
PHYSICAL REVIEW A 86, 063828 (2012)

Multiphoton quantum interference at a beam splitter and the approach
to Heisenberg-limited interferometry

Richard Birrittella, Jihane Mimih, and Christopher C. Gerry
Department of Physics and Astronomy, Lehman College, The City University of New York, Bronx, New York 10468-1589, USA

(Received 1 August 2012; published 21 December 2012)

We study multiphoton quantum-interference effects at a beam splitter and its connection to the prospect
of attaining interferometric phase-shift measurements with noise levels below the standard quantum limit.
Specifically, we consider the mixing of the most classical states of light coherent states with the most nonclassical
states of light number states at a 50 : 50 beam splitter. Multiphoton quantum-interference effects from mixing
photon-number states of small photon numbers with coherent states of arbitrary amplitudes are dramatic even
at the level of a single photon. For input vacuum and coherent states, the joint photon-number distribution after
the beam splitter is unimodal, a product of Poisson distributions for each of the output modes but with the
input of a single photon, the original distribution is symmetrically bifurcated into a bimodal distribution. With
a two-photon-number state mixed with a coherent state, a trimodal distribution is obtained, etc. The obtained
distributions are shown to be structured so as to be conducive for approaching Heisenberg-limited sensitivities
in photon-number parity-based interferometry. We show that mixing a coherent state with even a single photon
results in a significant reduction in noise over that of the shot-noise limit. Finally, based on the results of mixing
coherent light with single photons, we consider the mixing coherent light with the squeezed vacuum and the
squeezed one-photon states and find the latter yields higher sensitivity in phase-shift measurements for the same
squeeze parameter owing to the absence of the vacuum state.
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I. INTRODUCTION

The familiar coherent states |α〉 [1] are the most
classical-like of all the pure states of a single-mode quantized
electromagnetic field, and they represent the light produced by
a phase-stabilized laser. They yield field-operator expectation
values that behave like classical prescribed fields but with
quantum fluctuations at the level of the vacuum. The
corresponding Wigner function is Gaussian and positive
everywhere in phase space, whereas, its corresponding P

function [1,2] is a δ function [3]. On the other hand, a
Fock state, or number states |N〉, N = 1,2,3, . . . , are at the
other extreme in that they are the most nonclassical of field
states, having highly sub-Poissonian (or amplitude squeezed)
photon-number statistics. The Wigner functions of such
states are non-Gaussian, oscillatory, and take on negative
values in phase space. The corresponding P functions of the
number states are highly singular in that they are given as the
2N th-order derivative of a δ function.

Optical interferometry with classical-like light beams only,
i.e., with coherent light in the state |α〉 as one input with the
other in the vacuum |0〉, is known to be limited in sensitivity
for phase-shift measurements to the standard quantum limit,
or shot-noise limit, optimally given by �ϕSQL = 1/

√
n̄, where

n̄ = |α|2 is the average number of photons passing through
the interferometer [4]. The sensitivity of the interferometer
can be enhanced by increasing the intensity of the light,
that is, increasing n̄. However, this leads to an increase in
radiation pressure fluctuations on the interferometer mirrors,
thus, ultimately degrading its sensitivity. A possible way
around this problem was proposed by Caves [5] who suggested
that a form of nonclassical light, namely, a squeezed vacuum
(SV) state, be injected into the previously unused port of the
first beam splitter of the interferometer along with coherent
light as usual. The mixing of coherent and squeezed light at the

first beam splitter results in the increase in the sensitivity of the
interferometer to �ϕ = e−r/

√
n̄, where r � 0 is the so-called

squeezing parameter and n̄ still refers to the average photon
number of the input coherent state to a good approximation.
The measurement scheme for coherent states alone or for
coherent states mixed with squeezed vacuum states is the
subtraction of the output photocurrents of the second beam
splitter, this being the standard approach for the interferometric
measurement of phase shifts.

For linear phase shifts, the ultimate level of sensitivity
allowed by quantum mechanics is given by the so-called
Heisenberg limit �ϕHL = 1/n̄, a reduction in noise over the
standard quantum limit by a factor of 1/

√
n̄ [6]. There has

been much discussion in the literature on the use of so-called
NOON states [7] in order to reach this limit, these states having
the form (|N〉a|0〉b + ei�N |0〉a|N〉b)/

√
2, where �N is a phase

that may depend on N . Such states cannot be produced with
an ordinary beam splitter; some kind of nonlinear process is
required to generate them in lieu of the first beam splitter of
the interferometer, and one still requires a number state of high
photon number N . But with the appropriate observable, which
turns out to be the photon-number parity operator of just one of
the output beams of the interferometer [8], Heisenberg-limited
sensitivity, in this case �ϕ = 1/N,can be attained. The use of
parity measurements also leads to superresolution. That is,
with �̂ denoting the parity operator of the relevant output
field mode, then 〈�̂〉 = cos(Nϕ), which has oscillations in
ϕ that are N times “faster” than for the case of one photon
or for interferometry with a coherent state. Oscillations with
Nϕ are said to be super-resolved. The necessity of generating
number states can be overcome by instead using entan-
gled coherent states of the (un-normalized) form |α〉a|0〉b +
|0〉a|β〉b, where |α| = |β|, which leads to �ϕ = 1/n̄

with n̄ = |α|2.
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Yet another approach is to use an ordinary interferometer,
i.e., one requiring no nonlinear elements as part of the
interferometer, with input twin-Fock states |N〉a|N〉b falling
on the first beam splitter [9]. With parity measurements on
one of the output beams, we obtain asymptotically, in the limit
of large N , �ϕ = 1/(2N ) [10], which is the Heisenberg limit
for this input state, there being 2N photons passing though
the interferometer. Super-resolved interference fringes in the
average of the parity operator are also obtained.

