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We consider theoretically the optomechanical interaction of several mechanical modes with a single quantized
cavity-field mode for linear and quadratic coupling. We focus specifically on situations where the optical
dissipation is the dominant source of damping, in which case the optical field can be adiabatically eliminated,
resulting in effective multimode interactions between the mechanical modes. In the case of linear coupling,
the coherent contribution to the interaction can be exploited (e.g., in quantum state swapping protocols), while
the incoherent part leads to significant modifications of cold damping or amplification from the single-mode
situation. Quadratic coupling can result in a wealth of possible effective interactions including the analogs of
second-harmonic generation and four-wave mixing in nonlinear optics, with specific forms depending sensitively
on the sign of the coupling. The cavity-mediated mechanical interaction of two modes is investigated in two
limiting cases: the resolved sideband and the Doppler regime. As an illustrative application of the formal analysis
we discuss in some detail a two-mode system where a Bose-Einstein condensate is optomechanically linearly
coupled to the moving end mirror of a Fabry-Pérot cavity.
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I. INTRODUCTION

Quantum optomechanics has recently witnessed a rapid
succession of key advances, with important milestones includ-
ing the cooling of several systems to the quantum ground state
of vibration [1–4], the demonstration of strong optomechanical
coupling [3,5,6] and of quantum coherent coupling between
optical and phonon fields [7], the realization of optomechanical
systems from ultracold atomic ensembles [8,9], and impressive
advances toward quantum state transfer [10–15], to mention
just a few examples. These developments hint at the promise
for optomechanics applications in quantum metrology [16,17],
quantum information science [18–21], and also in possible
tests of fundamental physics questions [22,23]. So far, though,
the focus of most advances has been on single-mode dynamics
of the oscillator [24–26]. In complete analogy with the situa-
tion in quantum optics, however, single-mode quantum acous-
tics fails to capture many important aspects, including most
obviously perhaps propagation phenomena, nonlinear acous-
tical effects, focusing and defocusing of acoustic waves, etc.

The interaction of optical fields with mechanical arrays
has recently gained increased attention [27,28]. Mechanical
elements dressed by optical fields couple indirectly to each
other through these fields, and particular nonlinear features
have been studied [29,30]. Specific phenomena such as
multimode cooling [31,32] and synchronization [33,34] have
been discussed and hold promise for the entanglement of
mechanical oscillators [35,36] and of hybrid optomechanical
systems [37,38]. However, a general theory of optically
mediated nonlinear phenomena in multimode quantum op-
tomechanical systems that also fully accounts for the effects
of quantum noise has not yet been developed.

Within this general context, our paper represents a step
toward the development of nonlinear quantum acoustics. Our
main objective is to present a rather general formalism that
fully accounts for the quantum nature of the light field and to
outline a number of key consequences. The specific situation
that we consider is a multimode mechanical field—perhaps

provided by several mechanical oscillators or atomic samples
trapped inside an optical lattice, the mode coupling being
provided by a common optical field. For concreteness we
concentrate on linear and quadratic optomechanical coupling
and single-mode optical fields, but the generalization to more
complex couplings and multimode fields is straightforward.
We identify the onset of a number of nonlinear quantum
optomechanical effects, including many situations familiar
from nonlinear optics. These include second-harmonic gen-
eration and four-wave mixing processes, corresponding to
χ (2) and χ (3) nonlinear susceptibilities. In particular, optical
four-wave-mixing phenomena lead to a rich spectrum of
effects that have found numerous applications in applied and
fundamental studies including, for example, sum-frequency
generation, high-order harmonic generation, optical paramet-
ric amplification, self-focusing and defocusing, the generation
and propagation of optical solitons, phase conjugation, the
generation of quantum mechanical squeezing and entangled
photon pairs, and more [39,40]. Our analysis paves the way to
the investigation of a similar range of effects and applications
in quantum optomechanics and quantum acoustics and, as
such, opens up a rich direction of investigations that will be
carried out in several follow-up studies. As a specific example

FIG. 1. (Color online) Nonabsorptive dielectric membranes in-
side a Fabry-Pérot resonator which interact with a single-mode cavity
field.

063829-11050-2947/2012/86(6)/063829(11) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.063829


H. SEOK, L. F. BUCHMANN, S. SINGH, AND P. MEYSTRE PHYSICAL REVIEW A 86, 063829 (2012)

that illustrates some of the potential of our general approach,
Sec. V discusses the specific example of a two-mode system
that can lead to quantum state transfer in a two-mode hybrid
quantum optomechanical system: a Bose-Einstein condensate
(BEC) coupled to a mechanical oscillator.

The physics underlying optically mediated nonlinear quan-
tum optomechanics is analogous to nonlinear atom optics,
a result of coherent cold collisions that lead to coherent
nonlinear effects [41,42] in quantum degenerate atomic gases.
These effects include matter-wave four-wave mixing, soliton
generation, the creation of entangled atom pairs, and more. The
two- or few-body interactions describing atomic collisions are
effective interactions that result from the elimination of the
underlying exchange of photons. While collisions are usually
thought of as largely incoherent processes, resulting, for exam-
ple, in decoherence and dephasing in atomic ensembles, this
needs not be the case. In the nonlinear-atom-optics situations
demonstrated in quantum degenerate atomic systems they
result in coherent matter-wave mixing. In analogy to that
situation, one can expect similar effects to occur in quantum
acoustics. Our main result is that this is indeed the case, and that
incoherent effects due to quantum fluctuations—associated
primarily with the elimination of the electromagnetic field—
need not overwhelm coherent effects. This paves the way to
investigate nonlinear effects in phonon physics reminiscent
of those encountered in nonlinear optics and nonlinear atom
optics, with the promise of similarly exciting applications.

