AVERAGING) OF ISOTROPIC SAMPLES

For isotropic samples, since the orientations of each
molecule is randomly distributed about 4π sr, compared to
a fixed laboratory frame, we must average over all molecular
orientations. The EM fields can be considered fixed, for a given
instant in time, in the fixed laboratory frame. The orientational
averaging then is a process to average over all possible
molecular frame orientations with respect to this laboratory
frame. Each molecule has its own molecular frame wherein
the molecular property tensors and multipole moments are
specified, and each molecular frame coordinate axes are
randomly oriented with respect to each other and the fixed
laboratory frame. Thus, we can assume a uniformly distributed
Euler angle relation between molecular and laboratory frame
coordinate axes.

1. Formalism

Craig and Thirunamachandran have nicely summarized
orientational averaging using tensors in Ref. [19]. We use their
explanation and results, particularly for tensors of rank 2.

Let the components of an nth-rank tensor T with respect
to a space-fixed frame be Ti1,...,in . If T refers to a molecular
property, we can express it in terms of a molecule-fixed frame
through

Ti1,...,in = li1λ1 , . . . ,linλn
Tλ1,...,λn

, (D1)
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where lipλp
is the cosine of the angle between the space-fixed

axis ip and the molecule-fixed axis λp.
Let

I (n) ≡ 〈li1λ1 , . . . ,linλn

〉
�

(D2)

be the rotational average (〈· · · 〉�) of the direction cosine
product. Generally, we may then write the rotational average
(isotropic orientational average) of a rank n tensor T as [19,20]〈

Ti1,...,in

〉
�

= 〈li1λ1 , . . . ,linλn
Tλ1λ2,...,λn

〉
�

= I (n)Tλ1λ2,...,λn
.

(D3)

For rank 2 tensors, we have

I (2) = 1
3δi1i2δλ1λ2 , (D4)

where δij is the Kronecker δ.

2. Example

Let us apply this rotational averaging using a relevant
example. We want to show

〈(E · p)(B · m)〉� = 1
3 (E · B)(p · m). (D5)

We may assume E and B are external fields that are fixed
relative to the fixed laboratory frame, for all molecules. So
we can take them out and rotationally average over the tensor
that actually varies over the random molecular distribution.
We also assume the molecules are identical to each other, once
their molecular coordinates are matched, since the sample is
isotropic.

We use Einstein notation here where like indices imply a
sum over that index. Let Tlm = plmm. Then,

〈(E · p)(B · m)〉� = (Eiδil)(Bjδjm)〈plmm〉�
= (Eiδil)(Bjδjm)I (2)

lm,λμ(Tλμ)

= 1
3 (E · B)(p · m). (D6)

From this simple derivation, we can see that
〈(E · p)(B · m)〉� = 0 if (E · B) = 0 or (p · m) = 0. This
seems to be because (E · p) = Ep cos(θEp) and (B · m) =
Bm cos(θBm) become like “linearly independent angles”
to each other, so it is akin to 〈(E · p)(B · m)〉� ∼
〈cos θEp〉�〈cos θBm〉� = 0 ∗ 0 = 0. This shows that only the
components that have (E · B �= 0) or (p · m �= 0) contribute to
the rotational average in a nonzero way, that is, only the B
component parallel to E and same for p and m contribute to
〈(E · p)(B · m)〉�.

APPENDIX E: ORIENTATIONAL AVERAGING
OF MOLECULAR PROPERTY TENSORS

FOR ISOTROPIC SAMPLES

In this section, we apply isotropic rotational averaging to
the complex dynamic molecular property tensors, which are
the complex quantities of those found in Eqs. (B7). We assume
each transition (resonance) can be averaged independently
of each other. Also note that rotational averaging is a linear
operation with real weighting factors, so that

〈Re(T )〉� = Re(〈T 〉�), (E1a)

〈Im(T )〉� = Im(〈T 〉�). (E1b)