This scheme also has a problem, this having to do with
reliably presenting Fock states of equal photon number
simultaneously on opposite sides of the first beam splitter.
Thus, superpositions of twin-Fock states have been considered.
Anisimov et al. [11] have studied the use of two-mode
squeezed vacuum states, whereas, Gerry and Mimih [12] have
studied the use of pair coherent states [13]. Both states yield
Heisenberg-limited phase uncertainties and, in fact, the former
yield phase uncertainties slightly below the Heisenberg limit
for small average photon numbers, whereas, the latter yield
phase uncertainties that are very similar to those obtained
from the pair coherent states. The initial photon-number
distributions of the two-mode squeezed vacuum and pair
coherent states are very different. The distribution for the
former is super-Poissonian and peaks at the two-mode vacuum
state (it is a thermal-like distribution), whereas, the distribution
for the latter is sub-Poissonian and peaks around some twin-
Fock state |N〉a|N〉b for N̄ ≈ N � 0,N̄ being the average
photon number in one of the modes.

In all these cases leading to Heisenberg-limited sensitivity,
there is a characteristic form of the joint photon-number
distribution prior to the final beam splitter and subsequent
parity measurement, which is that the photon-number states
along the margins are more highly populated than those
of the interior. This is obviously true for the NOON states
and for the maximally entangled coherent states where the
only populated states are exactly along the margins. For
the twin-Fock states and their superpositions, after the first
beam splitter, the states along the margins are again highly
populated, although there is a low plateau of interior states
also populated. The point here is that, because of quantum
superposition, there is considerable uncertainty in the location
of the bulk of the photons. For the NOON state, to take an
extreme case, the uncertainty in the number of photons in
one of the modes is �N = N (all or none), and by using the
heuristic number-phase uncertainty relation �N �ϕ ≈ 1, we
obtain �ϕ ≈ 1/N , the Heisenberg limit.

Some years ago, Ou [14] studied the multiparticle quantum
interferences arising in a lossless 50 : 50 beam splitter with N

photons (say mode a) as one of the inputs and a single photon
at the other (mode b), i.e., with input state|N〉a|1〉b. The single
photon was shown to have a dramatic effect on the joint photon-
number distribution of the state of the photon beams emerging
from the beam splitter. For the input state |N〉a|0〉b, the
joint distribution of the output state is a binomial (Bernoulli)
distribution of the N photons over the two output modes.
But with the single-photon input, the output distribution,
due to multiparticle quantum interference, has a cancellation
right in the center of the original binomial distribution. The
interference also has the effect of “pushing” the nonzero
elements of the distribution over toward the margins. A similar

thing happens with input state |α〉a|1〉b where the N−photon
input state |N〉a is replaced by a coherent state |α〉a [15]. With
only a coherent state and a vacuum state |α〉a|0〉b as inputs, the
output state of a beam splitter is a product of coherent states,
and thus, the joint photon-number distribution is a double
Poisson distribution. But with input state |α〉a|1〉b, we once
again obtain a dramatic change in the distribution, it now
having, as before, a central interference fringe with the bulk
of the population distribution migrating along the borders.
It is the rearrangement of the output joint photon-number
distribution, in light of the above remarks on phase and number
uncertainties, that has led us to consider such input states in
the context of subshot quantum optical interferometry.

In this paper, we examine the prospect of performing
super-resolved and supersensitive (i.e., Heisenberg-limited)
interferometric measurements with a Mach-Zehnder interfer-
ometer (MZI) for input states|α〉a|N〉b, N = 1,2, . . . , where it
should be noted that we have extended the input number states
of the b mode to more than one photon. The multiphoton
quantum-interference effects resulting from the mixing of
N -photon-number states with coherent states at a beam splitter
have not been explored to our knowledge. It turns out that, by
mixing photon-number states of increasing photon number
N along with coherent states, we obtain both increasing
sensitivity (sensitivity beyond the standard quantum limit)
approaching the Heisenberg limit and increasing resolution.
Motivated by our results from mixing coherent states with
number states, we then consider the mixing of coherent states
with squeezed vacuum and squeezed one-photon states where
the latter can be obtained by photon subtraction from the
former. The occupation probabilities of these states are heavily
weighted for the low photon-number states. We show that
mixing coherent light with squeezed one-photon states leads
to improved sensitivity over that obtained by mixing coherent
light with squeezed vacuum states.

The paper is organized as follows: In Sec. II, we discuss
the mixing of coherent states and number states at a 50 : 50
beam splitter and examine the resulting joint photon-number
probability distributions. In Sec. III, we discuss the application
of the states to phase-shift detection in interferometry, and
in Sec. IV, we extend our considerations to the mixing
of squeezed vacuum and squeezed one-photon states. We
conclude the paper with some general remarks in Sec. V.

