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Dissipation and detection of polaritons in the ultrastrong-coupling regime
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We have investigated theoretically a dissipative polariton system in the ultrastrong light-matter coupling regime
without using the rotating-wave approximation on system-reservoir coupling. Photons in a cavity and excitations
in matter respectively couple two large ensembles of harmonic oscillators (photonic and excitonic reservoirs).
Inheriting the quantum statistics of polaritons in the ultrastrong coupling regime, in the ground state of the whole
system, the two reservoirs are not in the vacuum states but they are squeezed and correlated. We presume the
reservoirs to be in this nonvacuum state in the master equation and in the input-output formalism with Langevin
equations. Both approaches consistently guarantee the decay of the polariton system to its ground state; no photon
detection is also obtained when the polariton system is in the ground state.
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I. INTRODUCTION

Light-matter ultrastrong coupling [1–28] means that the
coupling strength g is comparable to or larger than the
transition frequency ωx of excitations in matter (g � ωx),
and it shows a variety of peculiar properties, such as virtual
photons in the ground state [1,5], squeezed eigenstates [1,19],
nearly degenerate ground states [11,17,18], quantum phase
transitions [12,29], and so on. The ultrastrong coupling has
been realized experimentally by intersubband transitions in
semiconductor quantum wells [6–9,26,27], artificial atoms in
superconducting circuits [14–16], and cyclotron transition in
two-dimensional electron gas [25]. In most cases, photons
with THz or microwave frequency are confined in a cavity,
and the cavity photons are coupled with external photonic
field (outside the cavity) by an unignorable dissipation rate
(but small compared to the light-matter coupling). In other
words, when we neglect the coupling with matter, the real
eigenmodes of photons are represented as coupled fields of
cavity mode and external fields [30]. As we discuss in the
present paper by the Fano-type diagonalization technique
[31–33], when the cavity mode is squeezed in the ground
state due to the ultrastrong light-matter coupling, the external
photonic field is also squeezed in the ground state of the
whole system. However, we cannot observe the squeezing
or the energy flow by photon detectors if the system is
in the ground state. In this paper, we have developed two
frameworks, the master equation and Langevin equations with
input-output relation. They are derived by assuming squeezed
external fields and they both consistently show no photon
detection.

In the standard theory of quantum optics [2,24,34–42],
in order to introduce a dissipation of cavity mode or of
excitations in matters, we consider coupling with an ensemble
of harmonic oscillators with continuous frequencies, and the
oscillators are presumed to be in the vacuum state. The
dissipation of the relevant system has been successfully
described by such a treatment in both the master equation
and the input-output formalism, at least in the weak and
(normally) strong light-matter coupling regimes (g � � and
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� � g � ωx, respectively, for dissipation rate �). As pointed
out in some papers [34,39–43], the master equation should
be derived by considering the eigenstates of the relevant
system, and the rotating-wave approximation (RWA) should
be performed carefully on the system-reservoir coupling even
if the system-reservoir coupling is weak compared to the
light-matter coupling (in the strong light-matter coupling
regime). In the ultrastrong coupling regime, such treatment
has been performed by Beaudoin, Gambetta, and Blais [24].
The dissipation of the ultrastrong coupling systems can be
successfully described under the RWA on system-reservoir
coupling (both pretrace and post-trace RWAs are used in
terms of Ref. [41]) by considering the eigenstates of the
cavity system (there are squeezed virtual photons in the
ground state). Furthermore, the photon detection has also been
discussed in Ref. [28], and virtual photons in the cavity are not
counted by normal and time ordering the operators of cavity
system. Under the pretrace RWA on system-reservoir coupling,
counter-rotating terms (lowering or raising both the relevant
system and the reservoir) are neglected. If the dissipation
is weak enough, such a treatment is appropriate and simple
for discussing the dynamics of the relevant system. However,
even under the weak dissipation, it is not clear whether the
RWA is valid for discussing the statistics of output photons
emitted from the cavity, because the output statistics are
strongly affected by the modification of the system-reservoir
coupling. There are actually virtual photons not only in the
cavity but also in the photonic reservoir even if the whole
system is in the ground state, which is naturally derived by the
Fano-type diagonalization, although the virtual photons are
not counted by detectors. Of course, when the cavity system
is excited, we can detect photons emitted from the cavity.
Whereas antibunching of emission can survive even under
the RWA on system-reservoir coupling [28], the quantum
fluctuation (squeezing) of the emission is easily diminished
in such treatment, because the interference between the
reservoir free field and the cavity contribution is important
for squeezing [35,36,38]. Therefore, in order to fully discuss
the quantum statistics of emission in the ultrastrong light-
matter coupling regime, we have to develop a comprehensive
framework describing the dissipation and emission without
using the RWA on light-matter coupling or on system-reservoir
coupling.
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FIG. 1. (Color online) Numbers of lower and upper polaritons
are plotted as a function of dimensionless time t/(2π/ωc). The initial
state is given as ρ̂(0) = |g.s.〉〈g.s.|, and the reservoirs are presumed
to be in the vacuum state. The time development is calculated by
master equation (34), correlation (40), and memory kernel (41).
Parameters: ωx = ωc, g = ωc, D = g2/ωx, �c = �x = 10−2ωc, and
�cutoff

c = �cutoff
x = 103ωc.

In the weak and normally strong light-matter coupling
regimes, the ground state of the whole system is approximately
represented by the vacuum states of photonic and excitonic
reservoirs (exactly the vacuum states under the RWA on
light-matter coupling). In both the master equation and the
input-output formalism, the vacuum reservoirs are usually
considered for describing the dissipation, and no photon
detection is naturally obtained in the ground state. Then, these
three approaches (analysis of ground state, master equation,
and input-output formalism) are consistent in the standard
dissipation theory in the weak and strong light-matter coupling
regimes. However, if we simply presume the reservoirs to be
in the vacuum state, in the ultrastrong light-matter coupling
regime, the master equation and input-output formalism give
different results. As we demonstrate in Fig. 1, the relevant
system is excited by the vacuum reservoirs, and real photons
are emitted from the system to the photonic reservoir according
to the master-equation formalism. However, as discussed in
Ref. [2], the vacuum output is obtained by the vacuum input
according to the input-output formalism. This is because the
photonic and excitonic reservoirs are not in the vacuum states
in the ground state of the whole system, but they are actually
squeezed and correlated. We have to presume the reservoirs to
be in the nonvacuum state in order to remove the discrepancy
between the results of master equation and of input-output
formalism.

In the present paper, we discuss a polariton system consist-
ing of two bosonic modes, photons in a cavity and excitations
in matter, each of which couples with an ensemble of harmonic
oscillators (photonic and excitonic reservoirs). Diagonalizing
the whole system by the Fano-type technique [31–33], we find
the squeezed and correlated reservoirs in the ground state. By
supposing this reservoir state, the master equation certainly
guarantees the decay of the polariton system to its original
ground state in the closed case. We also check that, when the
polariton system is in the ground state, the virtual photons in
the photonic reservoir are not counted by normal and time

ordering the operators in a polariton base. In the input-output
formalism, we also obtain no photon detection by supposing
the squeezed and correlated reservoirs and by normal- and
time-ordering the operators. Then we achieve the consistency
of the three approaches (diagonalization, master equation, and
input-output formalism) even in the ultrastrong light-matter
coupling regime.

This paper is organized as follows. The Hamiltonian is
shown in Sec. II, and basic features of the ultrastrong coupling
regime are also discussed. The Fano-type diagonalization of
the photonic part is performed in Appendix A . In Sec. III,
we diagonalize the whole Hamiltonian and show that the
reservoirs are squeezed and correlated even in the ground
state of the whole system. The master-equation approach is
discussed in Sec. IV, where we demonstrate the decay of
a polariton system to its original ground state. Correlation
functions of reservoir fields are calculated in Appendix B,
and the detailed calculation of master equation and photon
detection is shown and Appendix C. The input-output approach
is discussed in Sec. V, and the detailed calculation of photon
detection in this approach is shown in Appendix D. Finally,
we discuss the comparison with previous theories in Sec. VI,
and the summary is in Sec. VII.

II. HAMILTONIAN

The Hamiltonian describing cavity photons and excitations
in matter is written as

ĤS = h̄ωcâ
†â + h̄ωxb̂

†b̂

+ ih̄g(â + â†)(b̂ − b̂†) + h̄D(â + â†)2. (1)

Here, â and b̂ are annihilation operators of the photon and
excitation, respectively, satisfying the bosonic commutation
relations [â,â†] = [b̂,b̂†] = 1 and [â,â] = [b̂,b̂] = [â,b̂] =
[â,b̂†] = 0. ωc and ωx are their eigenfrequencies, and g is the
coupling strength. The ultrastrong coupling means g � ωx.
The last term is the so-called diamagnetic term naturally
derived in the minimal coupling scheme [1], and the coefficient
is normally D � g2/ωx, by which we cannot expect the
quantum phase transition [12,29]. If the polariton system is
isolated from the environment, as discussed in Ref. [1], this
Hamiltonian can be diagonalized as

ĤS =
∑

j=L,U

h̄ωj p̂
†
j p̂j + const. (2)

Here, p̂L and p̂U are annihilation operators of lower and upper
polaritons, respectively. They are represented as a combination
of annihilation and creation operators of photon and excitation:

p̂j = wj â + xj b̂ + yj â
† + zj b̂

†. (3)

These coefficients and eigenfrequencies ωj are determined by
solving⎛
⎜⎝
ωc + 2D −ig −2D −ig

ig ωx −ig 0
2D −ig −ωc − 2D −ig

−ig 0 ig −ωx

⎞
⎟⎠
⎛
⎜⎝

wj

xj

yj

zj

⎞
⎟⎠= ωj

⎛
⎜⎝

wj

xj

yj

zj

⎞
⎟⎠.

(4)
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From this eigenvalue problem, we get four eigenvalues
{ωL,ωU, − ωL, − ωU }, whose eigenvectors correspond to
{p̂L,p̂U ,p̂

†
L,p̂

†
U }, respectively. The coefficients are normalized

for satisfying [p̂j ,p̂
†
k] = δj,k for j,k = L,U and we also get

[p̂j ,p̂k] = 0. Inversely, the photon and excitation operators are
represented by the polariton operators as⎛

⎜⎜⎝
â

b̂

â†

b̂†

⎞
⎟⎟⎠ =

⎛
⎜⎝

w∗
L w∗

U −yL −yU

x∗
L x∗

U −zL −zU

−y∗
L −y∗

U wL wU

−z∗
L −z∗

U xL xU

⎞
⎟⎠
⎛
⎜⎜⎝

p̂L

p̂U

p̂
†
L

p̂
†
U

⎞
⎟⎟⎠. (5)

The photonic and excitonic reservoirs are individually
represented as ensembles of harmonic oscillators as

ĤR =
∑
m

h̄�c
mα̂†

mα̂m +
∑
m

h̄�x
mβ̂†

mβ̂m, (6)

where α̂m and β̂m are annihilation operators of oscillators in
photonic and excitonic reservoirs, respectively, and �c,x

m is
the oscillating frequency. The ensembles show nearly con-
tinuous spectra. These operators satisfy [α̂m,α̂

†
n] = [β̂m,β̂

†
n] =

δm,n and [α̂m,α̂n] = [β̂m,β̂n] = [α̂m,β̂n] = [α̂m,β̂
†
n] = 0. The

system-reservoir coupling is represented as

ĤS-R = ih̄(F̂ †
c â − â†F̂c) + ih̄(F̂ †

x b̂ − b̂†F̂x). (7)

Here, F̂c and F̂x are photonic and excitonic reservoir fields,
respectively, and they are expressed by the annihilation
operators α̂m and β̂m and coupling strengths κm and γm as

F̂c =
∑
m

κmα̂m, (8a)

F̂x =
∑
m

γmβ̂m. (8b)

It is worth noting that Eq. (7) is not the result of RWA, but this
expression is naturally derived considering the transmission
and reflection of particles between the inside and the outside
of the cavity [30]. In other words, concerning the coupling
between cavity photons and the external photonic field, they
are coupled through the electric field and also through the
magnetic field. By summing these two interactions, (ih̄/2)(â −
â†)(F̂ †

c + F̂c) and (ih̄/2)(â + â†)(F̂ †
c − F̂c), we can derive the

first term in Eq. (7). For simplicity, we also presume a similar
situation concerning the coupling with an excitonic reservoir.
Whereas the Hermitian expressions have been presumed
for describing the dissipation in some works [24,28,39,40],
Eq. (7) can be considered as the standard expression, because
there is no ambiguity as to whether the system-reservoir
coupling is electric or magnetic. Of course, when we presume
specific systems, the expression of system-reservoir coupling
is automatically determined. In terms of the polariton
operators, the system-reservoir coupling is rewritten as

ĤS-R = ih̄(F̂ †
Lp̂L − p̂

†
LF̂L) + ih̄(F̂ †

U p̂U − p̂
†
U F̂U ), (9)

where

F̂j = wj F̂c + xj F̂x + yj F̂
†
c + zj F̂

†
x (10)

is the external field that couples with the lower (j = L) or
upper (j = U ) polariton inside the cavity.