1. Electric-quadrupole moment, 〈�βγ 〉�

The electric-quadrupole moment averages to zero for
isotropic samples and is not included as one of the multipole
moments, even though it has the same magnitude as the
magnetic dipole [19,20]. For the same reason, the molecular
property tensors Aα,βγ ,A′

α,βγ ,Dα,βγ , and D′
α,βγ also average

out to zero. Then we have

〈Ãα,βγ 〉� = 0, (E2)

〈D̃α,βγ 〉� = 0. (E3)

2. Electric polarizability tensor, 〈α̃αβ〉�

For the complex electric polarizability tensor, α̃αβ we are
interested in the rotational average of

T
(α)
αβ = (〈n|μα|j 〉〈j |μβ |n〉). (E4)

Using Eqs. (D3) and (D4),〈
T

(α)
αβ

〉
�

= 1

3
δαβ

(
T

(α)
λλ

) = 1

3
δαβ(〈n|μλ|j 〉〈j |μλ|n〉)

= 1

3
δαβ(〈n|μλ|j 〉〈n|μ†

λ|j 〉∗)

= 1

3
δαβ(〈n|μλ|j 〉〈n|μλ|j 〉∗)

= 1

3
δαβ

∑
λ

|〈n|μλ|j 〉|2 ∈ R. (E5)

From this and Eq. (B11b), we see that

〈α′
αβ(X)〉� → 0. (E6)

Then from Eqs. (B10) and (B11b), we obtain the isotropic
average of the complex electric polarizability:

〈α̃αβ〉� � δαβ(α̃) ≡ δαβ(α′ + iα′′), (E7)

where

α′ = 2

h̄

∑
j �=n

(fjn)ωjn

(
1

3

∑
λ

|〈n|μλ|j 〉|2
)

∈ R, (E8)

α′′ = 2

h̄

∑
j �=n

(gjn)ωjn

(
1

3

∑
λ

|〈n|μλ|j 〉|2
)

∈ R. (E9)

Thus, we have explicitly shown that the complex electric
polarizability tensor, when isotropically averaged, becomes
a complex scalar, and can be rewritten in Eq. (B3) as

α̃αβ(Ẽβ)0 → α̃(Ẽα)0. (E10)

3. Magnetic susceptibility tensor, 〈χ̃αβ〉�

For the complex magnetic susceptibility tensor, χ̃αβ we
follow a very similar method to that for α̃αβ . We are interested
in the rotational average of

T
(χ)
αβ = (〈n|mα|j 〉〈j |mβ |n〉), (E11)

and

T
′(χ)
αβ =

∑
i

e2
i

4mi

〈n|riα riβ − r2
i δαβ |n〉. (E12)
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Then, 〈
T

(χ )
αβ

〉
�

= 1

3
δαβ

∑
λ

|〈n|mλ|j 〉|2 ∈ R, (E13)

〈
T

′(χ )
αβ

〉
�

= −2

3
δαβ

∑
i

[
e2
i

4mi

〈n|r2
i |n〉

]
∈ R. (E14)

From this, we see that

〈χ ′
αβ(X)〉� → 0. (E15)

We obtain the isotropic average of the complex magnetic
susceptibility:

〈χ̃αβ〉� � δαβ(χ̃ ) ≡ δαβ(χ ′ + iχ ′′), (E16)

with

χ ′ = 2

h̄

∑
j �=n

(fjn)ωjn

(
1

3

∑
λ

|〈n|mλ|j 〉|2
)

+
(

−2

3

∑
i

[
e2
i

4mi

〈n|r2
i |n〉

])
∈ R, (E17)

χ ′′ = 2

h̄

∑
j �=n

(gjn)ωjn

(
1

3

∑
λ

|〈n|mλ|j 〉|2
)

∈ R. (E18)

We have shown that the complex magnetic susceptibility
tensor, when isotropically averaged, becomes a complex scalar
and can be rewritten in Eq. (B4) as

χ̃αβ(B̃β)0 → χ̃ (B̃α)0. (E19)