The remaining of the paper is organized as follows: Our
starting point is a relatively general discussion of optically
mediated effective interactions between many mechanical
modes, discussing in some detail the quantum noise and
damping associated with that interaction, both for linear and
quadratic optomechanical coupling. We identify a number
of specific forms of the effective interaction that lead to
qualitatively different dynamics, in particular a regime where
the coupling of the quantum fluctuations of the mechanical
modes is intrinsically nonlinear. We then illustrate the general
analysis with an example involving just two mechanical
modes, with emphasis on two limiting cases: the resolved
sideband and the Doppler regimes. A specific example is
given by the state transfer between two mechanical modes:
a Bose-Einstein condensate coupled to the center-of-mass
mode of a moving end mirror of a Fabry-Pérot resonator
through a cavity field. We comment on the optimization of
the transfer fidelity using squeezed input light as the optically
mediating light field and conclude with some general remarks
and outlook.

II. MODEL

We consider a multimode optomechanical system described
in terms of a set of N modes of effective masses mj , bare
frequencies ωj , and damping rates γj . The interaction between
these modes is assumed to be mediated by a single mode of
the optical resonator, of nominal frequency ωc and driven by a
monochromatic external field of frequency ωL. A realization of
this system could be a high-finesse Fabry-Pérot resonator with
a series of internal nonabsorptive dielectric membranes such
as depicted in Fig. 1, a collection of ultracold atomic samples
trapped at or near the minima of an optical lattice inside such

a resonator, one or several Bose-Einstein condensates trapped
inside a Fabry-Pérot cavity, perhaps with a moving end-mirror,
or a number of similar setups operating either in the optical or
in the microwave regime.

The Hamiltonian governing the system is

H = Hopt + Hm + Hom + Hloss, (1)

where

Hopt = h̄ωcÃ
†Ã + ih̄(ηe−iωLt Ã† − η∗eiωLt Ã) (2)

describes the cavity-field mode, pumped externally by a field
of frequency ωL at a rate η, and

Hm = h̄

N∑
j=1

ωj B̂
†
j B̂j (3)

describes the mechanical modes, with [B̂j ,B̂
†
k ] = δjk . The

optomechanical interaction is

Hom = −h̄Ã†Ã
N∑

j=1

g0,j (B̂j + B̂
†
j ) (4)

in the linear case and

Hom = h̄Ã†Ã
N∑

j=1

g
(2)
0,j (B̂j + B̂

†
j )2 (5)

in the quadratic case, where g0,j and g
(2)
0,j are the linear and

quadratic single-photon optomechanical coupling coefficients,
respectively. Finally, Hloss describes the interaction of the
cavity field and the mechanics with their respective reservoirs
and accounts for dissipation. For simplicity, we will assume
that all mechanical modes either couple purely linearly or
quadratically.

III. LINEAR COUPLING

This section discusses the case of linear coupling including
modifications to cold damping and optical spring effects.

With

Ã = Âe−iωLt (6)

and for the optomechanical coupling (4) the Heisenberg-
Langevin equations of motion in the standard input-output
formalism [43] are

˙̂A =
[
i�c − κ

2

]
Â + η + iÂ

N∑
j=1

g0,j (B̂j + B̂
†
j ) + √

κâin,

˙̂Bj = −iωj B̂j − γj

2
(B̂j − B̂

†
j ) + ig0,j Â

†Â + iξ̃j , (7)

where

�c = ωL − ωc, (8)

and κ and γj are the decay rates of the cavity-field and
mechanical modes, respectively, and âin and ξ̃j are the as-
sociated Markovian quantum noise operators. Their two-time
correlation functions will be given explicitly later on.
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A. Linearization

If the system is driven by a classical field, it is useful to
decompose the various field operators as the sum of their
expectation values and small quantum fluctuations, whose
dynamics is treated to lowest order only. Specifically we
expand the operators Â and B̂j as

Â = 〈Â〉 + δÂ ≡ α + â, (9a)

B̂j = 〈B̂j 〉 + δB̂j ≡ βj + b̃j , (9b)

where [â,â†] = 1, [b̃j ,b̃
†
k] = δjk and we assume that their

expectation values α and βj are much larger than the
amplitudes of the fluctuations; for example, |α|2 � 〈â†â〉.
(Note that, rigorously speaking, this assumes all quantum
contributions to have zero expectation value. However, the
treatment remains valid for fluctuations with nonzero, but
small, expectation values [44].) This yields the mean-field
equations of motion:

α̇ = i�̄α − κ

2
α + η, (10)

β̇j = −iωjβj − γj

2
(βj − β∗

j ) + ig0,j |α|2, (11)

with steady-state values

αs = η

−i�̄ + κ/2
= √

n̄c, (12)

(βj + β∗
j )s = 2g0,j

ωj

|αs|2, (13)

where

�̄ = �c +
N∑

j=1

g0,j (βj + β∗
j ). (14)

Here we have chosen the phase of η such that αs is real without
loss of generality for the case of cw pumping.

