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Linear and nonlinear optical precursors in inhomogeneously broadened two-level media
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By solving the two-level Maxwell-Bloch equations for resonant pulses numerically, we observe precursors in
a regime where the area theorem is fulfilled. The precursors are 0π pulses traveling at a velocity close to the
speed of light, and the main signal is a self-induced transparency (SIT) 2π soliton traveling at a much lower
velocity. The manifestation of the precursors is strongest when the input pulse duration is on the same order as the
inhomogeneous lifetime and the input area is close to π . Depending on the relationship between the input pulse
duration and the inhomogeneous lifetime, the precursors can interact linearly or nonlinearly with the material.
Experimental confirmation of these results should offer a direct and reasonably straightforward way of measuring
optical precursors.
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Brillouin and Sommerfeld, in their century-old theoreti-
cal study of superluminal group velocity in causal, linear
dielectrics [1], showed that a precursor (or forerunner) can
significantly precede a main signal (in their studies, they
used a single resonance Lorentz medium and a step pulse).
Although the theoretical literature on optical precursors has
been improved over the years and is now quite extensive [2],
only a handful of experimental observations have been made:
Aaviksoo and co-workers [3] used one-sided exponential
pulses on a narrow excitation line in GaAs, Jeong et al. [4]
observed precursors by the propagation of steplike pulses close
to a single Lorentz resonance, Du et al. [5] observed precursors
at the biphoton level using slow light, and Wei et al. [6]
performed precursor experiments with electromagnetically
induced transparency in a cloud of laser-cooled rubidium
atoms. There have also been reports of precursors in water [7],
although their existence has been contested [8,9]. Recently,
Macke and Ségard have suggested the existence of precursors
with self-induced transparency (SIT) in a homogeneously
broadened absorber [10]. This was also investigated by Crisp
in his theoretical study of propagation of step-function pulses
in two-level absorbers and amplifiers [11]. We also mention the
work by Diels and Hahn [12], who showed that precursorlike
phase-modulated pulses occur for off-resonant pulse propaga-
tion within the absorption line in a ruby rod. For comparison,
in this paper we suggest the excitation of precursors by the
application of a resonant pulse whose spectrum can be broader
or narrower than the inhomogeneous absorption line. We
show that self-induced transparency is responsible for a large
temporal separation between the precursor and the 2π soliton
main pulse. For on-resonance input pulses that have no phase
modulation, the pulse area is well defined and we show that
our precursors are 0π pulses. These precursors are also free of
chirp, and can interact linearly or nonlinearly with the material.

We write the real-space electric field as E(t,z) =
E(t,z)e−iω0(t−z/c) + c.c., where E(t,z) is the complex pulse
envelope. If the spectral bandwidth of E(t,z) is sufficiently
narrow to interact with only a single resonance in a material,
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the interaction between the field and the material is described
by the Maxwell-Bloch model, which can be summarized
as [13]

i∂τ ρ = [H,ρ], (1a)

∂z� = iμ〈ρ21〉�, (1b)

H =
(

0 − 1
2�∗

− 1
2� �

)
, (1c)

where we have made the rotating-wave approximation (RWA)
and the slowly varying envelope and phase approximation
(SVEA). The 2 × 2 density matrix of the system in the
frame rotating at ω0 is denoted by ρ = ρ(t,z,�), and
the Rabi frequency is denoted �(τ,z) = 2d

h̄
E(τ,z), where d

is the transition dipole moment. The transition frequency is
denoted by ω0, τ is the local time t − z/c, and � is the atomic
detuning. The brackets are a shorthand notation for the sum
over all detunings such that 〈(· · ·)〉� = ∫

g(�)(· · ·)d�, where
g(�)d� is the fraction of atoms that are detuned an amount �

from the line center. For a Gaussian velocity distribution, g(�)
can be taken as g(�) = T ∗

2√
2π

exp[−(�T ∗
2 )2/2], where � =

ω0v/c is the Doppler shift for an atom moving at a velocity v,
and T ∗

2 is the inhomogeneous relaxation time of the material.
The coupling constant μ is equal to Nd2ω0/(h̄cε0), where N

is the atomic number density. Homogeneous broadening is
disregarded in Eq. (1) on the grounds that it occurs on a time
scale much slower than the ones we consider here.