4. Mixed electric-magnetic dipole polarizability tensors,
〈G̃αβ〉� and 〈G̃αβ〉�

For the complex mixed electric-magnetic dipole polariz-
ability tensors, G̃αβ and G̃αβ , we are interested in the rotational
average of

T
(G)
αβ = (〈n|μα|j 〉〈j |mβ |n〉), (E20)

T
′(G)
αβ = (〈n|mα|j 〉〈j |μβ |n〉). (E21)

Then, 〈
T

(G)
αβ

〉
�

= 1

3
δαβ

∑
λ

(〈n|μλ|j 〉〈j |mλ|n〉) ∈ C, (E22)

〈
T

′(G)
αβ

〉
�

= 1

3
δαβ

∑
λ

(〈n|mλ|j 〉〈j |μλ|n〉) ∈ C. (E23)

Here we use real wave functions to calculate the multipole
moments for G̃αβ and G̃αβ . For real wave functions, 〈j |μ̂|n〉
and 〈j |m̂|n〉 are purely real and purely imaginary, respectively,
for j �= n [19]. Then〈

T
(G)
αβ

〉
�

and
〈
T

′(G)
αβ

〉
�

∈ Purely Imaginary.

We then have

〈Gαβ(X)〉� and 〈Gβα(X)〉� → 0, (E24)

and 〈
T

(G)
αβ

〉
�

= i Im
[〈
T

(G)
αβ

〉
�

] = −i Im
[(〈

T
(G)
αβ

〉
�

)∗]
= −i Im

[〈
T

′(G)
αβ

〉
�

] = −〈T ′(G)
αβ

〉
�
. (E25)

With these equations, we can then conclude with the final
form of the isotropic average of the complex mixed electric-
magnetic dipole polarizability tensors:

〈G̃αβ〉� � δαβ[G′(g) − iG′(f )] ≡ δαβG̃, (E26)

〈G̃αβ〉� � δαβ[−G′(g) + iG′(f )] = −δαβG̃, (E27)

where

G′(X)

≡ −2

h̄

∑
j �=n

(Xjn)ω

(
1

3

∑
λ

Im (〈n| μλ |j 〉〈j | mλ |n〉)
)

∈ R.

(E28)

Note that here, the scalar G′(X) denotes the isotropic
average of Eqs. (B7f) and (B14b), that is,

G′(X) ≡ 〈G′
αβ(X)〉�. (E29)

We also note that depending on the ordering, or the orientations
(with respect to each other), of μ̂ and m̂, the signs of 〈G̃αβ〉�
and 〈G̃αβ〉� may change.

We can then rewrite the respective parts in Eqs. (B3) and
(B4) as

G̃αβ(B̃β)0 → G̃(B̃α)0, (E30)

G̃αβ(Ẽβ)0 → −G̃(Ẽα)0. (E31)

APPENDIX F: DERIVATION OF GENERALIZED
OPTICAL CHIRALITY Cg

We begin with ω Im(Ẽ∗ · B̃) from Eq. (16). Note that this
is time-independent for monochromatic fields. We first derive
the following identity, given in Ref. [3]:

Ḃ · E − Ė · B

= − iω

4
[(B̃ − B̃∗) · (Ẽ + Ẽ∗) − (Ẽ − Ẽ∗) · (B̃ + B̃∗)]

= ω Im(Ẽ∗ · B̃). (F1)

Now using the Maxwell equations for a linear medium with
no free current or charges, we can rewrite the identity (F1):

ω Im(Ẽ∗ · B̃) = Ḃ · E − Ė · B

= −∇ × E · E − 1

εμ
B · ∇ × B

= −2

ε

[
ε

2
E · (∇ × E) + 1

2μ
B · (∇ × B)

]
, (F2)

where ε and μ are the electric permittivity and the magnetic
permeability, respectively [21]. In vacuum,

ε → ε0, μ → μ0.