As is well known, dynamical back action gives rise to
frequency shifts—the optical spring effect—and radiative
damping or amplification for each mechanical oscillator
[45–47]. In order to capture these effects explicitly, we switch
to an interaction picture with the transformations

b̃j = b̂j e
−iνj t , (15)

ξ̃j = ξ̂j e
−iνj t , (16)

where

νj = ωj + j, (17)

and the expressions for the dynamical shifts j will be
determined self-consistently later on [48]. The equations of
motion for the fluctuation operators then read

˙̂a =
[
i�̄ − κ

2

]
â + i

N∑
j=1

gj (b̂j e
−iνj t + b̂

†
j e

iνj t ) + √
κâin,

(18)

˙̂bj =
[
ij − γj

2

]
b̂j + γj

2
b̂
†
j e

2iνj t + igj e
iνj t (â† + â) + iξ̂j ,

(19)

where we have introduced the amplified optomechanical
coupling strengths

gj = g0,j

√
n̄c. (20)

B. Elimination of cavity field

In the physically relevant regime where the optical loss is
much larger than the mechanical decay rates (κ � γj ), the
cavity field follows the dynamics of the mechanical oscillators
adiabatically. For time scales long compared to κ−1, the formal
solution of Eq. (18) reads

â(t) � −
N∑

j=1

gj

[
e−iνj t b̂j

(�̄ + νj ) + iκ/2
+ eiνj t b̂

†
j

(�̄ − νj ) + iκ/2

]

+ f̂in(t), (21)

where the noise operator f̂in(t) is given by

f̂in(t) = √
κ

∫ t

0
dτe(i�̄−κ/2)(t−τ )âin(τ ). (22)

Substituting the formal solution into the equations of motion
for the mechanical oscillators (19) gives

˙̂bj =
[
ij − γj

2

]
b̂j + γj

2
b̂
†
j e

2iνj t

−
N∑

k=1

gjk

[
ik + �k

2

]
ei(νj −νk)t b̂k

−
N∑

k=1

gjk

[
ik − �k

2

]
ei(νj +νk)t b̂

†
k

+ igj e
iνj t (f̂in + f̂ †

in) + iξ̂j , (23)

where

gjk = gj/gk, (24)

and the radiation-induced frequency shifts k and damping
coefficients �k are given by

k = g2
k

[
�̄ − νk

(�̄ − νk)2 + κ2/4
+ �̄ + νk

(�̄ + νk)2 + κ2/4

]
, (25a)

�k

2
= g2

k

[
κ/2

(�̄ + νk)2 + κ2/4
− κ/2

(�̄ − νk)2 + κ2/4

]
. (25b)

Due to the appearance of the shifted frequencies νk(�̄) in the
denominators on its right-hand side, Eq. (25a) is a fifth-order
polynomial equation for k(�̄), so that it is not Lorentzian in
general. In the strong-coupling regime gk > κ/2, it becomes
multivalued for a range of effective detunings, a feature that
can be interpreted in terms of normal mode splitting [5]. In
this situation the mechanical and optical modes are strongly
hybridized and it is not meaningful to treat them separately.
Also, the counter-rotating terms in Eqs. (23), combined in
particular with a driving field blue detuned from the resonator
resonance, can result in instabilities in the strong-coupling
regime and a concomitant would lead to the breakdown of the
linearization process.

The strong-coupling and blue-detuned regimes will be the
object of future work. Here we focus on the simpler case
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of weak coupling: gk 	 κ . In this limit the frequency shifts
k remain small compared to the bare frequencies of the
oscillators, so that we can approximate νk by ωk on the right-
hand side of Eqs. (25) [see Eq. (17)]. The frequency shifts k

are then the sum of two dispersion curves while the decay rates
�k consist of two Lorentzians with opposite signs, all of which
are centered around �̄ = ±ωk . The weak-coupling regime also
allows us to drop the counter-rotating terms in Eqs. (23).

The resulting equations of motion are

˙̂bj �
[
ij − γj

2

]
b̂j −

N∑
k=1

gjk

[
ik + �k

2

]
ei(νj −νk)t b̂k

+ igj e
iνj t (f̂in + f̂ †

in) + iξ̂j . (26)

These equations describe a system of N pairwise linearly
coupled oscillators with coherent contributions proportional
to the optically induced frequency shifts k , cold damping
coefficients �k familiar from the single-mode situation, and
associated noise operators (f̂in + f̂

†
in) and ξ̂j . The fact that

each mechanical element experiences a different frequency
shift and radiative decay, depending on its optomechanical
coupling strength and the pump-cavity detuning, is the key
ingredient that allows one to couple oscillators with different
bare frequencies on demand, by choosing appropriate pump
powers and detunings. We discuss selected consequences of
this coupled dynamics in Sec. V for the case of a two-mode
system. But first, the next section extends our discussion to the
case of quadratic optomechanical coupling.

IV. QUADRATIC COUPLING

We now consider the quadratic optomechanical coupling

Hom = h̄Ã†Ã
N∑

j=1

g
(2)
0,j (B̂j + B̂

†
j )2 (27)

[see Eq. (5)], where g
(2)
0,j are single-photon coupling coef-

ficients. In that case the Heisenberg-Langevin equations of
motion are, in the frame of the laser frequency ωL,

˙̂A =
[
i�c − κ

2

]
Â + η − iÂ

N∑
j=1

g
(2)
0,j (B̂j + B̂

†
j )2 + √

κâin,

˙̂Bj = −iωj B̂j − γj

2
(B̂j − B̂

†
j ) − 2ig

(2)
0,j Â

†Â(B̂j + B̂
†
j ) + iξ̃j ,

with Ã = Â exp(−iωLt) as before. With the expansion (9) we
have

α̇ � i�̄(2)α − κ

2
α + η,

(28)

β̇j � −
[
i�j + γj

2

]
βj −

[
2ig

(2)
0,j |α|2 − γj

2

]
β∗

j ,

where the effective detuning and shifted mechanical frequen-
cies are now

�̄(2) � �c −
N∑

j=1

g
(2)
0,j (βj + β∗

j )2, (29)

�j = ωj + 2g
(2)
0,j |α|2, (30)

and, consistently with the linearization procedure, we have fur-
ther neglected the vacuum expectation value contribution. The
steady-state expectation value of the cavity-field amplitude
is

αs = η

−i�̄(2) + κ/2
, (31)

and the steady-state displacements of the mechanical oscilla-
tors are found from the N coupled fifth-order equations:

(
4g

(2)
0,j |αs|2 + ωj

)
(βj + β∗

j )s = 0. (32)

Zero displacement, (βj + β∗
j )s = 0, is always a solution to

these equations and, for g
(2)
0,j > 0, which is the case for

membranes located at minima of the intracavity field, it is
the only stable solution. However, that solution may become
unstable for negative couplings (g(2)

0,j < 0) occurring when
oscillators are located at cavity-field maxima. In this case,
each oscillator settles in one of the stable positions,

x̄j = ± 1
2 (βj + β∗

j )s, (33)

located symmetrically around the intracavity-field maximum.
As we will see in the following sections, these two geometries
result in qualitative consequences for the behavior of the
system.