II. MIXING COHERENT AND NUMBER STATES AT A
BEAM SPLITTER

We take as our input state to the MZI |in〉 = |α〉a|N〉b
as indicated in Fig. 1. We can describe the action of a
beam splitter as a rotation [16,17] by using the well-known
Schwinger realization of the su(2) algebra, [Ĵi ,Ĵj ] = iεijkĴk,

the Ĵi(i = 1−3) being angular momentum operators, written
in terms of two sets of Bose operators as

Ĵ1 = 1

2
(â†b̂ + âb̂†), Ĵ2 = 1

2i
(â†b̂ − âb̂†),

(1)

Ĵ3 = 1

2
(â†â − b̂†b̂), Ĵ0 = 1

2
(â†â + b̂†b̂),

where Ĵ0 is a Casimir operator that commutes with all the oth-
ers: [Ĵ0,Ĵi] = 0. The usual angular momentum states |j,m〉,
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FIG. 1. (Color online) A Mach-Zehnder interferometer with input
coherent and number states where ϕ is the relative phase shift between
the two arms where (a) represents the usual detection scheme wherein
the output beam photocurrents are subtracted and (b) represents the
detection scheme where photon-number parity measurements are
performed on just one of the output beams.

which satisfy the eigenvalue relations Ĵ0|j,m〉 = j |j,m〉 and
Ĵ3|j,m〉 = m|j,m〉, are equivalent to the two-mode product
number states |s〉a|t〉b for j = (s + t)/2,m = (s − t)/2 so that
we can write our input state in terms of the angular momentum
states as

|in〉 = |α〉a|N〉b
= exp(−|α|2/2)

×
∞∑

j=N/2,(N+1)/2,(N+2)/2,...

α2j−N

√
(2j − N )!

|j,j − N〉, (2)

where the summation over j includes all the half-odd integers.
As shown by Yurke et al. [16], the input state |in〉 of the

MZI is related to the output state |out〉 according to

|out〉 = ei(π/2)Ĵ1e−iϕĴ3e−i(π/2)Ĵ1 |in〉, (3)

where the factors exp(±i π
2 Ĵ1) represent the actions of the

50 : 50 beam splitters and where the factor exp(−iϕĴ3)
represents the relative phase shifter between the two arms,
the relative phase shift being ϕ.

This set of operators constitutes a particular choice of beam-
splitter types, these types defined by the phase shift picked up
by the reflected beam. Equivalently, we can write, for the
output state,

|out〉 = e−iϕĴ2 |in〉, (4)

where we have used the relation exp(iπĴ1/2)Ĵ3

× exp(−iπĴ1/2) = Ĵ2.

For the input state given above, the output state of the first
beam splitter is

|out,BS1〉 = exp

(
−i

π

2
Ĵ1

)
|in〉

= e−|α|2/2
∞∑

n=0

n∑
k=0

N∑
q=0

(−i)n−k+N−q

× αn

n!
√

N !
2−(n+N)/2

√
(N − q + k)!(n − k + q)!

×
(

n

k

) (
N

q

)
|N − q + k〉a|n − k + q〉b. (5)

The probability of detecting ma photons in mode a and mb

in mode b for a given N is given by

P (ma,mb|N ) = |〈ma|〈mb|out,BS1〉|2

= e−|α|2 |α|2(ma+mb−N )ma!mb!

2ma+mb [(ma + mb − N )!]2N !

×
∣∣∣∣∣

N∑
q=0

i2q

(
N

q

)(
ma + mb − N

ma − N + q

)∣∣∣∣∣
2

. (6)

For the special cases of N = 0,1,2, and 3, we have

P (ma,mb|0) = e−|α|2 |α|2(ma+mb)

2ma+mbma!mb!
, (7)

P (ma,mb|1) = e−|α|2 |α|2(ma+mb−1)

2ma+mbma!mb!
(ma − mb)2, (8)

P (ma,mb|2) = e−|α|2 |α|2(ma+mb−2)

2ma+mbma!mb!

× [
m2

a + mb(mb − 1) + ma(2mb + 1)
]2

, (9)

and

P (ma,mb|3) = e−|α|2 |α|2(ma+mb−3)

2ma+mbma!mb!

× 1

6
[ma(ma − 1)(ma − 2) − 3ma(ma − 1)mb

+ 3mamb(mb − 1) − mb(mb − 1)(mb − 2)]2.