We can now define the generalized optical chirality Cg:

Cg ≡ ε

2
E · (∇ × E) + 1

2μ
B · (∇ × B). (F3)

As would be expected, this simply replaces the vacuum
permittivity and permeability in the optical chirality C, in
Ref. [3], with those for a linear medium. Bliokh defined a
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similar, but slightly different [apart from the (c/ω) factor],
chirality density χ [8]. Our Cg is applicable for EM fields in a
linear medium, with no free current or charges.

Summarizing,

ω Im(Ẽ∗ · B̃) = Ḃ · E − Ė · B

= −2

ε

[
ε

2
E · (∇ × E) + 1

2μ
B · (∇ × B)

]

≡ −2

ε
Cg. (F4)

As a special case, let us consider the optical chirality of a
CPL in a linear medium. From Appendix F, we use Eqs. (H1)
and (H2) for Cg:

C(L/R)
g = ±k(L/R)

[
ε

2
|E(L/R)|2 + 1

2μ
|B(L/R)|2

]

= ±k(L/R)
[
U (L/R)

e + U
(L/R)
b

] = ±2k(L/R)U (L/R)
e

= ±2ωU
(L/R)
e

c
n(L/R). (F5)

The (+) sign is for LCPL (L), and the (−) sign is for RCPL
(R); n is the index of refraction. From this we see that for
monochromatic CPLs, time invariance of the optical chirality
is equivalent to conservation of energy of the fields.

APPENDIX G: ORDER OF MAGNITUDE ESTIMATIONS

Here we develop order of magnitude estimates for the
parameters (n2χ )/(c2α), 	n/n, and gCPL. This will be helpful
for knowing if and when these terms can be dropped, as well
as estimating physically valid regions for the dissymmetry
factor g.

From Ref. [19], for a one-photon absorption process, the
matrix transition element for the electric dipole is given by

Mf i(ξ ) = −i

(
nh̄ck

2ε0V

)1/2

e(λ)(k) · μm0(ξ )eik·Rξ , (G1)

where μ is the electric dipole, and the total transition rate from
the Fermi golden rule is given by

� = 2π

h̄
ρ
∑

ξ

|Mf i(ξ )|2. (G2)

For magnetic dipole transitions,

Mf i = −i

(
nh̄k

2ε0cV

)1/2

b
(λ)
i (k)mm0

i eik·R, (G3)

where (m) is the magnetic dipole.
The authors then state that the matrix element from

Eq. (G3) is typically smaller than its electric analog in Eq.
(G1) by about 10−3–10−2. In Eqs. (G1) and (G3), b has the
same unit as e, and the magnetic field B ∼ b/c ∼ e/c, where
the electric field E ∼ e. From this, we can see that

1

c
|b · m|2 � (10−3–10−2)2c|e · μ|2

⇒ m

c
� (10−3–10−2)μ. (G4)

With this relationship, we can then derive order of mag-
nitude estimates for the molecular property tensors given

in Eqs. (B7):(
χ

c2

)
∼
(

m

c

)2

� (10−3–10−2)2μ2 ∼ (10−6–10−4)α

⇒ γ = χn2

αc2
� (10−6–10−4), (G5a)

gCPL = −4
G′(g)n

α′′c
∼ 1

c

μ · m
μ · μ

∼ m

μc

⇒ gCPL � (10−3–10−2), (G5b)

	n

n0
ave

= nL − nR

nL + nR
= 1

2

nL − nR

1
2 (nL + nR)

= 1

2
gORD

⇒ 	n

n0
ave

� (10−3–10−2). (G5c)

gORD is the dissymmetry factor for optical rotation, as opposed
to the dissymmetry factor for absorption [e.g., Eq. (G5b)].
gCD and gORD are related by Kramers-Kronig relations (see
Appendix I). For the last step, we used the fact that they are
approximately the same order of magnitude. We can see why
γ , or terms with χ when compared with α, tend to be dropped,
and for good reason.