A. Local maxima

To simplify the discussion we assume that all coupling
constants g

(2)
0,j have the same sign and consider first the case

where they are negative and the pumping is strong enough to
render the x̄j = 0 solution unstable. The stable steady state
is degenerate, because each oscillator can have a negative or
positive mean displacement. A particular choice of steady state
will break the symmetry of the sign of the displacements and
influence the physics of the system. Experimentally, it could be
controlled by addressing the individual oscillators through an
additional field or by preparing them slightly displaced towards
the desired steady-state position. The Heisenberg-Langevin
equations of motion for the fluctuations can be approximated
to lowest nonvanishing order as

˙̂a �
[
i�̄(2) − κ

2

]
â − 4i

N∑
j=1

g
(2)
j x̄j (b̂j + b̂

†
j ) + √

κâin, (34)

˙̂bj � −
[
i�j + γj

2

]
b̂j −

[
2ig

(2)
0,j n̄c − γj

2

]
b̂
†
j

− 4ig
(2)
j x̄j (â + â†) + iξ̃j , (35)

where we have introduced the amplified quadratic optome-
chanical strengths

g
(2)
j = g

(2)
0,j

√
n̄c. (36)

Assuming that the resulting frequencies of the mechanical
oscillators are

νj = �j + j,
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and following the same approach as before, the equations of
motion for the mechanical modes become

˙̂bj =
[
ij − γj

2

]
b̂j −

[
2ig

(2)
0,j n̄c − γj

2

]
b̂
†
j e

2iνj t

−
N∑

k=1

g
(2)
jk

[
ik + �k

2

]
ei(νj −νk)t b̂k

−
N∑

k=1

g
(2)
jk

[
ik − �k

2

]
ei(νj +νk)t b̂

†
k

− 4ig
(2)
j x̄j e

iνj t (f̂in + f̂ †
in) + iξ̂j , (37)

where the noise operator associated with the adiabatically
eliminated optical field is

f̂in(t) = √
κ

∫ t

0
dτe(i�̄(2)−κ/2)(t−τ )âin(τ ) (38)

and

g
(2)
jk = g

(2)
j x̄j

g
(2)
k x̄k

. (39)

We then find for the radiation-induced frequency shifts k and
damping coefficients �k

k = (
4g

(2)
k x̄k

)2
[

�̄(2) − νk

(�̄(2) − νk)2 + κ2/4

+ �̄(2) + νk

(�̄(2) + νk)2 + κ2/4

]
, (40)

�k

2
= (

4g
(2)
k x̄k

)2
[

κ/2

(�̄(2) + νk)2 + κ2/4

− κ/2

(�̄(2) − νk)2 + κ2/4

]
. (41)

In the weak-coupling regime g
(2)
j x̄j 	 κ , we can neglect

the fast oscillating terms on the right-hand side of Eq. (37)
except for the term proportional to g

(2)
0,j n̄c. The equations of

motion for the mechanics further simplify to

˙̂bj =
[
ij − γj

2

]
b̂j − 2ig

(2)
0,j n̄cb̂

†
j e

2iνj t

−
N∑

k=1

g
(2)
jk

[
ik + �k

2

]
ei(νj −νk )t b̂k

− 4ig
(2)
j x̄j e

iνj t (f̂in + f̂ †
in) + iξ̂j . (42)

These equations have the same form as in the case of linear
optomechanical coupling of the mechanical oscillators except
for the second term which is a second-harmonic generation
process; a direct acoustic analog of optical second-harmonic
generation and a direct consequence of the nonlinear nature
of the quadratic optomechanical coupling. Another notable
new feature in this regime is the flexibility to choose the
sign and strength of the coupling coefficients g

(2)
jk through

the equilibrium positions x̄j and x̄k [see Eq. (39)].

B. Local minima

The situation is changed qualitatively in the case where the
mechanical oscillators are located at minima of the cavity field.
The single-photon, single-mode quadratic optomechanical
coupling coefficients are then positive and the cavity field
results in a tighter confinement through the static optical
spring effect. The only stable steady-state displacement is
given by x̄j = 0 so that the effects described in the previous
section are highly suppressed. On the other hand, a number
of novel features appear as a result of the fact that the
first nonvanishing couplings are of higher order in the
quantum fluctuations. In particular, instead of the second-
harmonic generation discussed in the previous section, the
dominant nonlinear effects are akin to four-wave mixing in
optics.