As discussed in Ref. [1], when we consider only the ĤS

system isolated from the reservoirs, there are virtual photons
and virtual excitations even in the ground state. This is because
the ground state should satisfy p̂j |g.s.〉 = 0, and then the cavity
mode is represented by a squeezed vacuum state in the ground
state as

〈â†â〉g.s. =
∑

j=L,U

|yj |2, (11a)

〈ââ〉g.s. = −
∑

j=L,U

w∗
j yj , (11b)

where 〈· · · 〉g.s. means an expectation value in the ground
state |g.s.〉. The excitations in matter are also expressed as
a squeezed vacuum state, and the photons and excitations are
correlated in the ground state, as discussed in Ref. [1]. If
the system-reservoir coupling is weak enough compared to
the light-matter coupling g, the squeezing and correlation of
cavity photon and excitation should be maintained.

III. DIAGONALIZATION OF THE WHOLE SYSTEM

First of all, we diagonalize the whole system Ĥ = ĤS +
ĤS-R + ĤR by using the Fano-type technique [31–33]. As
shown in Appendix A , the photonic part consisting of cavity
mode and photonic reservoir is diagonalized as

Ĥph = h̄ωcâ
†â +

∑
m

h̄�c
mα̂†

mα̂m + ih̄(F̂ †
c â − â†F̂c) (12a)

=
∫ ∞

0
dω h̄ωÂ†(ω)Â(ω) + const. (12b)

Here, the partially diagonalized operator Â(ω) is defined in
Eq. (A3) and satisfies

[Â(ω),Ĥph] = h̄ωÂ(ω) (13)

and

[Â(ω),Â†(ω′)] = δ(ω − ω′). (14)

Similarly, the excitonic part is diagonalized as

Ĥex = h̄ωxb̂
†b̂ +

∑
j

h̄�x
j β̂

†
j β̂j + ih̄(F̂ †

x b̂ − b̂†F̂x) (15a)

=
∫ ∞

0
dω h̄ωB̂†(ω)B̂(ω) + const. (15b)

The operator B̂(ω) is represented in Eq. (A12). Using these
partially diagonalized operators, the whole Hamiltonian is
represented as

Ĥ =
∫ ∞

0
dω [h̄ωÂ†(ω)Â(ω) + h̄ωB̂†(ω)B̂(ω)]

+ih̄g(â + â†)(b̂ − b̂†) + h̄D(â + â†)2 + const. (16)

The light-matter coupling and diamagnetic terms are also
expressed in terms of Â(ω) and B̂(ω) by using Eqs. (A11)
and (A13). For diagonalizing the whole Hamiltonian Ĥ , we
presume a new operator

P̂ (ω) =
∫ ∞

0
dω′ [W (ω,ω′)Â(ω′) + X(ω,ω′)B̂(ω′)

+Y (ω,ω′)Â†(ω′) + Z(ω,ω′)B̂†(ω′)]. (17)

063831-3



MOTOAKI BAMBA AND TETSUO OGAWA PHYSICAL REVIEW A 86, 063831 (2012)

The coefficient functions are determined for satisfying

[P̂ (ω),Ĥ ] = h̄ωP̂ (ω) (18)

and

[P̂ (ω),P̂ †(ω)] = δ(ω − ω′). (19)

Then, Ĥ can be diagonalized as

Ĥ =
∫ ∞

0
dω h̄ωP̂ †(ω)P̂ (ω) + const. (20)

From Eq. (18), the coefficient functions are determined by the
eigenvalue problem⎛

⎜⎜⎜⎝
ω′ + 2D − ω −ig −2D −ig

ig ω′ − ω −ig 0

2D −ig −ω′ − 2D − ω −ig

−ig 0 ig −ω′ − ω

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

uc(ω′)W (ω,ω′)

ux(ω′)X(ω,ω′)

uc(ω′)∗Y (ω,ω′)

ux(ω′)∗Z(ω,ω′)

⎞
⎟⎟⎟⎠ = 0, (21)

where the coefficient uc,x(ω) is represented in Eq. (A9). This
eigenvalue problem is equivalent to Eq. (5) by replacing ωc

and ωx with ω′, and the eigenfrequencies ωL,U (ω′) must be
equal to ω. Then, operator P̂ (ω) is represented as

P̂ (ω) =
∑

j=L,U

{
wj (ω′

j )

uc(ω′
j )

Â(ω′
j ) + xj (ω′

j )

ux(ω′
j )

B̂(ω′
j )

+ yj (ω′
j )

uc(ω′
j )∗

Â†(ω′
j ) + zj (ω′

j )

ux(ω′
j )∗

B̂†(ω′
j )

}
. (22)

Here, ω′
j is the frequency satisfying ω = ωj (ω′

j ), and wj (ω),
xj (ω), yj (ω), and zj (ω) are the coefficients when we solve
Eq. (5) by replacing ωc and ωx with ω. They are normalized
for satisfying Eq. (19). Inversely, we can rewrite Â(ω) and
B̂(ω) as

Â(ω) = uc(ω)
∑

j=L,U

[wj (ω)∗P̂ (ωj (ω)) − yj (ω)P̂ †(ωj (ω))],

(23a)

B̂(ω) = ux(ω)
∑

j=L,U

[xj (ω)∗P̂ (ωj (ω)) − zj (ω)P̂ †(ωj (ω))].

(23b)

Then, the original photon, excitation, and reservoir operators
are also expressed in terms of P̂ (ω) by using Eqs. (A11) and
(A13).

The ground state | ˜g.s.〉 of the whole system Ĥ is determined
for satisfying P̂ (ω)| ˜g.s.〉 = 0 for 0 < ω < ∞. Here, we define
photonic and excitonic free fields F̂ (0)

c,x(τ ) as

F̂ (0)
μ (τ ) = eiĤRt F̂ (0)

μ e−iĤRt , (24)

which appears in the master equation and input-output formal-
ism in the following sections. They satisfy (μ,ν = c,x)[

F̂ (0)
μ (t),F̂ (0)†

ν (t ′)
] = δμ,νGμ(t − t ′), (25a)[

F̂ (0)
μ (t),F̂ (0)

ν (t ′)
] = 0, (25b)

where Gc(τ ) and Gx(τ ) are memory functions of the reservoirs
expressed as

Gc(τ ) =
∑
m

|κm|2e−i�c
mτ , (26a)

Gx(τ ) =
∑
m

|γm|2e−i�x
mτ . (26b)

When we apply the photonic free field onto the ground state,
it is represented as

F̂ (0)
c (τ )| ˜g.s.〉 = −

∫ ∞

0
dω

∫ ∞

0
dω′ e−iωτ κ(ω)vc(ω′,ω)∗uc(ω′)

×
∑

j=L,U

yj (ω′)P̂ †(ωj (ω′))| ˜g.s.〉, (27)

where coefficient vc(ω′,ω) is expressed in Eq. (A6). The
phase-independent correlation function is written as

〈 ˜g.s.|F̂ (0)†
c F̂ (0)

c (τ )| ˜g.s.〉
=

∫ ∞

0
dω

∫ ∞

0
dω′

∫ ∞

0
dω′′ e−iω′τ κ(ω)∗κ(ω′)

× vc(ω′′,ω)vc(ω′′,ω′)∗|uc(ω′′)|2
∑

j=L,U

|yj (ω′′)|2. (28)

Here, the coefficients uc(ω) and vc(ω,ω′) are singular at
ω = ωc as seen in Eqs. (A9) and (A6). Since the coefficients
are normalized as ∫ ∞

0
dω |uc(ω)|2 = 1, (29)∫ ∞

0
dω vc(ω,ω′)vc(ω,ω′′) = δ(ω′ − ω′′), (30)

if the dissipation of photons is weak enough compared to the
characteristic frequencies of the ĤS system (g, ωc, and ωx),
the correlation function is approximately represented in the
ground state as

〈 ˜g.s.|F̂ (0)†
c F̂ (0)

c (τ )| ˜g.s.〉
�

∫ ∞

0
dω e−iωτ |κ(ω)|2

∑
j=L,U

|yj (ωc)|2

= Gc(τ )〈â†â〉g.s.. (31)

In the same manner, the phase-sensitive correlation is
expressed in the ground state as

〈 ˜g.s.|F̂ (0)
c F̂ (0)

c (τ )| ˜g.s.〉
= −

∫ ∞

0
dω

∫ ∞

0
dω′

∫ ∞

0
dω′′ e−iω′τ κ(ω)κ(ω′)

× vc(ω′′,ω)∗vc(ω′′,ω′)∗uc(ω′′)2
∑

j=L,U

wj (ω′′)∗yj (ω′′)

� −
∫ ∞

0
dω e−iωτ |κ(ω)|2

∑
j=L,U

wj (ωc)∗yj (ωc)

= Gc(τ )〈ââ〉g.s.. (32)
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Since the photonic reservoir field is normalized as Eq. (25),
the degree of squeezing is obtained as

1 + 2
〈 ˜g.s.|F̂ †

c F̂c| ˜g.s.〉 − |〈 ˜g.s.|F̂cF̂c| ˜g.s.〉|
[F̂c,F̂

†
c ]

= 1 + 2〈â†â〉g.s. − 2|〈ââ〉g.s.|. (33)

Therefore, even in the ground state, the photonic reservoir
field F̂c is also squeezed by the same degree as the cavity
mode, and it is determined by the parameters of the relevant
system (especially g and D). In the same manner, the
correlation of the two reservoir fields are also the same as
internal ones if the dissipation is weak enough. Since the
reservoir fields F̂c,x are expressed as the sum of the reservoir
modes as in Eq. (8), the expectation values of each mode,
such as 〈α̂†

mα̂m〉g.s., 〈α̂mα̂m〉g.s., . . ., are quite small (inversely
proportional to the number of reservoir modes) compared to
the internal ones 〈â†â〉g.s., 〈ââ〉g.s., . . . However, as seen in
Eqs. (31) and (32), correlation functions of the total reservoir
fields F̂c and F̂x are not diminished by the huge numbers of
reservoir modes; instead, the factor Gc,x(τ ) is multiplied. In
the frequency domain, the correlation functions are expressed
such as 〈 ˜g.s.|F̂ (0)†

c F̂ (0)
c (ω)| ˜g.s.〉 = Gc(ω)〈â†â〉g.s., then the

system-reservoir coupling strength |κm|2 or |γm|2 is multiplied.
In this way, the internal modes â and b̂ are balanced with F̂c

and F̂x , respectively, in the ground state of the whole system.
When we initially presume a squeezed cavity mode and

a big reservoir in the vacuum state, of course the reservoir
does not become equally squeezed but it almost remains in the
vacuum state after switching on the coupling between them.
This is a nonequilibrium problem. However, when we consider
the equilibrium of the cavity mode and the reservoir, if the
ground state of the cavity mode is squeezed, the reservoir
field is also squeezed in the ground state of the whole system.
Therefore, when we consider the dissipation of the ultrastrong
light-matter coupling system to its original ground state, we
should presume the squeezed and correlated reservoirs as is
discussed in the following two sections and also in Sec. VI.