APPENDIX H: CIRCULAR POLARIZATION
AND COUNTERPROPAGATING LCPL + RCPL

FORMALISM (SWCF)

Let us first review the definition of LCPL and RCPL.
Right-circularly polarized light (RCPL) rotates clockwise
(CW) over time when viewed towards the source, for a fixed
spatial plane (z = 0, for example, for light propagating in the
z direction) [1]. Or, for fixed time, we can wrap our right
hands around the turning electric field vector, with thumbs
and fingertips pointing in the direction of propagation. Left-
circularly polarized light (LCPL) rotates counterclockwise
(CCW) over time, when viewed towards the source, for a fixed
spatial plane. Or, for fixed time, we can wrap our left hands
around the propagating electric field.

For the theory of the SWCF standing waves created by
counterpropagating CPLs, we assumed normally incident
reflection and ignored boundary conditions for the chiral
material. We also assumed that all the EM waves have the
same monochromatic angular frequency ω.

1. Useful CPL identities

Here we develop some useful properties of monochromatic
CPL fields that will be helpful. These can be verified from the
explicit formulas of CPL fields traveling in both ±z directions,
as given in Eqs. (H5) and (H16).

Since we are interested in the optical chirality, we first state
the following relations for the curl of the EM fields:

∇ × EL = +kLEL, (H1a)

∇ × ER = −kRER, (H1b)

∇ × BL = +kLBL, (H1c)

∇ × BR = −kRBR, (H1d)

where k = |k| = nω/c is the wave vector magnitude, L is for
LCPL, and R is for RCPL. These equations are general, and
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are independent of coordinates because the handedness of CPL
is defined in terms of the propagation vector k.

Let us also calculate the total energy density for CPL:

Utot = Ue + Ub = ε

2
|E|2 + 1

2μ
|B|2

=
(

ε

2
+ n2

2μc2

)
|E|2 = 2

(
ε

2

)
|E|2 = 2Ue.

(H2a)

∴ U
(L/R)
tot = 2U (L/R)

e = 2

(
ε(L/R)

2

)
|E(L/R)|2. (H2b)

Here, |E|2 = E · E and |B|2 = B · B, and both are constant
over time, so Ue and Ub are also time invariant.

Recall that the real physical EM fields are obtained by
taking the real parts of the complex EM fields, as shown in
Eq. (7), that is,

E = Re{Ẽ} = 1
2 [Ẽ + Ẽ∗], etc.

We maintain that here, and for such, we can see that for the
EM CPL waves defined as in Eqs. (H5) and (H16), we have
the following identities:

Ẽi · Ẽi = 0, B̃i · B̃i = 0, (H3a)

|Ei|2 = Ei · Ei = 1

4
(Ẽi + Ẽ∗

i ) · (Ẽi + Ẽ∗
i )

= 1

4
(Ẽi · Ẽi + Ẽi · Ẽ∗

i + c.c.)

= 1

2
(Ẽi · Ẽ∗

i ) = 1

2
|Ẽi|2 = (Ei)

2, (H3b)

|Bi|2 = Bi · Bi = 1

2
|B̃i|2 = 1

2

∣∣∣∣ni

c
Ẽi

∣∣∣∣
2

=
(

ni

c
Ei

)2

, (H3c)

E1 · E2 = 1

4
(Ẽ1 · Ẽ∗

2 + c.c.) = 1

2
Re(Ẽ1 · Ẽ∗

2)

= −E1E2 cos[z(k1 + k2)], (H3d)

B1 · B2 = 1

4
(B̃1 · B̃∗

2 + c.c.) = 1

2
Re(B̃1 · B̃∗

2)

= −1

2

n1n2

c2
Re(Ẽ1 · Ẽ∗

2)

= n1n2

c2
E1E2 cos[z(k1 + k2)], (H3e)

where i = 1,2; c.c. = complex conjugate. For the (−) config-
uration, Eqs. (H3) also hold, with the EM fields being replaced
with their respective prime (′) fields. From here, it is clear that
E1 and E2 in Eqs. (H5) and (H16) are indeed the amplitudes
of the electric fields.