Self-induced transparency, the phenomenon where a pulse
is strong enough to make itself transparent to a medium,
was first discovered by McCall and Hahn [14], who showed
that resonant hyperbolic secant (h.s.) pulses that had areas
θ (z) = ∫ ∞

−∞ dτ�(τ,z) = 2π propagated through the medium
without loss. SIT was later experimentally observed by Gibbs
and Slusher [15]. The general solution to Eq. (1) was later
derived by Ablowitz et al. [16] by use of the inverse scattering
transform (IST). They showed that the inhomogeneously
broadened medium acts as a filter for the scattering eigenvalues
of the initial pulse. In this regard, a soliton is never created by
the medium but is already present in the initial pulse, and
appears only when the inhomogeneously broadened medium
has peeled away all the parts of the initial pulse that is not a
soliton. An inhomogeneous linewidth that is relatively broad
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ROBERT MARSKAR AND ULF L. ÖSTERBERG PHYSICAL REVIEW A 86, 063826 (2012)

compared to the pulse spectrum is crucial to this reshaping.
We also point out that the linearization of Eq. (1) (including
homogeneous relaxations) is precisely the equation set that
has been traditionally used for the study of optical precursors
[17,18]. The work by Ablowitz et al. [16], Diels and Hahn [12],
and Kaup [19] has largely been disregarded in the context of
precursors, and only recently has the search for precursors
been extended to the nonlinear regime [10,20].

The solutions in Refs. [16] and [19] are difficult to
make use of in the present study because the evolution of
the continuous eigenvalue spectrum cannot be calculated in
general. Nonetheless, the conditions under which a soliton
and a precursor can coexist in a two-level medium are fairly
simple to understand on an intuitive level. First of all, the
precursor pulse and the soliton should be temporally separated,
and also be the only two pulses that propagate in the medium.
Second, to be comparable with the linear theory, the precursor
must eventually be absorbed by the material and can therefore
not itself be a soliton. Third, we are forced to consider only
input pulses that are not already SIT pulses, as it is only
the continuous eigenvalue spectrum that manifests itself as
a precursor. Therefore, we only consider input pulses with an
initial area between π and 3π that are not h.s. pulses. Kaup [19]
has shown that for a Gaussian input pulse of a given duration,
the amplitude of the emerging soliton increases monotonically
with increasing input area. The duration of the soliton also
increases monotonically with increasing input pulse duration,
when the input area is fixed. The same is true for box-shaped
input pulses, or raised Gaussians. It is also known, even for
other nonlinear wave equations such as the Korteweg–de Vries
or the nonlinear Schrödinger equation, that the amplitude,
duration, and velocity of nonlinear wave forms are coupled. A
larger amplitude soliton is narrower and travels faster. Thus,
a slow soliton, and consequently a large separation of the
precursor and the main signal, can be achieved by considering
an input pulse with area close to, but larger than, π .

In the following, we solve Eq. (1) numerically by us-
ing a predictor-corrector method. For the physical param-
eters, we take the transition wavelength λ = 800 nm, the
inhomogeneous lifetime T ∗

2 = 0.5 ns, and a number density
N = 1017 m−3. The dipole moment is taken as d = 2.75 ×
10−29 C m, corresponding to a Beer’s length α−1 ≈ 2.5 mm,
where the absorption coefficent is α = πμg(0) [13]. The
length of our material is L = 8 cm, giving an optical density
of αL ≈ 32, and we assume that all atoms are in their
ground state before the pulse enters. As input pulses, we first
use transform-limited Gaussians E(τ,0) = E0 exp[−τ 2/(2τ 2

0 )]
with area 1.1π , and we perform computer simulations where
τ0/T ∗

2 varies in the range of 0.15–2. Our Gaussian pulses are
abruptly turned on at τ = −10τ0 and therefore have very small
turn-on step values.