IV. MASTER-EQUATION APPROACH

In this section, we derive a master equation for describing
the dissipation of polariton system ĤS by considering the
coupling with reservoirs. Obeying the standard derivation of
master equations [24,37,39–42], from the expression (9) of
system-reservoir coupling ĤS-R, the master equation for a
reduced density operator ρ̂(t) describing ĤS system is derived
under the Born approximation as

∂

∂t
ρ̂(t) = L̂[ρ̂], (34)

where L̂ = L̂0 + L̂diss and

L̂0[ρ̂] = 1

ih̄
[ĤS,ρ̂(t)], (35)

L̂diss[ρ̂]=
∑

j,k=L,U

{[
D̂L

jk[ρ̂],p̂†
j

]+ [
p̂j ,D̂R

jk[ρ̂]
]+ [

ĈL
jk[ρ̂],p̂j

]

+ [
p̂
†
j ,ĈR

jk[ρ̂]
] + [

p̂
†
j ,B̂L

jk[ρ̂]
] + [

B̂R
jk[ρ̂],p̂†

j

]

+ [
p̂j ,ÂL

jk[ρ̂]
] + [

ÂR
jk[ρ̂],p̂j

]}
, (36)

D̂L
jk[ρ̂] =

∫ t

t0

dt ′ ÛS(t − t ′)[p̂kρ̂(t ′)]
〈
F̂

(0)
j (t)F̂ (0)†

k (t ′)
〉
in,

(37a)

D̂R
jk[ρ̂] =

∫ t

t0

dt ′ ÛS(t − t ′)[ρ̂(t ′)p̂†
k]
〈
F̂

(0)
k (t ′)F̂ (0)†

j (t)
〉
in,

(37b)

ĈL
jk[ρ̂] =

∫ t

t0

dt ′ ÛS(t − t ′)[p̂†
kρ̂(t ′)]

〈
F̂

(0)†
j (t)F̂ (0)

k (t ′)
〉
in,

(37c)

ĈR
jk[ρ̂] =

∫ t

t0

dt ′ ÛS(t − t ′)[ρ̂(t ′)p̂k]
〈
F̂

(0)†
k (t ′)F̂ (0)

j (t)
〉
in,

(37d)

B̂L
jk[ρ̂] =

∫ t

t0

dt ′ ÛS(t − t ′)[p̂†
kρ̂(t ′)]

〈
F̂

(0)
j (t)F̂ (0)

k (t ′)
〉
in,

(37e)

B̂R
jk[ρ̂] =

∫ t

t0

dt ′ ÛS(t − t ′)[ρ̂(t ′)p̂†
k]
〈
F̂

(0)
k (t ′)F̂ (0)

j (t)
〉
in,

(37f)

ÂL
jk[ρ̂] =

∫ t

t0

dt ′ ÛS(t − t ′)[p̂kρ̂(t ′)]
〈
F̂

(0)†
j (t)F̂ (0)†

k (t ′)
〉
in,

(37g)

ÂR
jk[ρ̂] =

∫ t

t0

dt ′ ÛS(t − t ′)[ρ̂(t ′)p̂k]
〈
F̂

(0)†
k (t ′)F̂ (0)†

j (t)
〉
in.

(37h)

Here, t0 → −∞ is the switch-on time of system-reservoir
coupling. ÛS(τ )[Ô] is the propagator in ĤS system for arbitrary
operator Ô as

ÛS(τ )[Ô] = e−iĤSτ/h̄ÔeiĤSτ/h̄, (38)

and F̂
(0)
L,U is the reservoir field in the interaction picture (free

field):

F̂
(0)
L,U (t) = eiĤRt F̂L,Ue−iĤRt . (39)

These free fields are in the polariton base, and it is represented
by the ones F̂ (0)

c,x in the excitation-photon base as in Eq. (10).
From the master equation (34), the dynamics in the ĤS system
are determined by supposing correlation functions of the free
fields, which are considered as an input from the reservoirs to
the ĤS system.

First of all, we presume that the photonic and excitonic
reservoirs are in the vacuum state and the correlation functions
are given as (μ,ν = c,x)

〈
F̂ (0)

μ (t)F̂ (0)†
ν (t ′)

〉
in = δμ,νGμ(t − t ′), (40a)〈

F̂ (0)†
μ (t)F̂ (0)

ν (t ′)
〉
in = 〈

F̂ (0)
μ (t)F̂ (0)

ν (t ′)
〉
in = 0. (40b)

In Fig. 1, presuming the ground state ρ̂(0) = |g.s.〉〈g.s.| at the
initial time t = 0, we plot the development of numbers of lower
and upper polaritons calculated by the master equation (34) and
the correlation (40). The memory kernels are simply presumed
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as

Gc(τ ) =
∫ �cutoff

c

0
d�

�c

2π
e−i�τ , (41a)

Gx(τ ) =
∫ �cutoff

x

0
d�

�x

2π
e−i�τ , (41b)

where the cutoff frequency �cutoff
c,x governs the memory time

of the reservoirs as ∼1/�cutoff
c,x . In a similar way as in Ref. [5],

the density operator ρ̂(t) is moved outside the time integral
in the master equation (34). This treatment is valid if the
memory time 1/�cutoff

c,x is short enough compared to the
specific oscillation periods (1/ωc, 1/ωx, and 1/g) of ĤS

system.
As seen in Fig. 1, the polaritons are excited by the vacuum

reservoirs (at zero temperature). The periods of the oscillation
are approximately π/ωL,U (ωL/ωc = 0.414 and ωU/ωc =
2.414), whereas they are slightly modified by the Lamb shifts.
After a long time compared to 1/�c = 1/�x = (100/2π ) ×
(2π/ωc), the numbers of polaritons reach certain values, which
depend on the system-reservoir coupling strengths �c,x .

The polariton system is excited by the vacuum reservoirs,
because it is excited when the virtual photons in the ground
state escape to the reservoirs. In other words, the ground
state of the polariton system is modified by the coupling
with vacuum reservoirs. This result can also be understood
by Eq. (36). In order to guarantee the decay of the ĤS

system to its original ground state |g.s.〉, the photonic and
excitonic reservoirs should not be in the vacuum state in the
excitation-photon base (in terms of F̂ (0)

c,x), but the free fields

F̂
(0)
L,U in the polariton base should be in the vacuum state. In

Refs. [24,28], owing to the RWA on system-reservoir coupling,
the decay to the ground state |g.s.〉 is guaranteed by simply
considering the vacuum reservoirs in the excitation-photon
base. However, in the present paper, we do not use the RWA
to maintain the information of quantum fluctuation of the
reservoirs. Instead, we presume that the reservoirs are in the
vacuum state in polariton base (squeezed and correlated in
excitation-photon base).

Let us derive the correlation of reservoir free fields F̂
(0)
L,U that

guarantees the decay to the ground state |g.s.〉 of the ĤS system
and is simultaneously appropriate to the analysis of Fano-type
diagonalization discussed in Sec. III. We assume that the ĤS

system is in the ground state as ρ̂ = |g.s.〉〈g.s.|. Under this
assumption, let us inversely consider how the reservoirs are
modified by coupling with the ĤS system. As discussed in
Ref. [35] and in Appendix B of this paper, we can derive the
correlation of free fields F̂

(0)
L,U (on output side) from the density

operator ρ̂(t) of the ĤS system. The equations of motion
(Langevin equations) of cavity photons and excitations are
derived as

∂

∂t
â(t) = 1

ih̄
[â,ĤS](t) −

∫ t

t0

dt ′ Gc(t − t ′)â(t ′) − F̂ (0)
c (t),

(42a)

∂

∂t
b̂(t) = 1

ih̄
[b̂,ĤS](t) −

∫ t

t0

dt ′ Gx(t − t ′)b̂(t ′) − F̂ (0)
x (t).

(42b)

In the standard theory of quantum optics [36,38], the memory
kernels Gc,x(τ ) are approximately described by the Dirac’s δ

function by elongating the frequency range of reservoirs to
−∞ and ∞. Since the escaped photons do not reenter into a
cavity, we can consider that the photonic reservoir has a quite
small coherence time, and this approximation seems valid
in most cases. However, in the ultrastrong coupling regime,
when we do not use the RWA on system-reservoir coupling,
we must keep the reservoir frequencies positive [2], and the
Langevin and master equations are written in the time-nonlocal
forms in general. Although in the case of time-local equations
we usually use the standard input-output relation [36,38], we
calculate the correlation between the free fields and internal
ones by the formalism of Ref. [35]. First, we define the
propagator Û (τ )[· · · ] satisfying

ρ̂(t + τ ) = Û (τ )[ρ̂(t)], (43)

∂

∂τ
Û (τ ) = L̂[Û (τ )], (44)

and the quantum regression theorem [35–38,44,45] is written
for τ > 0 as

〈Ô1(t + τ )Ô2(t)〉 = Tr{Ô1Û (τ )[Ô2ρ̂(t)]}, (45a)

〈Ô1(t)Ô2(t + τ )〉 = Tr{Ô2Û (τ )[ρ̂(t)Ô1]}. (45b)

As discussed in detail in Appendix B , by using this and
Eq. (42), the correlation between F̂ (0)

μ (t) and arbitrary operator
Ŝ(t) in the ĤS system is derived as (μ = c,x)

〈
Ŝ(t)F̂ (0)

μ (t + τ )
〉 = −

∫ t

t0

dt ′ Gμ(t + τ − t ′)〈Ŝ(t)ŝμ(t ′)〉,
(46a)〈

F̂ (0)
μ (t + τ )Ŝ(t)

〉 = −
∫ t

t0

dt ′ Gμ(t + τ − t ′)〈ŝμ(t ′)Ŝ(t)〉,
(46b)

〈
Ŝ(t + τ )F̂ (0)

μ (t)
〉

= −
∫ t

t0

dt ′ Gμ(t − t ′)〈Ŝ(t + τ )ŝμ(t ′)〉

− Tr{ŜÛ (τ )[ŝμL̂diss[ρ̂(t)] − L̂diss[ŝμρ̂(t)]]}, (47a)〈
F̂ (0)

μ (t)Ŝ(t + τ )
〉

= −
∫ t

t0

dt ′ Gμ(t − t ′)〈ŝμ(t ′)Ŝ(t + τ )〉

− Tr{ŜÛ (τ )[L̂diss[ρ̂(t)]ŝμ − L̂diss[ρ̂(t)ŝμ]]}, (47b)

where

ŝμ =
{
â for μ = c,

b̂ for μ = x.
(48)

Whereas Eqs. (46) are zero in the limit of the time-local case
Gμ(τ ) ∝ δ(τ ) [35], they are in general nonzero in the present
nonlocal situation. Of course, if τ is large enough compared
to the memory time of the reservoirs, Eqs. (46) is negligible
compared to Eqs. (47). Furthermore, the self-correlation of
free fields F̂ (0)

c,x is obtained in a steady state (the ground state
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in the present case) as〈
F̂ (0)†

μ (τ )F̂ (0)
ν

〉 = G∗
μ(τ )〈ŝ†μŝν〉g.s., (49a)〈

F̂ (0)
μ (τ )F̂ (0)†

ν

〉 = Gμ(τ )〈ŝμŝ†ν〉g.s., (49b)

〈
F̂ (0)

μ (τ )F̂ (0)
ν

〉 =
{

Gμ(|τ |)〈ŝμŝν〉g.s. for τ > 0,

Gν(|τ |)〈ŝμŝν〉g.s. for τ < 0,
(49c)

where 〈· · · 〉g.s. means an expectation value in the steady state
(ground state). This correlation certainly satisfies Eqs. (25)
and is equivalent to the ones derived in Sec. III.