To lowest order in the fluctuations, the Heisenberg-
Langevin equations of motion become

˙̂a �
[
i�̄(2) − κ

2

]
â − i

N∑
j=1

g
(2)
j

(
b̂2

j + b̂
†2
j + 2b̂

†
j b̂j

) + √
κâin,

(43)

˙̂bj � −
[
i�j + γj

2

]
b̂j −

[
2ig

(2)
0,j n̄c − γj

2

]
b̂
†
j

− 2ig
(2)
j (â + â†)(b̂j + b̂

†
j ) + iξ̃j , (44)

where the effective detuning �̄(2) is now

�̄(2) = �c −
N∑

j=1

g
(2)
0,j . (45)

Applying the same arguments and approximations as before
to adiabatically eliminate the optical field dynamics, we
find the coupled equations of motion for the mechanical
modes

˙̂bj =
[
ij − γj

2

]
b̂j −

[
2ig

(2)
0,j n̄c − γj

2

]
b̂
†
j e

2iνj t − 1

2

N∑
k=1

g
(2)
jk

[
ik + �k

2

](
e−2iνk t b̂2

k b̂j + e2i(νj −νk)t b̂2
k b̂

†
j

)

− 1

2

N∑
k=1

g
(2)
jk

[
ik − �k

2

](
e2iνk t b̂

†2
k b̂j + e2i(νj +νk )t b̂

†2
k b̂

†
j

) − i

2

N∑
k=1

g
(2)
jk �k(b̂†kb̂kb̂j + b̂

†
kb̂kb̂

†
j e

2iνj t )

− 2ig
(2)
j (f̂in + f̂ †

in)(b̂j + b̂
†
j e

2iνj t ) + iξ̂j , (46)

where the mode coupling is now given by

g
(2)
jk = g

(2)
j

/
g

(2)
k , (47)
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the frequency shifts and radiative damping coefficients are

k = (
2g

(2)
k

)2
[

�̄(2) − 2νk

(�̄(2) − 2νk)2 + κ2/4
+ �̄(2) + 2νk

(�̄(2) + 2νk)2 + κ2/4

]
, (48)

�k

2
= (

2g
(2)
k

)2
[

κ/2

(�̄(2) + 2νk)2 + κ2/4
− κ/2

(�̄(2) − 2νk)2 + κ2/4

]
, (49)

�k = (
2g

(2)
k

)2 2�̄(2)

(�̄(2))2 + κ2/4
, (50)

and

f̂in(t) = √
κ

∫ t

0
dτe(i�̄(2)−κ/2)(t−τ )âin(τ ). (51)

Note that in Eq. (46) the quantum noise stemming from the
elimination of the optical field is now multiplicative.

Since we can neglect fast-rotating terms in the weak-
coupling regime, Eqs. (46) further simplify to

˙̂bj =
[
ij − γj

2

]
b̂j − i

2

N∑
k=1

g
(2)
0,jk�kb̂

†
kb̂kb̂j

− 1

2

N∑
k=1

g
(2)
0,jk

[
ik + �k

2

]
e2i(νj −νk)t b̂2

k b̂
†
j

− 2ig
(2)
j (f̂in + f̂ †

in)(b̂j + b̂
†
j e

2iνj t ) + iξ̂j . (52)

These coupled nonlinear equations are indicative of four-wave-
mixing processes and are formally similar to situations driven
by χ (3) nonlinear susceptibilities in nonlinear classical and
quantum optics [39,40]. In that context, four-wave-mixing
phenomena are known to lead to a rich spectrum of effects that
have found numerous applications in applied and fundamental
studies. They include, for example, sum-frequency generation,
high-order harmonic generation, optical parametric amplifica-
tion, self-focusing and defocusing, the generation and propa-
gation of optical solitons, phase conjugation, the generation of
quantum mechanical squeezing and entangled photon pairs,
and more [39,40]. The analysis of this section paves the
way to investigate a similar range of studies in quantum
optomechanics and quantum acoustics and, as such, opens
the way to an intriguing and rich direction of investigation
that will be carried out in follow-up studies. One particularly
attractive feature of optomechanics in this context is the ease
with which the sign and strength of the nonlinear interactions
can be adjusted in combination with the functionalization of
these devices. The following sections discuss a few illustrative
examples, concentrating for now on the simple situation of a
two-mode system with linear optomechanical coupling only,
and demonstrating a example of functionalization that involves
the optically mediated coupling of a nanomechanical system
and a quantum degenerate atomic system.

V. EXAMPLE: TWO-MODE SYSTEM

Elementary multimode effects can be studied in the case
where two mechanical modes interact linearly with a common

cavity field (i.e., N = 2). In the weak-coupling regime the
Heisenberg-Langevin Eqs. (26) become

˙̂b1 = −1

2
�e,1b̂1 −

[
ic,1 + 1

2
�c,1

]
b̂2e

i(ν1−ν2)t

+ ig2e
iν1t (f̂in + f̂ †

in) + iξ̂1,
(53)

˙̂b2 = −1

2
�e,2b̂2 −

[
ic,2 + 1

2
�c,2

]
b̂1e

−i(ν1−ν2)t

+ ig2e
iν2t (f̂in + f̂ †

in) + iξ̂2,

where we have introduced the effective decay rate

�e,j = �j + γj , (54)

the cross-damping rate

�c,j = gjk�k, (55)

and the cross-coupling frequency

c,j = gjkk. (56)

The cross-damping rate is associated with effects such as
sympathetic cooling or heating of coupled oscillators, while
the cross-coupling frequency is associated with the coherent
aspects of multimode coupling, such as quantum state transfer.
Note that when the two effective mechanical frequencies are
matched, ν1 = ν2, the cross-coupling frequencies and damping
coefficients become equal: c,1 = c,2, �c,1 = �c,2.