(10)

In Fig. 2, we plot P (ma,mb|N ) versus ma and mb for |α| =
3 and for N = 0,1,2, and 3. For N = 0, we obtain the expected
joint photon-number distribution for input coherent and vac-
uum states |α〉a|0〉b to the beam splitter, which results, for our
choice of beam-splitter type, in the output state |α/

√
2〉a| −

iα/
√

2〉b the joint photon-number distribution for which is

P (ma,mb|0) = |a〈ma|α/
√

2〉ab〈mb|−iα/
√

2〉b|2

= exp(−|α|2)
|α/

√
2|2(ma+mb)

ma!mb!
, (11)

in agreement with Eq. (7). This is, of course, a unimodal
distribution, a composite of Poisson distributions of each of the
output coherent states, and is centered near n̄a = n̄b = |α|2/2.
As is well known, no entanglement is generated in this case.
Now, for N = 1, we see that the distribution is bimodal. In
fact, we can see from Eq. (8) thatP (m,m|1) = 0 for all m is the
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FIG. 2. (Color online) For α = 3, (a) the joint photon number distribution P (ma,mb|0) plotted against ma and mb, (b) for P (ma,mb|1), (c)
for P (ma,mb|2), and (d) for P (ma,mb|3).

result of destructive quantum interference. This is a striking
result in that |α|2 can be arbitrarily large, yet the appearance of
just one photon at the other beam-splitter input dramatically
alters the distribution obtained with N = 0, bifurcating it into
a bimodal distribution. This is interesting in the context of
interferometry because the joint photon-number distribution
for the NOON state (|N〉a|0〉b + ei�N |0〉a|N〉b)/

√
2 is also

bimodal, although it is nonzero only along the borders (i.e.,
along the lines ma = 0 and mb = 0). For N = 2, we obtain
a trimodal distribution. Unlike the case for N = 1, we do
not have lines of zeros (destructive quantum interference)
separating the modes of the distribution, but we do have two
lines that contain zeros, these being, from Eq. (9), roots of

m2
a + mb(mb − 1) + ma(2mb + 1) = 0. (12)

The roots of this equation fall along two lines, but there is
a not a “continuous” line of zeros. For the case with N = 3,
we obtain a quadramodal distribution with separations along
the lines obtained from the roots of Eq. (10),

ma(ma − 1)(ma − 2) − 3ma(ma − 1)mb + 3mamb(mb − 1)

−mb(mb − 1)(mb − 2) = 0. (13)

The case for which ma = mb = m is a solution, e.g.,
P (m,m|3) = 0 for all m. There are other solutions, but these do
not form a line of contiguous zeros. Continuing in this way, it
is evident that, for a given N , we obtain an (N + 1)-modal
distribution. For all cases where N is odd, we find that
P (m,m|Nodd) = 0 for all m.

We note also that, with increasing photon number N ,
the distributions become rearranged symmetrically on an
“antidiagonal” in the ma, mb plane where the modes (peaks)
along the edges are the highest. These are reminiscent of the
kinds of distributions that appear upon mixing twin-Fock states
by a 50 : 50 beam splitter [10] where the output state is what has
been called the arcsine states [17] also known at the “bat states”
because of the shape of their joint photon-number distribution
across the antidiagonal [18]. As mentioned in the Introduction,
it has long been known that twin-Fock states, fed through a
Mach-Zehnder interferometer, lead to sub-shot-noise sensitiv-
ity measurements of phase shifts. The similarity of the joint
distributions obtained upon the mixing of coherent and number
states and the mixing of twin-Fock states at a beam splitter
suggest that the former should also yield sub-shot-noise phase-
shift measurements, which we discuss in the next section.

III. PHASE-SHIFT DETECTION

A. Subtraction of photocurrents

The usual way to obtain information on the relative phase
shift ϕ is to subtract the outputs (the photocurrents) of the
second beam splitter as indicated in Fig. 1(a) to obtain the
signal S = 〈(â†â − b̂†b̂)out〉 = 2〈Ĵ3 out〉 where

Ĵ3 out = eiϕĴ2 Ĵ3e
−iϕĴ2 = Ĵ3 cos ϕ − Ĵ1 sin ϕ. (14)

Taking the expectation value of Ĵ3 out with respect to
|in〉 = |α〉a|N〉b, we easily find that S = (|α|2 − N ) cos ϕ.
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Using the error propagation calculus, we may determine the
uncertainty in estimating the phase shift or the sensitivity of
this measurement scheme, according to

�ϕ = �J3 out/

∣∣∣∣∂〈Ĵ3 out〉
∂ϕ

∣∣∣∣, (15)

where �J3 out = 〈Ĵ 2
3 out〉 − 〈Ĵ3 out〉2. We find that

�ϕ =
√

|α|2 + N (1 + 2|α|2) sin2 ϕ

|(|α|2 − N ) sin ϕ| . (16)

If N = 0, we obtain �ϕ = 1/
√

n̄| sin ϕ|, where n̄ = |α|2,
which is the usual result for a coherent state input to the MZI.
We notice that the sensitivity depends on the phase shift itself
and that the optimal uncertainty is for ϕ = π/2, which yields
the standard quantum limit �ϕSQL = 1/

√
n̄. By inserting a

quarter-wave plate in the upper arm of the interferometer, one
can shift the phase by π/2 so that, for the general case, we
now have

�ϕ =
√

|α|2 + N (1 + 2|α|2) cos2 ϕ

|(|α|2 − N ) cos ϕ| , (17)

and, for N = 0, we have �ϕ = 1/
√

n̄| cos ϕ|, which goes over
to the standard quantum limit in the limit of small phase shift.
Thus, with this measure for the phase (i.e., the measurement
of the quantity Ĵ3 at the output of the MZI), for fixed |α|, the
optimal noise reduction achievable is the standard quantum
limit and occurs only for the case when N = 0. For other values
of N , the noise level rises to above the standard quantum limit.
Note that, if the fields are nearly of the same average photon
number, i.e., if |α|2 � N , the noise level becomes very high.