In the sense of perturbation theory, they are the correlation
on output side, that is, the modification of the reservoirs due
to the coupling with the ĤS system. The free-field correlation
appearing in the master equation (36) is the one on the input
side (effect from reservoirs to ĤS system). Here, under the
equilibrium between ĤS and reservoirs, the correlation of F̂ (0)

c,x

should be equivalent on both the input and the output side. Let
us substitute Eqs. (49) to the master equation (36). The free-
field correlation in the polariton base can be derived by using
Eq. (10). From Eqs. (49), we can easily get for j,k = L,U〈

F̂
(0)
j (τ > 0)F̂ (0)

k

〉
in = 〈

F̂
(0)†
j (τ > 0)F̂ (0)

k

〉
in = 0, (50)

and then the master equation is reduced to

∂

∂t
ρ̂(t) = L̂0[ρ̂] +

∑
j,k=L,U

{[
D̂L

jk[ρ̂] + B̂R
jk[ρ̂],p̂†

j

]

+ [
p̂j ,D̂R

jk[ρ̂] + ÂL
jk[ρ̂]

]}
. (51)

The steady state obtained from this equation is certainly the
ground state of the closed case ρ̂ss = |g.s.〉〈g.s.|, then the
decay of the polariton system to its original ground state
|g.s.〉 is guaranteed by presuming the squeezed and correlated
reservoirs in Eqs. (49).

By using this master equation (51), we have calculated the
dynamics of the ĤS system. In Fig. 2, presuming the vacuum
state (no photon and no excitation) at the initial time t = 0, the
numbers of lower and upper polaritons are plotted as a function

t / (2π/ωc)
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FIG. 2. (Color online) Starting from the vacuum state of photons
and excitations, the numbers of polaritons are calculated as a function
of dimensionless time t/(2π/ωc) by master equation (51), which are
derived by the correlated and squeezed reservoirs as in Eqs. (49).
In the inset, the numbers of photons and excitations are also plotted
in the early stage. Parameters: ωx = ωc, g = ωc, D = g2/ωx, |κ|2 =
|γ |2 = 10−2ωc/2π , and �cutoff

c = �cutoff
x = 103ωc.

of time. In the numerical simulation, the density operator ρ̂(t)
is moved outside the time integral, and the memory kernels
are also given in Eq. (41). While there are nonzero polaritons
at the initial time, the numbers of polaritons decrease and
finally go to zero; that is, the ĤS system decays to its ground
state |g.s.〉. In the inset of Fig. 2, we also plot the numbers of
photons and excitations in the early stage. Whereas both of
them are zero at the initial time t = 0, they are oscillated with
two periods π/ωL and π/ωU (slightly modified by the Lamb
shifts), but finally they reach 〈â†â〉g.s. = 〈b̂†b̂〉g.s. = 0.207 after
a long time (not shown in the figure).

Under the Born approximation, the total density operator
ρ̂tot is approximately represented by the product of the
density operator ρ̂ of the ĤS system and the one ρ̂R of
reservoirs as ρ̂tot = ρ̂ ⊗ ρ̂R. If the system-reservoir coupling
is weak enough for the Born approximation, in the ground
state | ˜g.s.〉 of the whole system, the state of ĤS system is
approximately equivalent to the ground state |g.s.〉 of the
closed case. On the other hand, the free-field correlation (49)
approximately reflects the reservoir state that is obtained by
tracing over the ĤS variables on the ground state | ˜g.s.〉 as
ρ̂R � TrS{| ˜g.s.〉〈 ˜g.s.|}, which was verified in Sec. III. This
reservoir state is not the ground state of ĤR, but it certainly
guarantees the decay of ĤS system to its original ground state
|g.s.〉 as seen in Fig. 2. If we presume the ground state of the
ĤR system, in which photonic and excitonic reservoirs are in
vacuum (at zero temperature), the ĤS system does not decay to
its ground state |g.s.〉, as seen in Fig. 1. However, the obtained
steady state is approximately equivalent to the ground state,
if the system-reservoir coupling is weak enough. Next, let us
calculate the output from the cavity in the formalism of master
equation. If the ĤS system is in the ground state, we cannot
detect anything outside the cavity.

As seen in Fig. 3, we consider a ring-shaped cavity
embedding a matter interacting with photons inside the cavity,
as discussed in Ref. [35]. We assume that backscattering of
photons does not occur during the light-matter interaction,
and the clockwise and counterclockwise fields are separated.
Concerning the external field, we consider a one-dimensional
system with length L, and the field is continuous at the two

FIG. 3. (Color online) Sketch of the ring-cavity system. Inside
the cavity, photons interact with matter, but backscattering of photons
does not occur. The external field is defined in the one-dimensional
system with length L, and the field is continuously connected at the
boundaries z = ±L/2.
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ends z = ±L/2. Whereas the external photonic modes are
characterized by wave number kj = 2πj/L for j = 0, ±1, ±
2, . . ., the forward field j > 0 and backward j < 0 fields
can be separated into independent subspaces. Here, we focus
on the forward field j > 0, and its frequency is represented
as �c

j = ckj , where c is the speed of light. The density of
states (DOS) is nc

DOS = L/2πc. This forward field couples
with the counterclockwise intracavity photons. We define the
propagating field in the forward direction at position z in the
external system as

F̂ fwd
c (z,t) =

∑
m

κmα̂m(t)eikmz. (52)

From the equation of motion of α̂m(t), this field is rewritten as

F̂ fwd
c (z,t) =

∑
m

κmα̂m(t0)e−i�m(t−z/c−t0)

+
∫ t

t0

dt ′ Gc(t − t ′ − z/c)â(t ′). (53)

As discussed in Ref. [35], by choosing a position of observation
z0 > 0, we define the output field as

F̂ out
c (t) = F̂ fwd

c (z0,t + z0/c)

= F̂ (0)
c (t) +

∫ t+z0/c

t0

dt ′ Gc(t − t ′)â(t ′). (54)

Here, F̂ (0)
c (t) is the free field appearing in the Langevin

equation (42) and also in the master equation (34). The
second term is the contribution from the cavity. Whereas
this term includes the information of cavity photons at time
t + z0/c > t , the causality is not violated, because the output
field F̂ out

c (t) is actually the propagating field at position z0

and at time t + z0/c. In the time-local limit Gc(τ ) = �cδ(τ ),
Eq. (54) is correctly reduced to the well-known input-output
relation [35,36,38]. Further, in the limit of z0 → ∞ and
t0 → −∞, Eq. (54) is reduced to the input-output relation
(61) in the time-nonlocal case, which is derived in Sec. V.

When we evaluate the output measured by photon detectors,
the expectation values should be normal-ordered and time-
ordered (expressed as 〈: · · · :〉) in terms of polariton operators
(not of photon and excitation). The correlation between cavity

photons and the free field of photonic reservoir can be
evaluated by Eqs. (46) and (47), and the self-correlation
of the free field is also given by Eqs. (49). The detail
of the calculation is shown in Appendix C. When we
presume that the ĤS system is in the ground state |g.s.〉
by considering the reservoir correlation (49) in the master
equation, we have numerically checked that the emission
spectrum 〈: F̂ out

c (ω)F̂ out†
c :〉 and phase-sensitive correlation

〈: F̂ out
c (ω)F̂ out

c :〉 are approximately zero. The deviation is due
to the approximation that we used in the numerical calculation
[density operator ρ̂(t) is moved outside the integral], and it
is not caused by the presumed correlation [Eqs. (49)]. On the
other hand, if we presume the vacuum photonic and excitonic
reservoirs, we cannot find a policy which guarantees no photon
detection, although the vacuum output is obtained for vacuum
input in the input-output formalism [2]. This is because of the
perturbation treatment in the formalism of the master equation,
as we discuss in Sec. VI.

In this way, when we presume the squeezed and correlated
reservoir fields as in Eqs. (49), we have successfully obtained
the natural result: The ĤS system decays to its ground state
|g.s.〉, and the photon emission is not detectable if the system
is in the ground state. Furthermore, it is also consistent with
the analysis of Fano-type diagonalization (there are virtual
photons and excitations in the reservoirs, and photonic and
excitonic reservoirs are correlated with each other and also
squeezed).

V. INPUT-OUTPUT APPROACH

Another approach for describing the dissipation and emis-
sion of photons is the formalism of Langevin equations with
input-output relation. As discussed in Ref. [2], the Langevin
equations of cavity photons and excitations are derived in the
frequency domain as

[M(ω) − ω1]

⎡
⎢⎢⎢⎢⎣

â(ω)

b̂(ω)

â(−ω)†

b̂(−ω)†

⎤
⎥⎥⎥⎥⎦ = i

⎡
⎢⎢⎢⎢⎣

F̂ in
c (ω)

F̂ in
x (ω)

F̂ in
c (−ω)†

F̂ in
x (−ω)†

⎤
⎥⎥⎥⎥⎦. (55)

Here, the coefficient matrix is written as

M(ω) =

⎡
⎢⎣

ωc + 2D − iGc(ω)+ ig 2D −ig

−ig ωx − iGx(ω)+ −ig 0
−2D −ig −ωc − 2D − iGc(−ω)∗+ ig

−ig 0 −ig −ωx − iGx(−ω)∗+

⎤
⎥⎦, (56)

and the memory kernels Gc,x(τ ) are Fourier-transformed for positive time as

Gc,x(ω)+ =
∫ ∞

0
dτ eiωτGc,x(τ ). (57)

The Langevin (fluctuation) operators are expressed as

F̂ in
c (t) =

∑
m

κmα̂m(t0)e−i�c
m(t−t0) =

∑
m

κmα̂in
me−i�c

mt , (58a)

F̂ in
x (ω) =

∑
m

γmβ̂m(t0)e−i�x
m(t−t0) =

∑
m

γmβ̂ in
me−i�x

mt , (58b)
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where t0 → −∞ is the switch-on time of system-reservoir
interaction, and α̂in

m and β̂ in
m are the input operators. Their

Fourier transforms are derived as

F̂ in
c (ω) =

∫ ∞

−∞
dt eiωt F̂ in

c (t) = 2πθ (ω)κ(ω)α̂in(ω), (59a)

F̂ in
x (ω) =

∫ ∞

−∞
dt eiωt F̂ in

x (t) = 2πθ (ω)γ (ω)β̂ in(ω). (59b)

Here, the reservoir states are rewritten in continuous form
as in Eqs. (A1). These fields F̂ in

c,x(ω) are interpreted as the
input fields, and they cannot be defined for negative frequency
ω < 0, because the reservoir states are distributed only for
positive frequencies �

c,x
j > 0.

According to the input-output formalism [2], the output
photonic field (photonic reservoir field at time t1 → ∞) is
represented as

α̂out(ω > 0) = α̂in(ω) + κ(ω)∗â(ω). (60)

As discussed by Ciuti and Carusotto [2], we get the vacuum
output for vacuum input. However, the ĤS system is actually
excited by the vacuum reservoirs as 〈p̂†

j (ω)p̂k〉 = 0 and
〈p̂j (ω)p̂k〉 = 0, which can be easily verified from the Langevin

equations (55). In the master-equation formalism discussed in
the previous section, the ĤS system is also excited, but the
vacuum output is not obtained for the vacuum input. Then,
there is a discrepancy between the two approaches at least
under the Born approximation. Instead, in the input-output
formalism, we also presume the squeezed and correlated
reservoirs discussed in Secs. III and IV.