In terms of the motional quadratures

X̂j = 1

2
(b̂j e

−iνj t + b̂
†
j e

iνj t ), (57)

P̂j = 1

2i
(b̂j e

−iνj t − b̂
†
j e

iνj t ), (58)

Eqs. (53) become

˙̂u = Mû + �̂, (59)

where û = (X̂1, P̂1, X̂2, P̂2)T , the drift matrix M is given by

M = 1

2

⎛
⎜⎜⎜⎝

−�e,1 2ν1 −�c,1 2c,1

−2ν1 −�e,1 −2c,1 −�c,1

−�c,2 2c,2 −�e,2 2ν2

−2c,2 −�c,2 −2ν2 −�e,2

⎞
⎟⎟⎟⎠, (60)
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and the noise operator matrix �̂ is

�̂ =

⎛
⎜⎜⎜⎝

0

ξ̂1e
−iν1t + g1F̂in

0

ξ̂2e
−iν2t + g2F̂in

⎞
⎟⎟⎟⎠, (61)

with the effective optical noise operator

F̂in = √
κ

∫ t

0
dτe(i�̄−κ/2)(t−τ )âin(τ ) + H.c. (62)

In the following we limit ourselves to the case of Gaussian
states and assume that the mechanical elements are coupled
to statistically independent Markovian heat baths at low
temperature T characterized by the two-time correlations
functions [49]

〈ξ̃j (t)ξ̃j (t ′) + ξ̃j (t ′)ξ̃j (t)〉
2

� γj (2n̄th,j + 1)δ(t − t ′), (63)

where n̄th,j = [exp(h̄ωj/kBT ) − 1]−1. From Eqs. (9) the first
moments of all position and momentum quadratures are always
zero, and one readily derives a closed set of differential
equations for the second moments of the oscillator quadratures.
The equation of motion for the covariance matrix Vij =
1
2 〈ûi ûj + ûj ûi〉 can be written as [50]

V̇ = MV + VMT + D, (64)

where M is the drift matrix and the inhomogeneous term
D is given by Dij = 1

2 〈�̂i ûj + ûj �̂i + �̂j ûi + ûi�̂j 〉. This
system of equations can be solved exactly in principle but the
resulting solutions lack transparency. More physical insight
into the coupled dynamics of the oscillator can be gained in
the resolved-sideband limit and in the Doppler limit, two cases
to which we now turn.

A. Resolved-sideband regime

The resolved-sideband regime is characterized by slow
optical resonator damping compared to the mechanical fre-
quencies: ω1,ω2 � κ . (We assume without loss of generality
that ω1 > ω2 in the following.) It is known from the standard
theory of single-mode cavity optomechanics that in the
absence of coupling each oscillator experiences a frequency
shift k(�̄) comprised of the sum of two dispersion curves
centered around �̄ = ±ωk with characteristic widths κ (see
Fig. 2), while their damping coefficients �k(�̄) are the sum
of a positive and negative Lorentzian, also of width κ , and
centered at these same detunings [51].

The red and blue detunings for which the two oscillators
are brought into resonance with each other are given by
the intersections of the two curves in Fig. 2. There are two
such intersections on the red-detuned side of the optical
resonance: one near �̄ = −ωk and one on the wing of the
dispersion curve. Two more intersections are located similarly
on the blue-detuned side. At these points we have ν1 = ν2 ≡ ν

and therefore c,1 = c,2 ≡ c and �c,1 = �c,2 ≡ �c from
Eq. (56). It is for those detunings that the coupling between
the two mechanical oscillators is most effective.

40 20 20 40
� Κ

Ν1, Ν2 �a.u.�

23 20 17

Ω1

Ω2

FIG. 2. (Color online) Effective frequencies of the first (red, solid)
and second (blue, dashed) mechanical modes in the resolved sideband
regime ω1,ω2 � κ for g1 > g2. The dotted lines denote the bare
frequencies of the mechanical modes. The shifted frequencies are
matched at the intersections. The inset gives a detailed view on the
intersections occurring in the red-detuned side. The parameters used
are ω1 = 2π × 20 MHz, ω2 = 2π × 19.95 MHz, κ = 2π × 1 MHz,
g1 = 2π × 0.3 MHz, and g2 = 2π × 0.12 MHz.

The detailed dynamics of resonant-mode coupling depends
on whether the resonance condition ν1 = ν2 occurs near the
center or on the wing of the dispersion curves that comprise
k(�̄). Near the resonance �̄ = ±ωk optical damping (or
amplification) dominates over the optical spring effect [see
Eqs. (25a) and (25b)] and to first approximation one can
safely neglect that effect compared to those of �c,k by setting
c,k = 0 [see Eqs. (55) and (56)]. The drift matrix M reduces
to

M = 1

2

⎛
⎜⎜⎜⎝

−�e,1 2ν −�c 0

−2ν −�e,1 0 −�c

−�c 0 −�e,2 2ν

0 −�c −2ν −�e,2

⎞
⎟⎟⎟⎠, (65)

and the dominant consequence of the effective optomechanical
coupling between the oscillators is the modification of their
rate of cold damping or amplification compared to their
uncoupled values. One such example is shown in Fig. 3, which
plots the evolution of the variances of the motional quadratures
of the mechanical modes when their effective frequencies
are matched around the center of the Lorentzian curve on
the red side of the cavity field. The mechanical modes are
both assumed to be initially in thermal equilibrium. In the
absence of cross interaction, both oscillators are subject to
cold damping (dotted and dot-dashed lines) with cooling rates
that differ since g1 �= g2. The coupling changes the situation
significantly, with both cooling rates now markedly slower
(solid and dashed lines). This is a result of the exchange of
thermal excitations between the two oscillators that inhibits
their direct optical cooling. (Note that our numerical calcu-
lations suggest that the long-time limit and thus the cooling
limit does not change.) Performing a normal-mode analysis on
the two modes reveals that the two out-of-phase oscillations
decouple from the cavity field, while the two in-phase modes
are cooled with an increased damping rate.
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FIG. 3. (Color online) Upper plot shows short-time (linear time
scale) and lower plot shows long-time (log time scale) evolution of
the motional quadratures of the mechanical modes in the single- and
two-mode scenarios. The mechanical modes of frequencies ω1 (red,
solid) and ω2 (blue, dashed) are both cooled down while interacting
with each other. For comparison the uncoupled cold damping of the
modes ω1 (orange, dotted) and ω2 (green, dot-dashed) are also shown.
Two-mode coupling results in slowing down of the individual cold
damping rates. Here ω1 = 2π × 20 MHz, ω2 = 2π × 19.99 MHz,
κ = 2π × 0.95 MHz, g1 = 2π × 50 kHz, and g2 = 2π × 10 kHz.