2. “Left” (+) counterpropagating CPLs

We begin with what we define the left-handed (+) SWCF
arrangement to be that given in Fig. 8, where the incident field
is LCPL. If left-handed (+) is defined as the incident field
being RCPL instead, then the results would differ by a sign
change only.

Let E1 be an LCPL traveling in the −z direction and E2
be the RCPL traveling in the +z direction after the reflection.
The boundary conditions to match, for normal incidence of the
real EM fields, are

At (z = 0) : E1 = −E2 , B1 = B2. (H4)

FIG. 8. (Color online) Left-handed (+) SWCF arrangement.
Incident electric field is LCPL (with amplitude E1), traveling from
right to left, consistent with Ref. [3]. E1 > E2 because reflectivity
R < 1. Reflection occurs at z = 0.

The complex EM waves for this (+) standing wave can then
be written as

Ẽ1 = E1(−x̂ + iŷ)ei(−k1z−ωt) (LCPL), (H5a)

Ẽ2 = E2(+x̂ − iŷ)ei(+k2z−ωt) (RCPL), (H5b)

B̃1 = −i
n1

c
Ẽ1, (H5c)

B̃2 = +i
n2

c
Ẽ2, (H5d)

where (E1,E2 ∈ R) are the amplitudes of the electric fields.
Also,

k1 = kL = nLω

c
, k2 = kR = nRω

c
,

n1 = nL, n2 = nR. (H6)

a. Calculating C+
g

We wish to obtain the optical chirality C+
g for this

configuration of EM fields. Recall from Eq. (19),

C+
g ≡

[
ε

2
E · (∇ × E) + 1

2μ
B · (∇ × B)

]+

=
[
ε+

2
E+ · (∇ × E)+ + 1

2μ+ B+ · (∇ × B)+
]

. (H7)

Since both LCPL and RCPL are present, both nL and nR

indices of refraction need to be considered appropriately, in
determining C+

g . To simplify this complication, we use the
original identity from Eq. (F4):

− 2

ε± C±
g = ω Im(Ẽ∗ · B̃)±. (H8)

We now calculate C+
g :

Im(Ẽ∗ · B̃)+ = Im[(Ẽ1 + Ẽ2)∗·(B̃1 + B̃2)]

= 1

c
Im[−in1|Ẽ1|2 + in2|Ẽ2|2

− in1Ẽ1 · Ẽ∗
2 + in2Ẽ∗

1 · Ẽ2].

∴ 2

ε+ C+
g = −2ω

c

[−nLE2
1 + nRE2

2

+ E1E2(nL − nR) cos(zktot)
]
, (H9)

where ktot = (kL + kR).
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FIG. 9. (Color online) Right-handed (−) SWCF arrangement.
Incident electric field is RCPL (with amplitude E′

1), traveling from
right to left. E′

1 > E′
2 because reflectivity R < 1. Reflection occurs

at z = 0.

b. Calculating U+
γ

Another quantity of interest is the field energy density term
U±

γ from the achiral part of the absorption rate in Eq. (21b).
Let us first obtain 2

ε+ U+
γ for the (+) configuration. We derive

the following terms, using Eqs. (H3):

|Ẽ+|2 = (Ẽ1 + Ẽ2)∗ · (Ẽ1 + Ẽ2)

= 2
[
E2

1 + E2
2 − 2E1E2 cos(ktotz)

]
, (H10a)

|B̃+|2 = |B̃1|2 + |B̃2|2 + 2Re(B̃1 · B̃∗
2)

= 2

c2
[(n1E1)2 + (n2E2)2 + 2n1n2E1E2 cos(ktotz)],

(H10b)

where

ktot ≡ (kL + kR) = 2kave, (H11)

kave ≡ kL + kR

2
= ω

c
n0

ave. (H12)

Then, from Eq. (23),

2

ε+ U+
γ = 1

2

(
|Ẽ+|2 + χ ′′

α′′ |B̃+|2
)

= E2
1(1 + γ L) + E2

2(1 + γ R)

+ 2E1E2(
√

γ Lγ R − 1) cos(ktotz), (H13)

where, from Eq. (21d),

γ L ≡ (nL)2χ ′′

c2α′′ , γ R ≡ (nR)2χ ′′

c2α′′ . (H14)

3. “Right” (−) counterpropagating CPLs

We proceed to what we define as the right-handed (−)
SWCF arrangement, as given in Fig. 9, where the incident field
is RCPL now. The equations are almost identical to that for
the left (+) arrangement, with (+) → (−) and E,B → E′,B′,
etc.