According to the standard input-output formalism, the
output photonic field is represented as

F̂ out
c (t) = F̂ in

c (t) +
∫ ∞

−∞
dt ′ Gc(t − t ′)â(t ′), (61a)

F̂ out
c (ω) = F̂ in

c (ω) + Gc(ω)â(ω). (61b)

This expression does not violate the causality [F̂ out
c (t) can

be affected by â(t ′ > t)] as discussed in Sec. IV. From this
input-output relation and the Langevin equations, the output
photonic field is eventually represented by the input fields
F̂ in

c,x(ω). For discussing the output from the cavity, we have
to presume the correlation of input operators {F̂ in

c,x(ω)}. Here,
we consider that the ĤS system is in the ground state, and the
correlation of input operators are also presumed as shown in
Eq. (49):

〈
F̂

in
cx(ω)F̂

in
cx

T
〉
R = 〈

F̂
in
cx(ω)+ F̂

in
cx

T
〉
R + 〈

F̂
in
cx(ω)− F̂

in
cx

T
〉
R, (62)

〈
F̂

in
cx(ω)+ F̂

in
cx

T
〉
R =

⎛
⎜⎜⎜⎜⎝

Gc(ω)+〈ââ†〉g.s. Gc(ω)+〈âb̂†〉g.s. Gc(ω)+〈ââ〉g.s. Gc(ω)+〈âb̂〉g.s.

Gx(ω)+〈b̂â†〉g.s. Gx(ω)+〈b̂b̂†〉g.s. Gx(ω)+〈b̂â〉g.s. Gx(ω)+〈b̂b̂〉g.s.

Gc(−ω)∗+〈â†â†〉g.s. Gc(−ω)∗+〈â†b̂†〉g.s. Gc(−ω)∗+〈â†â〉g.s. Gc(−ω)∗+〈â†b̂〉g.s.

Gx(−ω)∗+〈b̂†â†〉g.s. Gx(−ω)∗+〈b̂†b̂†〉g.s. Gx(−ω)∗+〈b̂†â〉g.s. Gx(−ω)∗+〈b̂†b̂〉g.s.

⎞
⎟⎟⎟⎟⎠, (63)

〈
F̂

in
cx(ω)− F̂

in
cx

T
〉
R =

⎛
⎜⎜⎜⎜⎝

Gc(ω)∗+〈ââ†〉g.s. Gx(ω)∗+〈âb̂†〉g.s. Gc(−ω)+〈ââ〉g.s. Gx(−ω)+〈âb̂〉g.s.

Gc(ω)∗+〈b̂â†〉g.s. Gx(ω)∗+〈b̂b̂†〉g.s. Gc(−ω)+〈b̂â〉g.s. Gx(−ω)+〈b̂b̂〉g.s.

Gc(ω)∗+〈â†â†〉g.s. Gx(ω)∗+〈â†b̂†〉g.s. Gc(−ω)+〈â†â〉g.s. Gx(−ω)+〈â†b̂〉g.s.

Gc(ω)∗+〈b̂†â†〉g.s. Gx(ω)∗+〈b̂†b̂†〉g.s. Gc(−ω)+〈b̂†â〉g.s. Gx(−ω)+〈b̂†b̂〉g.s.

⎞
⎟⎟⎟⎟⎠, (64)

where F̂
in
cx(ω) = [F̂ in

c (ω),F̂ in
x (ω),F̂ in

c (−ω)†,F̂ in
x (−ω)†]T. Pre-

cisely speaking the expectation values such as 〈â†â〉g.s.

should be slightly modified depending on ω as discussed
in Appendix D. Assuming this input correlation, the system
is certainly in the ground state 〈p̂†

j (ω)p̂k〉 = 〈p̂j (ω)p̂k〉 =
0 (j,k = L,U ), and we also obtain no photon detection
〈: F̂ out

c (ω)F̂ out†
c :〉 = 0 and 〈: F̂ out

c (ω)F̂ out
c :〉 = 0 by normal-

and time-ordering the operators in the polariton base. The
detailed calculation is shown in Appendix D.

In this way, when we presume the squeezed and correlated
reservoirs represented in Eqs. (49) and (62), the ĤS system
certainly decays to its ground state |g.s.〉 and no photon is
detected outside the cavity in both formalisms of master
equation and input-output relation. In contrast, when we
presume the vacuum reservoirs, different results are obtained
in the two formalisms.

VI. DISCUSSION

As discussed in the previous sections, when we consider the
squeezed and correlated reservoirs instead of the vacuum ones,
both master-equation and input-output formalisms certainly
guarantee the decay of the ĤS system to its ground state and
show no photon detection, even though we do not use the RWA
on system-reservoir coupling. The presumed reservoir state is
approximately equivalent to the one realized in the ground state
of the whole system: ρ̂R � TrR{| ˜g.s.〉〈 ˜g.s.|}. On the other hand,
if we presume the vacuum reservoirs in excitation-photon base,
in the absence of the RWA on system-reservoir coupling, the
ĤS system is excited by the coupling with the reservoirs as
seen in Fig. 1.

We have to pay attention to this kind of delicate problem
when we discuss the quantum statistics of emission from the
system in the ultrastrong light-matter coupling regime, which
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has been experimentally realized recently by intersubband
transitions [6–9,26,27], superconducting circuits [14–16],
and cyclotron transition [25], although only the splitting of
eigenmodes has been mainly discussed. In these systems, the
dissipation rate is not larger than the light-matter coupling
strength g. Then, the squeezing of internal cavity mode could
sustain, and the above problem should be, in principle, con-
sidered for discussing the emission statistics. Even for the mi-
crowave frequencies, the quantum statistics of emission can be
measured experimentally in superconducting circuits [46–48].

In the weak or normally strong coupling regime, since the
number of virtual photons is quite small and the RWA can be
applied on the light-matter coupling, we need not consider the
ground state of the whole system, and the relevant system is not
excited by the vacuum reservoirs. However, In the ultrastrong
coupling regime, we have to determine the reservoir state
presumed in the master equation and input-output formalism,
according to the situation of how the system and reservoirs
start to couple. If we initially prepare the vacuum reservoirs
and switch on the system-reservoir coupling, the reservoirs
approximately remain in the vacuum state even after the switch
on, and the system does not decay to its ground state but to
a steady state excited by the vacuum reservoirs as seen in
Fig. 1. This is because the ĤS system is excited when virtual
photons escape to the vacuum reservoirs. In order to avoid
it, the ĤS system and the reservoirs should be balanced, as
realized in the ground state | ˜g.s.〉 of the whole system, and we
should presume ρ̂R � TrR{| ˜g.s.〉〈 ˜g.s.|} in such situation. If we
consider that the system and reservoirs are already coupled
and the whole system is in the ground state, when we excite
the ĤS system to an excited state, the system certainly decays
to its ground state as seen in Fig. 2.

If the reservoirs are quite large and the whole system cannot
be in a steady state, we should presume the former situation.
When the temperatures of the reservoirs are low enough and the
vacuum input from the reservoirs to the system is presumed,
the ĤS system, in principle, does not decay to its ground state.
Although the vacuum output is obtained according to the input-
output formalism [2], it is not by the master equation. The
energy is conserved in the input-output formalism, but it seems
not in the master equation. This is because the dynamics of
relevant system and the output are discussed in the sense of
perturbation theory in the formalism of master equation. In
this way, when we presume the vacuum input, we should pay
attention to the difference of the two formalisms (at least under
the Born approximation). In order to avoid this discrepancy, we
should use the RWA on system-reservoir coupling, although
the quantum fluctuation of reservoirs is diminished in such a
treatment.

On the other hand, if we can define relatively small
reservoirs which weakly couple with a large external system
with low enough temperature, the small reservoirs and the ĤS

system can decay to the ground state | ˜g.s.〉 of the coupled sys-
tem. In such situation, we can presume ρ̂R � TrR{| ˜g.s.〉〈 ˜g.s.|},
and it guarantees the decay of the ĤS system to its ground
state |g.s.〉 and gives no photon detection in the small reservoir,
as discussed in the previous sections. This result is obtained
in both formalisms of master equation and of input-output
relation in contrast to supposing the vacuum reservoirs in the
excitation-photon base.

As discussed in Ref. [24], by performing the RWA on the
system-reservoir coupling, we can simply presume the vacuum
reservoirs in excitation-photon base, and the master equation is
reduced to the standard Lindblad form. The simplified master
equation is derived as follows. Whereas the system-reservoir
coupling is originally represented as Eq. (9), here we perform
the pretrace RWA [41] as

ĤS-R � ih̄
∑

j=L,U

(w∗
j F̂

†
c p̂j − wj p̂

†
j F̂c + x∗

j F̂ †
x p̂j − xj p̂

†
j F̂x),

(65)

where the counter-rotating terms are neglected in the polariton
base but not in the excitation-photon base. Then, when we
presume the vacuum reservoirs in the excitation-photon base
as in Eqs. (40), the master equation is derived under the Born
approximation as

∂

∂t
ρ̂ = 1

ih̄
[ĤS,ρ̂] +

∑
j,k=L,U

∫ t

t0

dt ′ {Gc(t − t ′)wjw
∗
k

+Gx(t − t ′)xjx
∗
k }[ÛS(t − t ′)[p̂kρ̂(t ′)],p̂†

j ] + H.c.

(66)

Further, by neglecting the fast oscillating terms p̂kp̂
†
j e

−i(ωk−ωj )t

for j = k (called the post-trace RWA [41]), we finally get the
simplified master equation under the Markov approximation
as

∂

∂t
ρ̂ = 1

ih̄
[ĤS,ρ̂] +

∑
j=L,U

�c|wj |2 + �x |xj |2
2

× (2p̂j ρ̂p̂
†
j − p̂

†
j p̂j ρ̂ − ρ̂p̂

†
j p̂j ), (67)

where the memory kernels are approximated as Gμ(t) =
�μδ(t) for simplicity (there remains the Lamb-shift terms in
general [24]). If the system-reservoir coupling is expressed in
the Hermitian form as ih̄(â ± â†)(F̂ †

c ∓ F̂c) [ih̄(b̂ ± b̂†)(F̂ †
x ∓

F̂x)], the above master equation is simplify rewritten by
replacing wj [xj ] by wj ∓ yj [xj ∓ zj ]. Even in such case,
the simplified master equation is represented in the Lindblad
form. From Eq. (65), the input-output relation is obtained as

F̂ out
c = F̂ in

c + �c

∑
j

w∗
j p̂j . (68)

Since the above master equation is reduced to the standard
form owing to the pretrace and post-trace RWAs, we consider
that the correlation of input operator F̂ in

c is equivalent to that of
F̂ (0)

c presumed in the master equation: 〈F̂ in
c (t)F̂ in†

c 〉R = Gc(t)
and 〈F̂ in†

c (t)F̂ in
c 〉R = 〈F̂ in

c (t)F̂ in
c 〉R = 0. Then, the correlation

of the output can be calculated as discussed in Ref. [28].
However, in this approach, the photonic and excitonic

reservoirs are presumed to be in the vacuum state under the
RWA on system-reservoir coupling, although the polariton
system does not decay to its ground state |g.s.〉 in general
without the RWA. In other words, the quantum statistics of
reservoirs fields are diminished by the RWA, although the
reservoirs are originally squeezed and correlated. In contrast,
in the present paper, the master equation and input-output
formalism are discussed based on the squeezed and correlated
reservoirs. The master equation certainly guarantees the decay
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of the ĤS system to its ground state, and in both formalisms no
photon is detected when the ĤS system is in the ground state.
Under the Markov approximation the master equation (51) is
reduced to

∂

∂t
ρ̂ = 1

ih̄
[ĤS,ρ̂] +

∑
j,k=L,U

�j,k

2
(2p̂j ρ̂p̂

†
k − p̂

†
kp̂j ρ̂ − ρ̂p̂

†
kp̂j )

+
∑

j,k=L,U

{
Kj,k

2
(p̂j ρ̂p̂k − p̂kp̂j ρ̂) + H.c.