We now turn to the resonances ν1 = ν2 that occur on the
wings of the dispersion curves. In these cases the optical
spring effect dominates over cold damping (or amplification), a
consequence of the faster decay of the Lorentzian �k(�̄) (with
1/�̄2) compared to the dispersive nature of k(�̄), which
decreases as 1/�̄. That situation is therefore characterized
by the dominance of coherent exchange between the two
oscillators, and we approximate the corresponding drift matrix
by

M =

⎛
⎜⎜⎜⎝

−γ1/2 ν 0 c

−ν −γ1/2 −c 0

0 c −γ2/2 ν

−c 0 −ν −γ2/2

⎞
⎟⎟⎟⎠. (66)

In this regime, and provided that the noise sources associated
with the optical field can be managed, one can realize
coherent effects such as quantum state transfer between the

10 5 0 5 10
� Κ

Ν1, Ν2 �a.u .�

Ω1

Ω2

FIG. 4. (Color online) Qualitative behavior of effective mechan-
ical frequencies for the first (red, solid) and second (blue, dashed)
oscillators in the Doppler regime. The shifted frequencies are matched
at the intersections. Here we chose g1 > g2. A set of parameters is
ω1 = 2π × 100 kHz, ω2 = 2π × 93 kHz, κ = 2π × 1 MHz, g1 =
2π × 90 kHz, and g2 = 2π × 50 kHz.

two mechanical modes. We return to this effect in the Doppler
regime, which we consider in the following.

B. Doppler regime

In the Doppler regime (ω1,ω2 	 κ), the width of the optical
cavity is so large that it washes out the two distinct features
of k(�̄) and �k(�̄), characteristic of the resolved sideband
regime, and one can approximate

j � g2
j

2�̄

�̄2 + κ2/4
, (67)

�j � −g2
j

2�̄κνj

(�̄2 + κ2/4)2
. (68)

The qualitative behavior of the effective frequencies νj (j =
1,2) is plotted in Fig. 4 for g1 > g2 and shows the intersections
of the two curves on the red-detuned side of the cavity
resonance. (They would lie on the blue-detuned side for
g2 > g1.) Since �j (�̄) decays with the third power of the
cavity linewidth while j (�̄) scales as 1/κ2, it follows that
for the large cavity damping rates characteristic of the Doppler
regime, we can neglect in first approximation the effects of cold
damping (or amplification) and at resonance we find again

M =

⎛
⎜⎜⎜⎝

−γ1/2 ν 0 c

−ν −γ1/2 −c 0

0 c −γ2/2 ν

−c 0 −ν −γ2/2

⎞
⎟⎟⎟⎠. (69)

Note that the argument leading to this result is different in the
resolved-sideband limit, where the radiation-induced damping
can be neglected if the effective detuning is outside of the
mechanical sideband, and in the Doppler regime, in which
case it is negligible due to the large cavity linewidth.

C. State transfer

The previous discussion showed that both the resolved
sideband and the Doppler regimes provide situations where
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cold damping can be neglected and the two oscillators are
resonantly coupled by the effective coherent interaction

He = h̄c(b̂1b̂
†
2 + b̂

†
1b̂2). (70)

This is the familiar beam-splitter Hamiltonian, which is known
in particular to lead to quantum state swapping between the
two oscillators. However, an important issue is that the optical
field mediating the interaction also results in the appearance of
quantum noise, further limiting the fidelity of state transfer in
addition to the clamping noise associated with the mechanical
coupling to thermal reservoirs. Clamping noise can be reduced
in principle in cryogenic environments or perhaps in levitated
structures [52]. What we show in this brief section is that the
fundamental quantum noise associated with the optical field
can also be reduced in principle by the use of squeezed input
fields with correlation functions [53]

〈âin(t)âin(t ′)〉 = e−iωL(t+t ′)Mδ(t − t ′), (71)

〈â†
in(t)â†

in(t ′)〉 = eiωL(t+t ′)M∗δ(t − t ′), (72)

〈â†
in(t)âin(t ′)〉 = Nδ(t − t ′), (73)

〈âin(t)â†
in(t ′)〉 = (N + 1)δ(t − t ′), (74)

where ωL is the central frequency of a squeezing device, and
positive-valued N and complex-valued M are the squeezing
parameters which define the strength of the squeezing as well
as its direction in phase space, given by the complex phase of
M . In the following, we assume an ideal squeezed state which
satisfies

M =
√

N (N + 1)e−2iθs . (75)

The equations of motion for vacuum input noise are recovered
by substituting N → 0,M → 0.

For concreteness we consider the explicit situation of a
hybrid two-mode mechanical system where one of the modes
is a recoil-induced side mode of a Bose-Einstein condensate
[8] trapped inside an optical resonator with an oscillating
end mirror, and the other is the center-of-mass mode of

0 1 2 3 4
⏐�c⏐t

0.4

0.6

0.8

1.0
X2

FIG. 5. (Color online) Motional quadrature of moving mirror
(red, solid) and BEC (blue, dashed) in the presence of vacuum noise
for ω1 = 2π × 101 kHz, ω2 = 2π × 100 kHz, κ = 2π × 1 MHz,
g1 = 2π × 100 kHz, and g2 = 2π × 10 kHz.