E′
1 is the RCPL traveling in the −z direction, and E′

2 is the
LCPL traveling in the +z direction. The boundary conditions
to match, for normal incidence of the real EM fields, are

At (z = 0) : E′
1 = −E′

2 , B′
1 = B′

2. (H15)

The complex EM waves for this (−) standing wave can then
be written as

Ẽ′
1 = E′

1(−x̂ − iŷ)ei(−k′
1z−ωt) (RCPL), (H16a)

Ẽ′
2 = E′

2(+x̂ + iŷ)ei(+k′
2z−ωt) (LCPL), (H16b)

B̃′
1 = +i

n′
1

c
Ẽ′

1, (H16c)

B̃′
2 = −i

n′
2

c
Ẽ′

2, (H16d)

where (E′
1,E

′
2 ∈ R) are the amplitudes of the electric fields.

Also,

k′
1 = kR = nRω

c
, k′

2 = kL = nLω

c
,

n′
1 = nR, n′

2 = nL. (H17)

a. Calculating C−
g

The optical chirality C−
g is [see Eq. (19)]:

C−
g =

[
ε−

2
E− · (∇ × E)− + 1

2μ− B− · (∇ × B)−
]

. (H18)

For simplicity, due to the presence of both left- and right-
handed indices of refraction, we again utilize Eq. (H8):

Im(Ẽ∗ · B̃)− = Im[(Ẽ′
1 + Ẽ′

2)∗·(B̃′
1 + B̃′

2)]

= 1

c
Im[in′

1|Ẽ′
1|2 − in′

2|Ẽ′
2|2 + in′

1Ẽ′
1·(Ẽ′

2)∗

− in′
2(Ẽ′

1)∗ · Ẽ′
2].

∴ 2

ε− C−
g = −2ω

c

[
nRE′

1
2 − nLE′

2
2

+ E′
1E

′
2(nL − nR) cos(zktot)

]
. (H19)

b. Calculating U−
γ

Now let us calculate 2
ε− U−

γ for the (−) configuration. Again,
using Eqs. (H3):

|Ẽ−|2 = (Ẽ′
1 + Ẽ′

2)∗ · (Ẽ′
1 + Ẽ′

2)

= 2[(E′
1)2 + (E′

2)2 − 2E′
1E

′
2 cos(ktotz)], (H20a)

|B̃−|2 = |B̃′
1|2 + |B̃′

2|2 + 2Re(B̃′
1 · (B̃′

2)∗)

= 2

c2

[
(n′

1E
′
1)2 + (n′

2E
′
2)2 + 2n′

1n
′
2E

′
1E

′
2 cos(ktotz)

]
.

(H20b)

Then, from Eq. (23),

2

ε− U−
γ = 1

2

(
|Ẽ−|2 + χ ′′

α′′ |B̃−|2
)

= (E′
1)2(1 + γ R) + (E′

2)2(1 + γ L)

+ 2E′
1E

′
2(
√

γ Lγ R − 1) cos(ktotz). (H21)

APPENDIX I: KRAMERS-KRONIG TRANSFORMATION
OF CD TO ORD

We begin with the Kramers-Kronig relations for optical
rotation and CD that are given in Eqs. (5.2.35a) and (5.2.35b)
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of Ref. [1]:

ORD: 	θ (fω) = +2ω2

π
P
∫ ∞

0

	η(gξ )

ξ (ξ 2 − ω2)
dξ, (I1a)

CD: 	η(gω) = −2ω3

π
P
∫ ∞

0

	θ (fξ )

ξ 2(ξ 2 − ω2)
dξ, (I1b)

where ω is the angular frequency of the incident light, P is the
Cauchy principal value, and f and g are the dispersion and
absorption line-shape functions, respectively, as described in
Appendix C.