}
. (69)

The coefficients �j,k and Kj,k can be calculated from the
presumed free field correlation in Eqs. (49). This does not
have the Lindblad form, but certainly guarantees the decay to
the ground state |g.s.〉, as seen in Fig. 2.

In the standard theory [36–38] and also in the discussion
of Refs. [24,28], the master equation and the input-output
relation are sometimes used together and the correlation of
input F̂ in

c is presumed to be equal to that of free field F̂ (0)
c

given in the master equation. However, the formalism of the
master equation is discussed in the sense of perturbation theory.
Since the reservoirs are large enough compared to the ĤS

system, the input correlation is not strongly modified and
constantly given in the master equation. On the other hand,
the output is a perturbation of the reservoirs as a result of the
system-reservoir coupling. The correlation of F̂ (0)

c can be, in
general, different on input and output sides. Actually, when we
presume the vacuum reservoirs in excitation-photon base, the
self-correlation of F̂ (0)

c on output side is not in vacuum, which
is calculated by Eq. (49). In order to get the same correlation for
input and output sides, we have to consider the squeezed and
correlated input ρ̂R � TrR{| ˜g.s.〉〈 ˜g.s.|}. If we want to reduce
this complicated formalism into the standard one, we have to
perform the RWA on system-reservoir coupling [24,28].

If we already know that the free field F̂ (0)
c does not

contribute to the observables, we can simply use the RWA on
system-reservoir coupling [24,28]. For example, the second-
order correlation functions under a resonant excitation can be
calculated as discussed in Ref. [28]. However, when we discuss
squeezing of the emission, the interference between free field
F̂ (0)

c and cavity contribution is important, and the quantum
fluctuation of F̂ (0)

c should not be destroyed by the RWA on
system-reservoir coupling. If the cavity system has an optical
nonlinearity or embeds ensemble of atoms, we have to treat
the Langevin equations perturbatively or the master equation
might be appropriate to treat such systems. When we discuss
the emission (or lasing) from such complex systems under
incoherent excitation, it is difficult to evaluate the validity
of the RWA on system-reservoir coupling, and we should
presume the squeezed and correlated reservoirs realized in
the ground state of the whole system. This kind of approach
should give us natural results in the calculation of dissipation
and detection of output.

VII. SUMMARY

We have derived the master equation, Langevin equations,
and input-output relation for dissipative polariton system in
the ultrastrong light-matter coupling regime. The correlation
of reservoir free fields are required for calculating not only

the dynamics of the system but also the photon emission
from the polariton system. When we presume the vacuum
reservoirs, the polariton system is excited in general. Although
the vacuum output is obtained for the vacuum input in the
input-output formalism, it is not obtained in the master-
equation approach under the Born approximation. In order
to avoid this discrepancy, we have to perform the RWA on
system-reservoir coupling, although it diminishes the quantum
statistics of the reservoirs. In order to describe the dissipation
in the ultrastrong coupling regime without the RWA on
system-reservoir coupling, we have considered the correlation
functions of the photonic and excitonic free fields that are
squeezed and correlated with each other and realized in the
ground state | ˜g.s.〉 of the whole system: ρ̂R � TrS{| ˜g.s.〉〈 ˜g.s.|}.
In the formalism of the master equation, the presumed
correlation certainly guarantees the decay of the polariton
system to its original ground state |g.s.〉. In the ground state,
we have also verified no photon detection as the output from
the cavity. Even in the formalism of Langevin equations
and input-output relation, we also get no photon detection
by considering the squeezed and correlated reservoirs. This
reservoir state is also consistent to the analysis of the ground
state of the whole system by the Fano-type diagonalization
technique. At least when the polariton system is dissipative and
is in the ground state, the three approaches, master equation,
input-output formalism, and Fano-type diagonalization, give
the same result, in contrast to supposing the vacuum reservoirs.
The case in the presence of excitation to the system will be
discussed in the future. Further, the model of system-reservoir
coupling should be determined by first principles, although it
was given in Eq. (7) in this paper. Our result suggests that some
parts of the large environment are squeezed and correlated by
the coupling with a system in the ultrastrong coupling regime,
while the rest remains in the vacuum or thermal state. This issue
should also be discussed by different models and approaches
in the future.

ACKNOWLEDGMENTS

The authors thank to Cristiano Ciuti, Howard Carmichael,
Salvatore Savasta, Pierre Nataf, Kenji Kamide, Makoto Yam-
aguchi, and Tatsuro Yuge for fruitful discussion. This work
was supported by KAKENHI (Grants No. 20104008 and No.
24-632) and the JSPS through its FIRST Program.

APPENDIX A: DIAGONALIZATION OF PHOTONIC
AND EXCITONIC PARTS

In order to diagonalize the whole Hamiltonian Ĥ = ĤS +
ĤS-R + ĤR, first of all, we diagonalize the photonic part,
Eq. (12). Here, we rewrite the reservoir fields from discrete
to continuous form as

α̂m → α̂
(
�c

m

)/√
nc

DOS

(
�c

m

)
, (A1a)

β̂m → β̂
(
�x

m

)/√
nx

DOS(�x
m), (A1b)

κm → κ
(
�c

m

)/√
nc

DOS

(
�c

m

)
, (A1c)

γm → γ
(
�x

m

)/√
nx

DOS

(
�x

m

)
, (A1d)
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where nc
DOS(ω) and nx

DOS(ω) are densities of states of photonic
and excitonic reservoirs, respectively. The new reservoir
operators satisfy [α̂(ω),α̂†(ω′)] = [β̂(ω),β̂†(ω′)] = δ(ω − ω′).
The photonic Hamiltonian is rewritten as

Ĥph = h̄ωcâ
†â +

∫ ∞

0
dω h̄ωα̂†(ω)α̂(ω)

+ ih̄

∫ ∞

0
dω[κ(ω)∗α̂†(ω)â − â†α̂(ω)κ(ω)]. (A2)

This kind of Hamiltonian can be diagonalized by the Fano-type
technique [31–33] by introducing an operator for eigenfre-
quency ω as

Â(ω) = uc(ω)â +
∫ ∞

0
dω′ vc(ω,ω′)α̂(ω′). (A3)

Once this operator satisfies Eq. (13), we can diagonalize the
photonic Hamiltonian as in Eq. (12). Further, Â(ω) should be
normalized as

[Â(ω),Â†(ω′)]

= uc(ω)uc(ω′)∗ +
∫ ∞

0
dω′′ vc(ω,ω′′)vc(ω′,ω′′)∗

= δ(ω − ω′). (A4)

The coefficient functions uc(ω) and vc(ω,ω′) are deter-
mined as follows. From Eq. (13), we get

ωuc(ω) = ωcuc(ω) + i

∫ ∞

0
dω′ vc(ω,ω′)κ(ω′), (A5a)

ωvc(ω,ω′) = ω′vc(ω,ω′) − iκ(ω′)uc(ω). (A5b)

From the second equation, vc(ω,ω′) is expressed as

vc(ω,ω′) = −iκ(ω′)
uc(ω)

ω − ω′ (A6a)

= −iκ(ω′)
{

P

ω − ω′ + ψ(ω)δ(ω − ω′)
}

uc(ω)

(A6b)

= −iκ(ω′)
{

1

ω − ω′ − i0+

+ [ψ(ω) − iπ ]δ(ω − ω′)
}
uc(ω), (A6c)

where P means the principal value integral and function ψ(ω)
is introduced for the following calculation. The expression of
ψ(ω) is determined by substituting the second or third equation
into Eq. (A5a) as

ψ(ω) = 1

|κ(ω)|2
{
ω − ωc − P

∫ ∞

0
dω′ |κ(ω′)|2

ω − ω′

}
,

(A7a)

ψ(ω) − iπ = 1

|κ(ω)|2
{
ω − ωc −

∫ ∞

0
dω′ |κ(ω′)|2

ω − ω′ − i0+

}
.

(A7b)

On the other hand, the expression of uc(ω) is determined by the
normalization condition, Eq. (14). The commutator is derived

as

[Â(ω),Â†(ω′)] = uc(ω)u∗
c (ω′)[ψ(ω) − iπ ][ψ(ω) + iπ ]

× δ(ω − ω′). (A8)

Then we get

uc(ω) = 1

ψ(ω) − iπ
= |κ(ω)|2

ω − ωcζ (ω)
, (A9)

where

ζ (ω) = 1 − 1

ωc

∫ ∞

0
dω′ |κ(ω′)|2

ω′ − ω + i0+ . (A10)

Using the diagonalized operator Â(ω), the original ones are
represented as

â =
∫ ∞

0
dω uc(ω)∗Â(ω), (A11a)

α̂(ω) =
∫ ∞

0
dω′ vc(ω′,ω)∗Â(ω′). (A11b)

In the same manner, we can also diagonalize the excitonic
Hamiltonian as in Eq. (15). The eigenoperator is represented
as

B̂(ω) = ux(ω)b̂ +
∫ ∞

0
dω′ vx(ω,ω′)β̂(ω′). (A12)

The coefficient functions are determined in the same manner
by replacing ωc and κ(ω) with ωx and γ (ω), respectively. The
excitations and excitonic reservoir field are represented as

b̂ =
∫ ∞

0
dω ux(ω)∗B̂(ω), (A13a)

β̂(ω) =
∫ ∞

0
dω′ vx(ω′,ω)∗B̂(ω′). (A13b)

APPENDIX B: CORRELATION OF FREE FIELD

By using the technique in Ref. [35], here we calculate the
correlation between the free field F̂ (0)

c,x(t) and system operators
â and b̂. Further, we also derive the self-correlation of F̂ (0)

c,x(t).
First, let us calculate 〈Ŝ(t)F̂ (0)

c (t + τ )〉 for arbitrary system
operator Ŝ and τ > 0. From the Langevin equation (42), the
free field is represented as

F̂ (0)
c (t) = − ∂

∂t
â(t) + 1

ih̄
[â(t),ĤS] −

∫ t

t0

dt ′ Gc(t − t ′)â(t ′),

(B1)

then we get〈
Ŝ(t)F̂ (0)

c (t + τ )
〉

= − ∂

∂τ
〈Ŝ(t)â(t + τ )〉 + 1

ih̄
〈Ŝ(t)[â,ĤS](t + τ )〉

−
∫ t+τ

t0

dt ′ Gc(t + τ − t ′)〈Ŝ(t)â(t ′)〉. (B2)

The correlation functions of system operators appearing on the
right-hand side can be calculated by the master equation (34).
By using the quantum regression theorem (45), the first term
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of Eq. (B2) is rewritten as

∂

∂τ
〈Ŝ(t)â(t + τ )〉
= Tr{âL̂[Û (τ )[ρ̂(t)Ŝ]]}
= 1

ih̄
〈Ŝ(t)[â,ĤS](t + τ )〉 + Tr{âL̂diss[Û (τ )[ρ̂(t)Ŝ]]},

(B3)

and its last term is also written as

Tr{âL̂diss[Û (τ )[ρ̂(t)Ŝ]]}=−
∫ t+τ

t

dt ′ 〈Ŝ(t)â(t ′)〉G(t − t ′).

(B4)

Substituting these two equations into Eq. (B2), we get
Eq. (46a).