B. Photon-number parity measurements

As discussed in the Introduction, an alternative method
for detecting the phase shift is through the measurement of
photon-number parity on just one of the output beams of the
MZI [8] as indicated in Fig. 1(b). We choose this to be the b

beam for which the parity operator can be written as

�̂b = (−1)b̂
†b̂ = eiπb̂† b̂ = eiπ(Ĵ0−Ĵ3). (18)

The expectation value of this operator with respect to the output
state is

〈�̂b(ϕ)〉 = 〈out|�̂b|out〉 = 〈in|eiϕĴ2eiπ(Ĵ0−Ĵ3)e−iϕĴ2 |in〉.
(19)

Writing an arbitrary input state in terms of the angular
momentum states |j,m〉 as

|in〉 =
∞∑

j=0

j∑
m=−j

Cjm|j,m〉, (20)

where the sum over j includes the half-odd integers, we can
obtain the general result,

〈�̂b(ϕ)〉 =
∞∑

j=0,1/2,1,3/2,...

j∑
m=−j

j∑
m′=−j

j∑
m′′=−j

C∗
jm′Cjmeiπ(j−m′′)

× d
j

m′,m′′ (−ϕ)dj

m′′,m(ϕ), (21)

where the d
j

m′,m(β) = 〈j,m′|e−iβĴ2 |j,m〉 [19]. For our input
states of Eq. (2), we have the coefficients,

Cjm = exp(−|α|2/2)
α2j−N

√
(2j − N )!

δm,j−N,

(22)

j = N

2
,
N + 1

2
,
N + 2

2
, . . . ,

so that, after some manipulations, we obtain

〈�̂b(ϕ)〉N
= (−1)N exp(−|α|2)

×
∞∑

j=N/2,(N+1)/2(N+2)/2,...

|α|2(2j−N)

(2j − N )!
d

j

j−N,j−N (2ϕ), (23)

or, using the expression for the d functions found in Rose [19],
we have

〈�̂b(ϕ)〉N = (−1)N exp(−|α|2)

×
∞∑

j=N/2,(N+1),2,(N+2)/2,...

|α|2(2j−N)

(2j − N )!

× [cos ϕ]2j
2F1(−N, − 2j + N,1; − tan2 ϕ),

(24)

where 2F1(a,b,c; x) is the hypergeometric function.
First, we consider the special caseN = 0 for which we can

obtain the simple form

〈�̂b(ϕ)〉0 = exp[−n̄(1 − cos ϕ)], (25)

where n̄ = |α|2. This is just the result obtained by Chiruvelli
and Lee [20] and discussed by Gao et al. [21] in connection
with an application of parity measurements to the problem
of the quantum laser radar. Note that, for small angles
ϕ → 0, we obtain a signal peaking with 〈�̂b(0)〉0 = 1 but
which becomes narrower around ϕ = 0 for increasing n̄. The
signal is not super-resolved in the usual sense of having
oscillations frequencies scaling as Mϕ for integer M > 1.

However, compared with the corresponding result for the
output subtraction method S/n̄ = cos ϕ, we can see the
signal for the parity measurement exp[−n̄(1 − cos ϕ)] is much
narrower, and it is in this sense that Gao et al. [21] interpret
the parity result as being super-resolved.

Now, we turn to the general cases for whichN > 1 for which
we plot 〈�̂b(ϕ)〉N against ϕ in Fig. 3 for various |α|2. Note
that, in the limit ϕ → 0, we have, from Eq. (24), that

〈�̂b(ϕ = 0)〉N
= (−1)N exp(−|α|2)

×
∞∑

j=N/2,(N+1)/2,(N+2)/2,...

|α|2(2j−N)

(2j − N )!
= (−1)N, (26)

and, thus, the expectation value of the parity operator for the
output b mode at ϕ = 0 exactly reflects the parity of N . But we
also get oscillations in the signal with ϕ (interference fringes)
of the type expected in the usual sense of super-resolution,
and furthermore, we notice that the central peak or valley
at ϕ = 0 narrows for increasing N . Thus, the injection of
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FIG. 3. (Color online) Expectation value of the parity operator for the output b beam plotted against the phase shift ϕ and |α| for (a) N = 0,

(b) N = 1, (c) N = 2, and (d) N = 3.

photon-number states along with coherent states into the MZI
apparently leads to enhanced super-resolution because of the
narrowing of the central peak or valley and in the increase in
the number of oscillations in the signal with changing ϕ.

Finally, we consider the effects on noise reduction with
parity operator measurements. From the error propagation
calculus for the parity observable, we have

�ϕ = ��b

|∂〈�̂b(ϕ)〉/∂ϕ| =
√

1 − 〈�̂b(ϕ)〉2

|∂〈�̂b(ϕ)〉/∂ϕ| , (27)

where ��̂b =
√

〈�̂2
b(ϕ)〉 − 〈�̂b(ϕ)〉2 and where 〈�̂2

b(ϕ)〉 =
1. In Fig. 4, we plot �ϕ against the total average photon number
|α|2 + N for N = 0,1,2, and 3 in the limit ϕ → 0 where,
for computation reasons, we set ϕ = 10−4.Included in each
graph are the corresponding standard quantum limit �ϕSQL =
1/

√
|α|2 + N and the Heisenberg limit �ϕHL = 1/(|α|2 + N ).