At first, we keep the area constant at θ0 = 1.1π and
change the pulse duration from τ0 = 0.15T ∗

2 to τ0 = 2T ∗
2 .

Since the area is proportional to the field spectrum value on
resonance, θ (z) = 2d

h̄

∫ ∞
−∞ E(t,z)dt = d

h̄
E(ω0,z), decreasing

the pulse duration while keeping the area constant means that
we are increasing the energy of the spectral wings of the input
pulse (the energy of the pulse as a whole increases too). The
rows in Fig. 1 show the exit pulses after propagating through
the material, and also the phase ψ = arctan[EI(t,z)/ER(t,z)],
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FIG. 1. (Color online) Top five figures: Amplitude (solid line)
and phase (dashed-dotted line) of the exit pulses for input pulses with
durations τ0 = 0.15T ∗

2 , 0.3T ∗
2 , 0.6T ∗

2 , 1.25T ∗
2 , and 2T ∗

2 . The dashed
line for τ0 = 0.6T ∗

2 shows a h.s. fit to the main pulse, and is displaced
along the y axis for readability. The y axis is normalized against the
individual input peak amplitudes. Bottom plot: Area evolution of the
pulses for the various input pulse durations (input area fixed at 1.1π ).

where E(t,z) = ER(t,z) + iEI(t,z), which shows that the exit
pulses are not phase modulated. We have verified that this is
true in all of our simulations. As noted by Hopf and Scully [21],
the absence of phase modulation is readily understood from
the formal solution for ρ21(t,z,�):

ρ21(τ,z,�) = i

2

∫ τ

−∞
dτ ′�(τ ′,z)e−i�(τ−τ ′)

× [ρ22(τ ′,z,�) − ρ11(τ ′,z,�)]. (2)

Under the conditions of exact resonance, no initial chirp,
and symmetric g(�), then the in-phase component of the
polarization vanishes after taking the ensemble average 〈·〉�
of Eq. (2). Insertion of this result into Eq. (1b) then shows
that the field propagates without acquiring a modulated
phase. The envelopes plotted in Fig. 1 are normalized to
the individual peak amplitudes E0 = 1.1πh̄/(2

√
2πdτ0), and

show that the magnitude of the precursor decreases when the
input pulse duration increases. For the longest pulses there
are no immediate signs of a precursor and only the main
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signal can be clearly seen (although it is not discernible
in Fig. 1, there is an oscillating front with a relative peak
amplitude 2.6 × 10−4 for τ0 = 2T ∗

2 , and a front with a relative
peak amplitude 2.5 × 10−3 for τ0 = 1.25T ∗

2 ). By curve fitting
a hyperbolic secant shape E(t) = Asech[(t − t0)/tp] to the
numerical results, we have confirmed that the main pulses
(apart from τ0 = 0.15T ∗

2 ) are h.s. pulses. The parameters that
give the elevated black dashed curve for τ0 = 0.6T ∗

2 in Fig. 1
are A = 0.189E0 ≈ 1.7 kV/m, t0 = 28.0 ns, and tp = 2.3 ns,
and gives a pulse velocity u ≈ c/106 and area θ ≈ 2π . The
pulse velocity is estimated from the peak delay τd and is given
by u = c/(1 + cτd/L). As the initial pulse duration decreases,
there are much clearer signs of a pulse propagating at a
velocity close to c with the trailing main pulse propagating at a
lower velocity. For the shortest of these pulses (τ0 = 0.15T ∗

2 ),
we cannot yet distinguish between the main pulse and the
precursor. A comparison of the area evolution of these pulses
to the area theorem is shown in the bottom plot in Fig. 1. It is
not surprising that the area theorem is fulfilled, even though
the conditions under which the area theorem was first derived
are clearly violated. As Kaup [19] has shown, the proper
generalization of the area theorem for unchirped pulses is