Next, let us consider 〈F̂ (0)
c (t + τ )Ŝ(t)〉 for τ > 0. From

Eq. (B1), we get

〈
F̂ (0)

c (t + τ )Ŝ(t)
〉 = − ∂

∂τ
〈â(t + τ )Ŝ(t)〉 + 1

ih̄
〈[â(t + τ ),ĤS]Ŝ(t)〉 −

∫ t+τ

t0

dt ′ Gc(t + τ − t ′)〈â(t ′)Ŝ(t)〉. (B5)

In the same manner as the above calculation, the first term is rewritten as

∂

∂τ
〈â(t + τ )Ŝ(t)〉 = 1

ih̄
〈[â,ĤS](t + τ )Ŝ(t)〉 −

∫ t+τ

t0

dt ′ Gc(t + τ − t ′)〈â(t ′)Ŝ(t)〉, (B6)

and we get Eq. (46b).
The next is 〈Ŝ(t + τ )F̂ (0)

c (t)〉 for τ > 0. From Eq. (B1), we get

〈
Ŝ(t + τ )F̂ (0)

c (t)
〉 = −〈Ŝ(t + τ )

∂

∂t
â(t)〉 + 1

ih̄
〈Ŝ(t + τ )[â,ĤS](t)〉 −

∫ t

t0

dt ′ Gc(t − t ′)〈Ŝ(t + τ )â(t ′)〉. (B7)

As shown in Ref. [35], the first term is represented as〈
Ŝ(t + τ )

∂

∂t
â(t)

〉
= 1

ih̄
〈Ŝ(t + τ )[â,ĤS](t)〉 + Tr{ŜÛ (τ )[âL̂diss[ρ̂(t)]−L̂diss[âρ̂(t)]]}, (B8)

and then we get Eqs. (47). The second equation is also derived in the same manner, and similar expressions are obtained also for
F̂ (0)

x .
Since the free field F̂ (0)

c (t) is expressed as in Eq. (B1), the self-correlation is represented as

〈
F̂ (0)

c (t)F̂ (0)†
c (τ )

〉 = ∂

∂t

∂

∂τ
〈â(t)â†(τ )〉 − 1

ih̄

∂

∂t
〈â(t)[â†,ĤS](τ )〉 +

∫ τ

t0

dt ′ G∗
c (τ − t ′)

∂

∂t
〈â(t)â†(t ′)〉

− 1

ih̄

∂

∂τ
〈[â,ĤS](t)â†(τ )〉 + 1

(ih̄)2
〈[â,ĤS](t)[â†,ĤS](τ )〉 − 1

ih̄

∫ τ

t0

dt ′ G∗
c (τ − t ′)〈[â,ĤS](t)â†(t ′)〉

+
∫ t

t0

dt ′′ Gc(t − t ′′)
∂

∂τ
〈â(t ′′)â†(τ )〉 − 1

ih̄

∫ t

t0

dt ′′ Gc(t − t ′′)〈â(t ′′)[â†,ĤS](τ )〉

+
∫ t

t0

dt ′′
∫ τ

t0

dt ′ Gc(t − t ′′)G∗
c (τ − t ′)〈â(t ′′)â†(t ′)〉. (B9)

In the same manner as discussed above, the first term is rewritten for τ > t as

∂

∂t

∂

∂τ
〈â(t)â†(τ )〉 = ∂

∂t

∂

∂τ
Tr{â†Û (τ − t)[ρ̂(t)â]}

= 1

ih̄

∂

∂t
〈â(t)[â†,ĤS](τ )〉 − ∂

∂t

∫ τ

t

dt ′ 〈â(t)â†(t ′)〉G∗
c (τ − t ′)

= 1

ih̄

∂

∂t
〈â(t)[â†,ĤS](τ )〉 −

∫ τ

t

dt ′
∂

∂t
〈â(t)â†(t ′)〉G∗

c (τ − t ′) + G∗
c (τ − t)〈â(t)â†(t)〉. (B10)

Rewriting the fourth and seventh terms in Eq. (B9), the self-correlation is reduced to

〈
F̂ (0)

c (t)F̂ (0)†
c (τ )

〉 = G∗
c (τ − t)〈â(t)â†(t)〉 +

∫ t

t0

dt ′ G∗
c (τ − t ′)

∂

∂t
〈â(t)â†(t ′)〉 − 1

ih̄

∫ t

t0

dt ′ G∗
c (τ − t ′)〈[â,ĤS](t)â†(t ′)〉

+
∫ t

t0

dt ′′
∫ t ′′

t0

dt ′ Gc(t − t ′′)G∗
c (τ − t ′)〈â(t ′′)â†(t ′)〉. (B11)
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Rewriting the second term, we finally get

〈
F̂ (0)

c (t)F̂ (0)†
c (τ )

〉 = G∗
c (τ − t)〈â(t)â†(t)〉 −

∫ t

t0

dt ′
∫ t

t ′
dt ′′

×Gc(t − t ′′)G∗
c (τ − t ′)〈â(t ′′)â†(t ′)〉

+
∫ t

t0

dt ′′
∫ t ′′

t0

dt ′ Gc(t − t ′′)G∗
c (τ − t ′)

×〈â(t ′′)â†(t ′)〉
= G∗

c (τ − t)〈â(t)â†(t)〉. (B12)

In the same manner, we finally get Eqs. (49).

APPENDIX C: CALCULATION OF OBSERVABLES IN THE
MASTER-EQUATION APPROACH

When we detect photons emitted from the cavity, the
observables by photon detectors should be calculated by
normal- and time-ordering the photon operators [35,36,38].
In the present case, the ordering should be performed in the
polariton basis, which really represents the eigenstates of the
system. Here, we divide the photon operator â into the lowering
parts â↓ and raising part â↑ as

â↓ = w∗
Lp̂L + w∗

U p̂U , (C1a)

â↑ = −yLp̂
†
L − yU p̂

†
U . (C1b)

Since the system-reservoir coupling is expressed as in Eq. (9),
the photonic free field F̂ (0)

c is also divided as

F̂
(0)
c↓ = w∗

LF̂
(0)
L + w∗

U F̂
(0)
U , (C2a)

F̂
(0)
c↑ = −yLF̂

(0)†
L − yU F̂

(0)†
U , (C2b)

and then the output field (54) is rewritten as

F̂ out
c = F̂ out

c↓ + F̂ out
c↑ , (C3)

F̂ out
c↓ (t) = F̂

(0)
c↓ (t) +

∫ t+z0/c

t0

dt ′ Gc(t − t ′)â↓(t ′), (C4a)

F̂ out
c↑ (t) = F̂

(0)
c↑ (t) +

∫ t+z0/c

t0

dt ′ Gc(t − t ′)â↑(t ′). (C4b)

The equation of motion of â↓↑ is derived as

∂

∂t
â↓↑(t) = 1

ih̄
[â↓↑,ĤS](t)

−
∫ t

t0

dt ′ Gc(t − t ′)â↓↑(t ′) − F̂
(0)
c↓↑(t). (C5)

Then, the correlation between â↓↑ and F̂
(0)
c↓↑ is also derived in

the same form as Eqs. (46) and (47), and the self-correlation
of F̂

(0)
c↓↑ also has the same form as Eq. (49).

The output field measured by photon detectors outside
the cavity is calculated by normal- and time-ordering the
operators. The emission spectrum (number of photons) in a
steady state is expressed as〈

:F̂ out
c (ω)F̂ out†

c :
〉

= 〈
:F̂ (0)

c (ω)F̂ (0)†
c :

〉 + Gc(ω)
〈
:â(ω)F̂ (0)†

c :
〉

+Gc(ω)∗
〈
:F̂ (0)

c (ω)â†:
〉 + |Gc(ω)|2〈:â(ω)â†:〉, (C6)

where〈
:F̂ (0)

c (ω)F̂ (0)†
c :

〉
= Gc(ω){〈â†

↓â↓〉 + 〈â↑â
†
↑〉} + Gc(ω)+{〈â†

↓â↑〉
+ 〈â↓â

†
↑〉} + Gc(ω)∗+{〈â↑â

†
↓〉 + 〈â†

↑â↓〉}, (C7a)〈
:â(ω)F̂ (0)†

c :
〉

= 〈
F̂

(0)
c↓ (ω)†â↓

〉 + 〈
F̂

(0)
c↓ (ω)†−â↑

〉 + 〈
â↑(ω)−F̂

(0)†
c↓

〉
+ 〈

â↓(ω)+F̂
(0)†
c↑

〉 + 〈
F̂

(0)
c↑ (ω)†+â↓

〉 + 〈
â↑(ω)F̂ (0)†

c↑
〉
, (C7b)〈

:F̂ (0)
c (ω)â†:

〉
= 〈

â↓(ω)†F̂ (0)
c↓

〉 + 〈
â↓(ω)†−F̂

(0)
c↑

〉 + 〈
F̂

(0)
c↑ (ω)−â

†
↓
〉

+ 〈
F̂

(0)
c↓ (ω)+â

†
↑
〉 + 〈

â↑(ω)†+F̂
(0)
c↓

〉 + 〈
F̂

(0)
c↑ (ω)â†

↑
〉
, (C7c)

〈:â(ω)â†:〉
= 〈â↓(ω)†â↓〉 + 〈â↓(ω)†−â↑〉 + 〈â↑(ω)−â

†
↓〉

+〈â↓(ω)+â
†
↑〉 + 〈â↑(ω)†+â↓〉 + 〈â↑(ω)â†

↑〉. (C7d)

On the other hand, the phase-sensitive correlation is expressed
as 〈

:F̂ out
c (ω)F̂ out

c :
〉

= 〈
:F̂ (0)

c (ω)F̂ (0)
c :

〉 + Gc(ω)
〈
:â(ω)F̂ (0)

c :
〉

+Gc(−ω)
〈
:F̂ (0)

c (ω)â:
〉 + Gc(ω)Gc(−ω)〈:â(ω)â:〉,

(C8)

〈
:F̂ (0)

c (ω)F̂ (0)
c :

〉
= {Gc(ω)+ + Gc(−ω)+}{2〈â↑â↓〉 + 〈â↑â↑〉 + 〈â↓â↓〉},

(C9a)〈
:â(ω)F̂ (0)

c :
〉

= 〈
â↓(ω)+F̂

(0)
c↓

〉 + 〈
F̂

(0)
c↓ (−ω)+â↓

〉 + 〈
F̂

(0)
c↑ â↓(ω)

〉
+ 〈

â↑(ω)F̂ (0)
c↓

〉 + 〈
F̂

(0)
c↑ (−ω)−â↑

〉 + 〈
â↑(ω)−F̂

(0)
c↑

〉
,

(C9b)〈
:F̂ (0)

c (ω)â:
〉

= 〈
F̂

(0)
c↓ (ω)+â↓

〉 + 〈
â↓(−ω)+F̂

(0)
c↓

〉 + 〈
â↑F̂

(0)
c↓ (ω)

〉
+ 〈

F̂
(0)
c↑ (ω)â↓

〉 + 〈
â↑(−ω)−F̂

(0)
c↑

〉 + 〈
F̂

(0)
c↑ (ω)−â↑

〉
,

(C9c)

〈:â(ω)â:〉
= 〈â↓(ω)+â↓〉 + 〈â↓(−ω)+â↓〉 + 〈â↑(−ω)â↓〉

+ 〈â↑(ω)â↓〉 + 〈â↑(−ω)−â↑〉 + 〈â↑(ω)−â↑〉. (C9d)

We have numerically checked that the correlation functions
〈:F̂ out

c (ω)F̂ out†
c :〉 and 〈:F̂ out

c (ω)F̂ out
c :〉 are approximately zero
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if the ĤS system is in the ground state ρ̂ss = |g.s.〉〈g.s.|.
The small deviation comes from the approximation in which
the density operator ρ̂(t) is moved outside the time integral in
the master equation (34).