It is evident that mixing coherent states with a Fock state
of N photons allows for sub-shot-noise limit noise reduction
in the parity-based measurement scheme of detecting phase
shifts. The effect is most pronounced for intermediate values
of |α|2 + N where, even for N = 1, we see a remarkable
reduction in the noise level. It is clear that, overall, the noise
reduction approaches the Heisenberg limit for increasing N .

The minimal phase uncertainty obtainable for a given state
is found by the quantum Cramér-Rao bound [22],

�ϕmin = 1/
√

FQ, (28)

where FQ is the quantum Fisher information for an MZI. FQ

is four times the variance of the operator Ĵ3 that generates the
accumulated phase shift between the arms of the interferometer
[11,13], this being the factor exp(−iϕĴ3) in Eq. (3). That is,
FQ = 4�Ĵ3. For our input states |α〉a|N〉b, we find that

�ϕmin = 1

2
√

|α|2 + N (1 + 2|α|2) cos ϕ
. (29)

It turns out that the phase-shift uncertainties obtained with
this result in the limit ϕ → 0, the dots in Fig. 4, exactly agree
with those obtained by the parity operator method, a result that
is in agreement with those of Refs. [11,23], which also show
that the measurement of the photon-number parity operator
realizes the Cramér-Rao bound.

IV. MIXING COHERENT STATES WITH SQUEEZED
VACUUM STATES AND SQUEEZED ONE-PHOTON

STATES

So far, we have discussed the effects of mixing coherent
states with number states at a beam splitter. For a general
superposition of number states in mode b of the form

|ψ〉b =
∞∑

N=0

CN |N〉b, (30)
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FIG. 4. (Color online) The phase uncertainty �ϕ versus the total average photon number n̄ = |α|2 + N with the choice ϕ = 10−4 rad for
(a) N = 0, (b) N = 1, (c) N = 2, and (d) N = 3. The upper dashed line represents the corresponding standard quantum limit, and the lower
dashed line represents the Heisenberg limit. The dots represent the results obtained for the Cramér-Rao bound given by Eq. (28). We include
(a) the case N = 0 as a reminder that, when performing parity measurements for input coherent light only, one reaches the standard quantum
limit for low values of the phase shift in contrast to what happens using subtraction of photocurrents leading to Eq. (16).

the input state is|in〉 = |α〉a|ψ〉b. After the first beam splitter,
we have

|out, BS1〉 = e−i(π/2)J1 |in〉

=
∞∑

N=0

∞∑
n=0

n∑
k=0

N∑
q=0

CNe−|α|2/2(−i)n−k+N−q

× αn

n!
√

N !
2−(n+N)/2

×
√

(N − q + k)!(n − k + q)!

(
n

k

)(
N

q

)
× |N − q + k〉a|n − k + q〉b, (31)

The probability of detecting ma photons in mode a and mb in
mode b is given by

P (ma,mb|ψ)

= e−|α|2 ma!mb!

2ma+mb

∣∣∣∣∣
∞∑

N=0

N∑
q=0

CNi(2q−N) αma+mb−N

(ma + mb − N )!
√

N !

×
(

N

q

) (
ma + mb − N

ma − N + q

) ∣∣∣∣∣
2

. (32)

The corresponding expectation value of the parity operator is
given by

〈�̂b〉 =
∞∑

N=0

|CN |2〈�̂b〉N . (33)

In the paper of Caves [5], coherent states are mixed with
single-mode squeezed vacuum states at a beam splitter. A
single-mode squeezed number state in the b mode is given
by [24,25]

|r,M〉b = Ŝb(r)|M〉b, (34)

where Ŝb(r) is the squeeze operator given by

Ŝb(r) = exp

[
1

2
r(b̂†2 − b̂2)

]
, (35)

and where r is the squeeze parameter 0 � r < ∞. For the
squeezed vacuum state M = 0, we have

|r,0〉b =
∞∑

N=0

CN |N〉b, (36)

where [23]

CN =
{

(−1)N/2
[

N!
2N [(N/2)!]2

tanhN r
cosh r

]1/2
, N even,

0, N odd.
(37)

The average photon number for the squeezed vacuum state is

n̄ = sinh2 r. (38)

For the case of the one-photon squeezed state M = 1, we
have

CN =
{

0, N even,

(−1)(N−1)/2
[

N!
2N−1{[(N−1)/2]!}2

tanhN−1r

cosh3r

]1/2
, N odd.

(39)
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FIG. 5. (Color online) Photon-number probability distributions
for (a) the single-mode squeezed vacuum state and (b) the single-
mode squeezed one-photon states, both for squeeze parameter
r = 1.2.

The average photon number for this state is given by [24]

n̄ = sinh2 r + cosh(2r). (40)

The photon-number probability distributions for these
states, given by PN = |CN |2, are plotted against N in Fig. 5 for
squeeze parameter r = 1.2. For a given value of r , the average
number of photons in the squeezed vacuum and squeezed
one-photon states is quite different. For r = 1.2, the average
number of photons in the squeezed vacuum state is 2.278,
whereas for the squeezed one-photon state it is 7.835.