∂z ln tan
1

2
θ (z) = ∓

(
1

2
α + μ

2i
P

∫ ∞

−∞
g(�)

d�

�

)
, (3)

where P indicates the Cauchy principal value integral. When
g(�) is symmetric then the integral vanishes, leaving only the
integrated form of the McCall-Hahn area theorem

tan 1
2θ (z) = e∓αz/2 tan 1

2θ0. (4)

Thus, the area theorem holds whenever the initial pulse is
unchirped and resonant, and the inhomogeneous broadening
line is symmetric. We also mention a rederivation of the area
theorem by Eberly [22], who showed that the area theorem
holds even for chirped pulses, provided that the inequality
T ∗

2 
 τ0 is satisfied. The results in Fig. 1 are similar to
the behavior of optical precursors in the linear theory, in
the qualitative sense that they are both highly dependent
on the placement of the initial pulse spectrum relative to the
absorption band of the material.

To investigate linearity, spectrum, and area of the precursors
in Fig. 1, we perform a frequency analysis of these pulses.
We split the field into two contributions, E(τ,L) = Ep(τ,L) +
Em(τ,L), where Ep(τ,L) is the precursor pulse, defined as
E(τ,L) up to the breakpoints shown in Fig. 1 and zero
otherwise. The main pulse is denoted by Em(τ,L) and is zero
for all times before the breakpoint, and equal to E(τ,L) for
times after. This decomposition of the electric field is artificial
and can only be performed once the separation between Ep

and Em is clear. The separation occurs in all of our computer
simulations except when the input pulse duration becomes
much shorter than T ∗

2 . For example, there is no clear distinction
between the precursor and the main signal for τ0 = 0.15T ∗

2 in
Fig. 1 after 32 Beer lengths, but we have verified that there is
after a distance of 60 Beer lengths.

The two plots in Fig. 2 show the reshaping of the input
pulse with τ0 = 0.6T ∗

2 , and the spectrum of this pulse at the
exit of the material. After a propagation depth of αz ∼ 16,
the two pulses are clearly separated. The spectral amplitude
of the precursor at ω0 is clearly zero, and it is therefore a 0π
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FIG. 2. (Color online) Top: Reshaping of a Gaussian input pulse
with duration τ0 = 0.6T ∗

2 and initial area 1.1π . The color coding
shows the normalized amplitude of the field. Bottom: Spectral
magnitude of the exit pulse after propagating a distance αL = 32.
The solid line shows the spectrum of the precursor, the dashed line
shows the spectrum of the soliton, and the dotted line shows the
spectrum of the Gaussian input pulse. The dashed-dotted line shows
the inhomogeneous absorption line of the medium.

pulse (the area is given by the dc value in Fig. 2). Moreover,
the energy of this pulse is located around the wings of the
absorption band of the material, which is the reason why the
precursor decays very slowly over the length of the material.
The temporal beats of the precursor in Fig. 2 are occurring
more rapidly with increasing propagation depth. The physical
explanation of this is that the absorption is stronger closer
to the line center, which causes the two spectral bumps of
the precursor in Fig. 2 to move farther apart when the pulse
propagates deeper into the material. This precursor is similar
to the 0π pulse first derived by Crisp [17] (later observed
experimentally by Rothenberg [23]); it is linear, located around
the wings of the absorption band, shows temporal beats, is
slowly decaying, and has a 0π area. In fact, the connection
between the traditional linear optical precursor and Crisp’s
0π pulse has already been established (see, e.g., Ref. [18]
and references therein). The area of the main signal in Fig. 2
is clearly 2π , and it is therefore a 2π h.s. soliton. We have
also verified that after the precursor and the main signal begin
to separate around αz ∼ 8, the maximum population transfer
caused by the precursor is less than 2.5% and occurs for atoms
that are detuned an amount �/ω0 ≈ ±1.8 × 10−6 (i.e., where
the spectral amplitude of the precursor is largest). Hence, this
precursor approximately interacts linearly with the material.
This is not surprising since the amplitude of the precursor
is in the linear regime, which has been previously discussed
by both Crisp [11] and Macke and Ségard [10]. Eventually,
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FIG. 3. (Color online) Top: Reshaping of a pulse with input pulse
duration τ0 = 0.3T ∗