APPENDIX D: CALCULATION OF OBSERVABLES IN
INPUT-OUTPUT FORMALISM

Let us calculate the emission and squeezing of photonic
output from the cavity in the input-output formalism. The coef-
ficient matrix (56) of the Langevin equations is diagonalized as

M(ω) = V(ω)D

⎡
⎢⎢⎢⎣

ω̃L(ω)

ω̃U (ω)

−ω̃L(−ω)∗

−ω̃U (−ω)∗

⎤
⎥⎥⎥⎦V(ω)−1, (D1)

where D[· · · ] represents an diagonal matrix with elements
· · · . Due to the coupling with reservoirs, the eigenvalues
{ω̃L,U (ω)} depend on frequency ω and are modified
from the original eigenfrequencies {ωL,U } derived from
Eq. (4). The modification depends on the strengths κj and
γj of system-reservoir coupling. We redefine Langevin
(fluctuation) operators in the polariton basis as

F̌
(0)
LU (ω) =

⎡
⎢⎢⎢⎢⎣

F̌
(0)
L (ω)

F̌
(0)
U (ω)

F̌
(0)
L (−ω)†

F̌
(0)
U (−ω)†

⎤
⎥⎥⎥⎥⎦ = V(ω)−1

⎡
⎢⎢⎢⎣

F̂ (0)
c (ω)

F̂ (0)
x (ω)

F̂ (0)
c (−ω)†

F̂ (0)
x (−ω)†

⎤
⎥⎥⎥⎦. (D2)

Because of the modification of the coefficients, these operators
are, in general, different from the Fourier transform of free
field of the reservoir field F̂L,U [Eq. (10)] in the polariton
basis. However, if the system-reservoir coupling is weak

enough compared to the characteristic frequency of the
polariton system, the redefined operators are approximately
equal to the Fourier transform of Eq. (39). At the same
time, the Born approximation used in the master equation
is also valid. The photon and excitation operators are then
represented in the frequency domain as⎡

⎢⎢⎢⎢⎣
â(ω)

b̂(ω)

â(−ω)†

b̂(−ω)†

⎤
⎥⎥⎥⎥⎦ = L(ω)F̌

(0)
LU (ω), (D3)

where

L(ω) = [M(ω) − ω1]−1V(ω). (D4)

Substituting Eqs. (D2) and (D3) into the input-output relation
(61), the photonic output operator is represented as

F̂ out
c (ω) = TL(ω)F̌ (0)

L (ω) + TU (ω)F̌ (0)
U (ω)

+SL(ω)F̌ (0)
L (−ω)† + SU (ω)F̌ (0)

U (−ω)†, (D5)

where

TL(ω) = V11(ω) + Gc(ω)L11(ω), (D6a)

TU (ω) = V12(ω) + Gc(ω)L12(ω), (D6b)

SL(ω) = V13(ω) + Gc(ω)L13(ω), (D6c)

SU (ω) = V14(ω) + Gc(ω)L14(ω). (D6d)

As discussed in Sec. V, for describing the dissipation of ĤS

system, we consider the correlation of free fields as in Eq. (62).
Precisely speaking, in order to guarantee no photon detection,
the expectation values in the ground state should be replaced
by

⎛
⎜⎜⎜⎜⎝

〈ââ†〉g.s. 〈âb̂†〉g.s. 〈ââ〉g.s. 〈âb̂〉g.s.

〈b̂â†〉g.s. 〈b̂b̂†〉g.s. 〈b̂â〉g.s. 〈b̂b̂〉g.s.

〈â†â†〉g.s. 〈â†b̂†〉g.s. 〈â†â〉g.s. 〈â†b̂〉g.s.

〈b̂†â†〉g.s. 〈b̂†b̂†〉g.s. 〈b̂†â〉g.s. 〈b̂†b̂〉g.s.

⎞
⎟⎟⎟⎟⎠ → V(ω)

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠V(ω)∗T, (D7)

because of the modification of coefficients V(ω). If we detect the output photons outside the cavity, the detection process
should be dissipative for the whole system, and virtual photons should not be counted. Then, when we calculate emission
spectrum 〈:F̂ out

c (ω)F̂ out†
c :〉 and phase-sensitive correlation 〈:F̂ out

c (ω)F̂ out
c :〉, the fluctuation (Langevin) operators {F̂ (0)

L,U (ω)} should
be normal- and time-ordered, obeying the theory of measurement [35,36,38]. Then, the correlation functions of output photonic
field (D5) are represented as〈

:F̂ out
c (ω)F̂ out†

c :
〉 =

∑
j,k=L,U

{
Tj (ω)

〈
F̌

(0)
k (ω)†F̌ (0)

j

〉
Tk(ω)∗ + Tj (ω)

[〈
F̌

(0)
j (ω)+F̌

(0)
k

〉 + 〈
F̌

(0)
k (−ω)+F̌

(0)
j

〉]
Sk(ω)∗

+Sj (ω)
[〈

F̌
(0)
k (−ω)†−F̌

(0)†
j

〉 + 〈
F̌

(0)
j (ω)†−F̌

(0)†
k

〉]
Tk(ω)∗ + Sj (ω)

〈
F̌

(0)
j (−ω)†F̌ (0)

k

〉
Sk(ω)∗

}
, (D8)

〈
:F̂ out

c (ω)F̂ out
c :

〉 =
∑

j,k=L,U

{
Tj (ω)

[〈
F̌

(0)
j (ω)+F̌

(0)
k

〉 + 〈
F̌

(0)
k (−ω)+F̌

(0)
j

〉]
Tk(−ω) + Tj (ω)

〈
F̌

(0)
k (ω)†F̌ (0)

j

〉
Sk(−ω)

+ Sj (ω)
〈
F̌

(0)
j (−ω)†F̌ (0)

k

〉
Tk(−ω) + Sj (ω)

[〈
F̌

(0)
k (−ω)†−F̌

(0)†
j

〉 + 〈
F̌

(0)
j (ω)†−F̌

(0)†
k

〉]
Sk(−ω)

}
. (D9)

If we consider the fluctuation correlation as shown in Eq. (62), we can numerically verify that both of them are completely zero.
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S. D. Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider,
M. Beck, and J. Faist, Science 335, 1323 (2012).

[26] Y. Todorov and C. Sirtori, Phys. Rev. B 85, 045304 (2012).
[27] M. Porer, J.-M. Ménard, A. Leitenstorfer, R. Huber,

R. Degl’Innocenti, S. Zanotto, G. Biasiol, L. Sorba, and
A. Tredicucci, Phys. Rev. B 85, 081302 (2012).

[28] A. Ridolfo, M. Leib, S. Savasta, and M. J. Hartmann, Phys. Rev.
Lett. 109, 193602 (2012).

[29] C. Emary and T. Brandes, Phys. Rev. A 69, 053804 (2004).
[30] S. M. Dutra and G. Nienhuis, J. Opt. B 2, 584 (2000).
[31] U. Fano, Phys. Rev. 124, 1866 (1961).
[32] S. Barnett and P. Radmore, Opt. Commun. 68, 364 (1988).
[33] B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992).
[34] H. J. Carmichael and D. F. Walls, J. Phys. A 6, 1552 (1973).
[35] H. J. Carmichael, J. Opt. Soc. Am. B 4, 1588 (1987).
[36] C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook Of

Markovian and Non-Markovian Quantum Stochastic Methods
with Applications to Quantum Optics, Springer Series in
Synergetics (Springer-Verlag, Berlin, 2004), 3rd ed.

[37] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Claredon Press, Oxford, 2006).

[38] D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag,
Berlin, 2008), 2nd ed.

[39] M. Scala, B. Militello, A. Messina, J. Piilo, and S. Maniscalco,
Phys. Rev. A 75, 013811 (2007).

[40] M. Scala, B. Militello, A. Messina, S. Maniscalco, J. Piilo, and
K.-A. Suominen, J. Phys. A 40, 14527 (2007).

[41] C. Fleming, N. I. Cummings, C. Anastopoulos, and B. L. Hu,
J. Phys. A 43, 405304 (2010).

[42] M. Nakatani and T. Ogawa, J. Phys. Soc. Jpn. 79, 084401 (2010);
80, 058001(E) (2011).

[43] H. J. Carmichael and D. F. Walls, Phys. Rev. A 9, 2686 (1974).
[44] M. Lax, Phys. Rev. 129, 2342 (1963).
[45] M. Lax, Phys. Rev. 157, 213 (1967).
[46] D. Bozyigit, C. Lang, L. Steffen, J. M. Fink, C. Eichler, M. Baur,

R. Bianchetti, P. J. Leek, S. Filipp, M. P. da Silva, A. Blais, and
A. Wallraff, Nat. Phys. 7, 154 (2010).

[47] C. Eichler, D. Bozyigit, C. Lang, L. Steffen, J. Fink, and
A. Wallraff, Phys. Rev. Lett. 106, 220503 (2011).

[48] C. Eichler, D. Bozyigit, C. Lang, M. Baur, L. Steffen, J. M. Fink,
S. Filipp, and A. Wallraff, Phys. Rev. Lett. 107, 113601 (2011).

063831-16

http://dx.doi.org/10.1103/PhysRevB.72.115303
http://dx.doi.org/10.1103/PhysRevB.72.115303
http://dx.doi.org/10.1103/PhysRevA.74.033811
http://dx.doi.org/10.1002/andp.200710261
http://dx.doi.org/10.1002/andp.200710261
http://dx.doi.org/10.1103/PhysRevA.80.032109
http://dx.doi.org/10.1103/PhysRevA.80.053810
http://dx.doi.org/10.1103/PhysRevA.80.053810
http://dx.doi.org/10.1038/nature07838
http://dx.doi.org/10.1103/PhysRevB.79.201303
http://dx.doi.org/10.1103/PhysRevB.79.201303
http://dx.doi.org/10.1103/PhysRevLett.102.186402
http://dx.doi.org/10.1103/PhysRevLett.105.196402
http://dx.doi.org/10.1103/PhysRevLett.105.196402
http://dx.doi.org/10.1103/PhysRevB.81.235303
http://dx.doi.org/10.1103/PhysRevB.81.235303
http://dx.doi.org/10.1103/PhysRevLett.104.023601
http://dx.doi.org/10.1038/ncomms1069
http://dx.doi.org/10.1103/PhysRevLett.105.023601
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1103/PhysRevLett.105.237001
http://dx.doi.org/10.1103/PhysRevLett.105.237001
http://dx.doi.org/10.1103/PhysRevLett.105.060503
http://dx.doi.org/10.1103/PhysRevA.81.042311
http://dx.doi.org/10.1103/PhysRevA.81.043805
http://dx.doi.org/10.1103/PhysRevA.81.043805
http://dx.doi.org/10.1103/PhysRevLett.105.263603
http://dx.doi.org/10.1103/PhysRevA.82.062320
http://dx.doi.org/10.1103/PhysRevA.83.030301
http://dx.doi.org/10.1103/PhysRevLett.107.190402
http://dx.doi.org/10.1103/PhysRevLett.106.196405
http://dx.doi.org/10.1103/PhysRevLett.106.196405
http://dx.doi.org/10.1103/PhysRevA.84.043832
http://dx.doi.org/10.1103/PhysRevA.84.043832
http://dx.doi.org/10.1126/science.1216022
http://dx.doi.org/10.1103/PhysRevB.85.045304
http://dx.doi.org/10.1103/PhysRevB.85.081302
http://dx.doi.org/10.1103/PhysRevLett.109.193602
http://dx.doi.org/10.1103/PhysRevLett.109.193602
http://dx.doi.org/10.1103/PhysRevA.69.053804
http://dx.doi.org/10.1088/1464-4266/2/5/305
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1016/0030-4018(88)90233-7
http://dx.doi.org/10.1103/PhysRevA.46.4306
http://dx.doi.org/10.1088/0305-4470/6/10/014
http://dx.doi.org/10.1364/JOSAB.4.001588
http://dx.doi.org/10.1103/PhysRevA.75.013811
http://dx.doi.org/10.1088/1751-8113/40/48/015
http://dx.doi.org/10.1088/1751-8113/43/40/405304
http://dx.doi.org/10.1143/JPSJ.79.084401
http://dx.doi.org/10.1143/JPSJ.80.058001
http://dx.doi.org/10.1103/PhysRevA.9.2686
http://dx.doi.org/10.1103/PhysRev.129.2342
http://dx.doi.org/10.1103/PhysRev.157.213
http://dx.doi.org/10.1038/nphys1845
http://dx.doi.org/10.1103/PhysRevLett.106.220503
http://dx.doi.org/10.1103/PhysRevLett.107.113601