Now, by mixing coherent and squeezed vacuum states at a
beam splitter, it is possible to choose field-state parameters
such that, after beam splitting, the joint photon-number
distribution is symmetrically populated along the borders
with essentially no population in the interior. In Fig. 6, we
display such a situation for the case where α = √

1.2 and
r = 0.947, which corresponds to beams of equal average
photon number 1.2. We see that the output state consists of
a superposition of NOON states for N = 2,3,4, and 5. The α

and r parameters used for the above graph are those relevant
to a recent experiment performed by Afek et al. [26] who,
working on a suggestion by Hofmann and Ono [27], have
performed an interferometry experiment based on the NOON
states contained in the superposition of NOON states (found in
the output state of the first beam splitter) in which they obtained
high sensitivity and super-resolution in the measurement of
phase shifts. The idea of the experiment was to use a setup

( ),a bP m m

m

2
4

6
8

2
4

6
8

am bm8 8

FIG. 6. (Color online) The joint photon-number distribution after
beam splitting for equal intensity coherent and squeezed vacuum
states corresponding to α = √

1.2 and r = 0.947.

similar to the one pictured in Fig. 1(a) but to count only the
coincident counts where the total photon numbers counted
added up the selected value of N . In other words, they
measured 〈(â†âb̂†b̂)out〉 but retained only the counts where,
say, if one detector detects m photons, the other detects N − m

and where all other counts, whose total does not add to N , are
discarded. This amounts to a projection measurement onto a
subspace wherein the photon numbers in the two modes add
up to N . In the experiment reported in Ref. [26], the total
photon numbers N = 2−5 were studied, and sub-shot-noise
and super-resolved phase-shift measurements were performed.
However, it seems to be the case that equal intensity input
coherent and squeezed vacuum states yield photon-number
distributions of the type shown in Fig. 6 only for relatively
low values of |α|. For larger values of |α|, many states in
the plane are populated (see below), and one does not have a
superposition of NOON states.

With parity measurements performed on one of the output
beams, it is not necessary, or even possible, to restrict oneself to
a definite N -photon NOON state, and that can be an advantage.
The total number of photons inside the interferometer for
this input state is indeterminate, but the Heisenberg limit is
approached in terms of the average of the total photon number.
Seshadreesan et al. [28] have already shown that photon-
number parity-measurement-based interferometry reaches the
Heisenberg limit if coherent state and squeezed vacuum light
of equal intensity are mixed at a 50 : 50 beam splitter.

In the case of the squeezed vacuum state, the vacuum state
component itself has the highest probability of occupation, the
photon-number distribution being thermal-like apart from the
fact that only the even photon-number states are populated.
However, for the squeezed one-photon state, the vacuum is
not present, and it is the one-photon state itself that dominates
the corresponding photon-number probability distribution. It
seems reasonable, based on the dramatic improvement to sensi-
tivity obtained by mixing the one-photon state with a coherent
state, to suspect that the squeezed one-photon state mixed with
coherent light might perform better in interferometry than does
mixing coherent light with the squeezed vacuum for the same
values of α and r . The total average photon numbers passing
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FIG. 7. (Color online) Phase uncertainties against the total aver-
age photon number for coherent light mixed with (a) the squeezed
vacuum and (b) with squeezed one-photon states for the choice of
r = 0.3 and for ϕ = 10−4.

through the interferometer in these cases is

n̄ = |α|2 + sinh2r, (41)

and

n̄ = |α|2 + cosh(2r) + sinh2r (42)

for the squeezed vacuum and squeezed one-photon states,
respectively, mixed with a coherent state. In Fig. 7, we plot the
corresponding phase uncertainties against the total average
photon number for the mixing of coherent light with the
squeezed vacuum [Fig. 7(a)] and squeezed one-photon states
[Fig. 7(b)] for the choice r = 0.3 where we have taken the
phase shift to be ϕ = 10−4. We repeat for r = 0.9 in Fig. 8.
As we expected, the squeezed one-photon state outperforms
the squeezed vacuum state, significantly reducing the noise in
both examples for a given total average photon number.

An explanation for the improvement in performance by the
squeezed one-photon state can be provided by examining the
joint photon-number distribution after the first beam splitter.
In Fig. 9(a), we plot the joint photon-number probability
distribution after the mixing of a coherent state with a
squeezed one-photon state for the case of α = 2 and r = 0.9
where the states are not of equal intensity. The average total
photon number for this state is n̄ = 8.161. In Fig. 9(b),
we plot the distribution for the coherent state mixed with
a squeezed vacuum state with the same parameters. The
average total photon number for this state is n̄ = 5.054.
In the former case, the distribution is bimodal, populated
mainly on the borders with Poisson-like distributions on each
axis and with peaks near na,b = 8.161 = n̄. This distribution

Coherent  light  and SV with r = 0.9

ϕΔ

n

Coherent  light  and squeezed one  photon with r = 0.9

ϕΔ

n

(a)

(b)

FIG. 8. (Color online) Same as Fig. 7 but for r = 0.9.

resembles that of an entangled coherent state of the form
|β〉a|0〉b + exp(i�)|0〉a|βeiδ〉b, the coherent state analog of
the NOON, a superposition of NOON states, and known to
be effective in performing Heisenberg-limited interferometry
in terms of the average total photon number for small phase
shifts [29]. In contrast, the distribution involving the squeezed
vacuum has some separation along the borders but also has
considerable population on the inside. In Fig. 10, we plot
the expectation value of the parity operator for the mixing
of coherent states with the squeezed vacuum and squeezed
one-photon states. It is evident that the resolution obtained for
the latter case is enhanced over that of the former.