The integrals in Eqs. (I1) have a singularity at resonance,
that is, ξ → ω, from the denominator term

(ξ 2 − ω2) = (ξ − ω)(ξ + ω).

However, it is a simple pole and cancels from both sides (ξ →
ω− and ξ → ω+) since the integrand is odd about ω, provided
it is continuous. By removing this single point when ξ = ω,
which is the meaning of taking the “principal value” P, we
obtain finite integrals.

We applied a Kramers-Kronig transformation of the CD
data provided in the supporting online material for Ref. [2].
To do so, we fit the CD graph given, and numerically integrated
our approximated fit to it, using Eqs. (I1) converted to
integration over wavelength. We then converted 	θ to

	n

n0
ave

= nL − nR

nL + nR
= 1

2

nL − nR

n0
ave

, (I2)

with the help of Eqs. (5.2.3a) and (5.2.3b) from Ref. [1]:

ORD : 	θ = ωl

2c
(nL − nR), (I3a)

CD : η = ωl

2c
(n′L − n′R), (I3b)

where l is the path length of the material traversed.
We assumed that the CD data given was complete spectrally,

that is, CD was zero outside of the range given (430–580 nm).
Though the full spectrum is required for Kramers-Kronig
transformations to be accurate, this still provided very rea-
sonable results. We also assumed the path length l to be 10
nm, as suggested in Ref. [2]. The CD spectrum and Kramers-
Kronig transformed ORD spectrum for both m-enantiomer and
p-enantiomer are shown in Fig. 10.

To be complete, we point out that the CD spectrum data
(in the Supplemental Materials in Ref. [2]), is for a given
concentration of chiral molecules. However, the dissymmetry
factor measurements for the experiment would likely have
a different concentration. In our case, we are concerned with
obtaining the ratios, such as g = (A+ − A−)/Aave or 	n/nave.
For these ratios then, the concentration would be canceled to
a good approximation.

In particular, we are concerned with the ratio 	n/n0
ave. In

this case, 	n/n0
ave obtained from the CD and ORD spectrum

data (from the supplemental materials) can be compared on
equal footing with that obtained from the dissymmetry factor
measurements in the main paper of Ref. [2]. The results of

FIG. 10. (Color online) CD and Kramers-Kronig transformed
ORD spectrum (in milliradians) for the m-enantiomer and p-
enantiomer used in Ref. [2]. CD data are as given in the supporting
online material for Ref. [2]. ORD spectrum was calculated via
Kramers-Kronig transformation of the CD data.

our Kramers-Kronig transformed ORD calculations are now
given. It is for the 543.5-nm wavelength laser field used in the
experiment:

(nL − nR)m ∼ −0.0157, (I4a)

(nL − nR)p ∼ +0.0170, (I4b)

where m subscript is for the m-enantiomer, and p subscript is
for the p-enantiomer in Ref. [2].

We would like to write this as a ratio over nave. To do so,
since we do not know the value of the index of refraction
for the enantiomers, we approximate as follows and use
Eq. (I2):

(
n0

ave

)
KKT =

(
nL + nR

2

)
KKT

≈ 1, (I5a)(
	n

n0
ave

)
KKT

≈ 1

2
(nL − nR), (I5b)

where “KKT” is for the Kramers-Kronig transformed fit from
the CD data.

We then have

(
	n

n0
ave

)
m,KKT

≈ −7.85 × 10−3, (I6a)

(
	n

n0
ave

)
p,KKT

≈ +8.50 × 10−3, (I6b)

|	0| ≡
∣∣∣∣
(

	n

n0
ave

)
KKT

∣∣∣∣
ave

≈ +8.18 × 10−3. (I6c)

These values are consistent with what we would expect from
the order-of-magnitude estimation of Eq. (G5c).
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