0 1 2 3 4
⏐�c⏐t

0.4

0.6

0.8

1.0
X2

FIG. 6. (Color online) Motional quadrature of moving mirror
(red, solid) and BEC (blue, dashed) for squeezed vacuum noise with
N = 1 and squeezing phase θs − θc = π/2. Same parameters as in
Fig 5.

oscillation of that mirror. As discussed in Ref. [14], for the
case where a system is prepared in such a way that the shifted
optomechanical frequencies of the two oscillators ν1 and ν2

are equal (c,1 = c,2 = c), the equations of motion for the
quadratures of the coupled mechanical oscillators reduce to

d

dt

⎡
⎢⎢⎢⎣

X̂1

P̂1

X̂2

P̂2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 ν 0 c

−ν 0 −c 0

0 c 0 ν

−c 0 −ν 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

X̂1

P̂1

X̂2

P̂2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎣

0
g1F̂in

0
g2F̂in

⎤
⎥⎥⎦,

where the subscripts 1 and 2 refer to the oscillating mirror and
the condensate side mode, respectively, and the cross-coupling
frequency is

c = g1g2
2�̄

�̄2 + κ2/4
. (76)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Θs�Θc

0.2

0.4

0.6

0.8

1.0
F

FIG. 7. (Color online) State transfer fidelity for squeezed vacuum
noise with N = 1 (red, solid), N = 10 (blue, dashed), and vacuum
noise (gray, dotted) as a function of the phase difference between
squeezing input and cavity field. The initial states of the BEC and
the moving mirror are the ground state and a thermal state with mean
phonon number n̄ = 1, respectively.
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FIG. 8. (Color online) Same as Fig. 7, but for BEC initially
in squeezed state with position quadrature variance of 0.025 and
momentum quadrature variance of 10 and moving mirror in a thermal
state with mean phonon number n̄ = 1, respectively.

For a squeezed input field the two-time correlation function of
the effective noise can be approximated as

〈F̂in(t)F̂in(t ′) + F̂in(t ′)F̂in(t)〉
2

≈ κ

�̄2 + κ2/4

(
|M| cos[2(θs − θc)] + N + 1

2

)
δ(t − t ′),

(77)

with θc = arg(i�̄ + κ/2). Here we have assumed that intrinsic
mechanical decoherence is negligible for the time scales of
interest.

Figure 5 shows the co-evolution of the variance of one of
the motional quadratures of the two oscillators. In this example
the resonator is driven by a coherent field and the initial states
of the BEC and the moving mirror are the ground state and a
thermal state with mean phonon number n̄ = 1, respectively.
As expected, the fidelity of the coherent quantum state transfer,
which would be unity at times (π/2 + pπ )−1

c , with p integer,
in the absence of noise, is increasingly reduced by the quantum
fluctuations of the light field, even without intrinsic mechanical
decoherence mechanisms.

The use of a squeezed optical field to reduce the detrimental
effect of quantum noise is illustrated in Fig. 6, where the
improved fidelity is readily apparent in particular at time
t = π/(2c). As illustrated in Figs. 7 and 8, the state-transfer
fidelity depends strongly on the phase difference between
the cavity field and a squeezing device. For θs = θc ± π/2,
the fluctuations in the position quadrature of the cavity field
are minimized so that very-high-fidelity state transfer is
achieved; F = 0.997 for N = 10 in our example. As would be
intuitively expected, we also find that strong squeezing leads
to an increased sensitivity of the state-transfer fidelity on that

relative phase. As a comparison to Fig. 7, which is for a BEC
side mode initially in the ground state and the oscillating mirror
in a thermal state with n̄ = 1, Fig. 8 displays the fidelity of
state transfer where the BEC is initially in a squeezed state with
〈�X̂2

2〉 = 0.025 and 〈�P̂ 2
2 〉 = 10. The transfer fidelity in that

case exhibits an increased dependence of the relative phase
between the cavity field and a squeezing device, as would
be expected. In the optimal case θs = θc ± π/2 and N = 10,
the fidelity of squeezed-state transfer is F = 0.978, which is
somewhat lower than for a vacuum state; a consequence of the
higher sensitivity of squeezed states to decoherence.

VI. CONCLUSION

In summary, we have analyzed the optically mediated
interaction between multimode phonon fields in cavity op-
tomechanical systems where it is possible to adiabatically
eliminate the electromagnetic field. A number of possible
forms of this interaction were identified, including multimode
beam-splitter interactions and, in the case of quadratic optome-
chanical coupling, a plethora of possible nonlinear effective
interactions, such as analogs of second-harmonic generation
and four-wave mixing in nonlinear optics. The specific forms
of the effective interaction depend sensitively on the sign of
the couplings. Importantly, we found that incoherent effects
due to quantum fluctuations—associated primarily with the
elimination of the electromagnetic field—need not overwhelm
coherent mode-coupling effects. As a result one can expect that
analogs of nonlinear effects such as four-wave mixing, soliton
generation, the creation of entangled phonon pairs, and others
should be achievable in quantum acoustics.

Our treatment was kept sufficiently generic that it can be
applied to a wide variety of systems and parameter regimes,
and as a concrete example we discussed quantum state
transfer between a momentum side mode of a Bose-Einstein
condensate and the center-of-mass mode of oscillation of the
end mirror of a Fabry-Pérot interferometer. We showed how
decoherence effects can be reduced significantly in that case
by the use of squeezed optical fields.

Future work will expand these results to more general
situations and apply it to the study of practical situations
where the effective mode coupling is nonlinear and investigate
particular effects such as phase conjugation, entanglement, and
the creation of entangled phonon pairs, for example. We will
also exploit pulsed optomechanics ideas to further expand the
toolbox of quantum optomechanics.
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