It is worth noting that the measurement scheme of Ref. [26]
requires photon counting with resolution at the level of a single
photon. Photon counts at the same level of resolution can also
be used to perform photon-number parity measurements, so no
new technology would be required to perform such measure-
ments, at least for photon numbers that are not too high. (On
the other hand, quantum nondemolition techniques can be used
to measure the parity directly, at least in principle, Ref. [30].)

Lastly, in this section, we point out that there is no need
to first supply a one-photon state |1〉, which would then
be subjected to the parametric amplifier that performs the
squeezing operation to generate the squeezed one-photon state.
Instead, as has been shown by Biswas and Agarwal [31], the
state obtained by subtracting a single photon from the squeezed
vacuum is identical to the squeezed one-photon state. For
completeness, we repeat the demonstration here. The squeezed
vacuum and one-photon states are given, respectively, by

|r,0〉b = Ŝb(r)|0〉b, |r,1〉b = Ŝb(r)|1〉b. (43)

We subtract one photon from the squeezed vacuum state,
i.e., perform the operation b̂|r,0〉b, which we can write, using
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FIG. 9. (Color online) (a) Plot of the joint photon-number
probability distribution after the mixing of a coherent state with a
squeezed one-photon state for the case of α = 2 and r = 0.9, and the
average total photon number for this state is n̄ = 8.133. (b) Plot of
the distribution for the mixed coherent squeezed vacuum states with
the same parameters. The average total photon number for this state
is n̄ = 5.026.

the unitarity of the squeezing operator, as

b̂|r,0〉b = b̂Ŝb(r)|0〉b = Ŝb(r)Ŝ†
b(r)b̂Ŝb(r)|0〉b. (44)

Using the relation,

Ŝ
†
b(r)b̂Ŝb(r) = b̂ cosh r + b̂† sinh r, (45)

we have

b̂|r,0〉b = sinh rŜb(r)|1〉b, (46)

from which it follows that

|r,1〉b = Ŝb(r)|1〉b = 1

sinh r
b̂|r,0〉b. (47)

Photon-subtracted squeezed vacuum states have already
been made available in the laboratory [32,33] with up to three
photons subtracted.

Π
Coherent Light mixed with a
single mode squeezed vacuum  state

ϕ

Coherent Light mixed with a
squeezed one  photon state

FIG. 10. (Color online) Plot of the expectation value of the output
b-mode photon-number parity operator versus ϕ for mixed coherent,
squeezed vacuum, and squeezed one-photon states for α = 2 and
r = 0.9. The total average photon number in the case of the squeezed
vacuum state is n̄ = 5.054 where, for the case of the squeezed one-
photon state, it is n̄ = 8.161. The curve for the latter case is narrower
than that for the former indicating an increase in resolution.

V. CONCLUSIONS

In this paper, we have studied the multiphoton interference
obtained by mixing coherent states of light |α〉 with photon-
number states |N〉 of low photon number N = 1,2, and 3 at
a 50 : 50 beam splitter and have investigated the prospects
of performing quantum optical interferometric measurements
with them. When coherent light is mixed with a photon-number
state, the resulting multiphoton interference creates joint
photon-number probability distributions that are multimodal
and symmetric about the diagonal line na = nb. The structure
of these distributions, the fact that they split into distributions
that lead to uncertainty as to the location of the bulk of the
photons, is key to the effectiveness of such states for ap-
proaching Heisenberg-limited sensitivity in the measurements
of phase shifts. The distributions obtained from the mixing
of coherent states with number states resembles the kinds
of distributions obtained from the mixing of twin-number
states at a 50 : 50 beam splitter where the output states are the
arcsine states [10] also known as the bat states. With regard
to phase-shift measurements, which are performed with the
use of photon-number parity detections on one of the output
beams, we have noticed a significant improvement over the
standard quantum limit obtained with coherent-state mixing
with a vacuum state by mixing the coherent light with a single
photon. This happens because of the dramatic effect that occurs
in this case where the joint Poisson distribution obtained from
coherent light alone is bifurcated along the line ma = mb

as the result of quantum interference with just one photon.
To us, this suggested the possibility that the squeezed one-
photon state, because the one-photon state itself is the lowest
number state therein and has a relatively high probability of
occurrence, should be more effective in obtaining substandard
quantum limit noise reductions than the squeezed vacuum.
This expectation was confirmed. We pointed out that it was
not even necessary to squeeze a one-photon state (a difficult
task) as one can obtain it identically by subtracting a single
photon from a squeezed vacuum state as shown by Biswas and
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Agarwal [31]. The possibilities and benefits for using multiple
photon-subtracted squeezed states in interferometry is under
investigation and will be reported on elsewhere.
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