2 and initial area 1.1π . The color coding shows
the normalized amplitude of the field. Bottom: Excitation of the
absorption line at αL = 32. The color coding shows the inversion
ρ22(τ,L,�) − ρ11(τ,L,�), the solid line shows the exit pulse, and
the dashed line shows g(�) (the height of both lines are in arbitrary
units).

for a sufficiently thick material, the precursor is completely
absorbed by the detuned atoms, and they are left in an excited
state. However, due to the 0π area of the precursor, the atoms
on the line center are essentially unaffected by the precursor.

We have confirmed that when the input pulse duration
becomes longer than τ0 = 0.6T ∗

2 , less population is transferred
during the precursor passage, and the linear approximation is
even better. However, when the input pulse duration becomes
shorter than τ0 = 0.6T ∗

2 , the interaction between the precursor
and the material becomes nonlinear. Figure 3 shows as
much as 40% population transfer for τ0 = 0.3T ∗

2 (for atoms
that are detuned an amount �/ω0 ∼ ±3 × 10−6), and we
have observed higher transfers for even shorter input pulse
durations. Nonetheless, we have also verified that the precursor
retains most of its other properties; its spectrum still lies in the
wings of the absorption bands, it decays slowly over the length
scale α−1, has a 0π area, and is not phase modulated.

Finally, we perform numerical simulations with boxcar
input pulses

�(τ,0) =
{

0, |τ | > τp/2,

�0, |τ | � τp/2.
(5)

The pulse duration is τp = T ∗
2 and the input area is chosen to

be 1.1π such that �0 = 1.1π/τp. The boxcar pulse spectrum
has several sidelobes (see Fig. 4) that are themselves strong
enough to nonlinearly interact with the absorption wings of
the medium. Figure 4 shows the reshaping of the boxcar
pulse as it propagates through the medium. Similarly to the
smooth Gaussian input pulse, a precursor starts to separate
from the main pulse around αz ∼ 8 and the two are temporally
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FIG. 4. (Color online) Pulse evolution of a boxcar input pulse
with duration τ0 = T ∗

2 and area 1.1π . Top: Spectral magnitude of the
precursor and main pulse at the exit face. The dotted line shows the
input pulse spectrum, and the dashed-dotted line shows the absorption
line of the medium. The solid line shows the spectrum of the main
pulse and the dashed line shows the spectrum of the precursor. Middle:
Spatiotemporal reshaping of the pulse. The inset shows the precursor
at the exit face (dotted line), and the input pulse (solid line). Bottom:
Excitation of the absorption line at the exit face. The solid line shows
the exit pulse, and the dashed line shows the absorption line of the
medium (the heights of both lines are in arbitrary units). The color
coding shows the inversion ρ22(t,L,�) − ρ11(t,L,�).

well separated at the exit face of the medium. There are two
rapid oscillations on τ = ±τp/2 that were not present for the
Gaussian input pulse. These two oscillations coincide with
the steps of the input pulse, showing that the pulse fronts
propagate at the speed of light in vacuum. In most other
aspects, this precursor shows similar qualitative behavior as
for the Gaussian input pulse: The main pulse is a hyperbolic
secant with area 2π , the precursor has 0π area, the frequency
pushing of the lobes closest to resonance persists, and neither
the precursor or the main pulse are phase modulated. Figure 4
shows that the precursor excites detuned atoms �/ω0 ∼
±3 × 10−6 and �/ω0 ∼ ±8 × 10−6, which coincides with the
two closest lobes in Ep(ω,L). However, the low atomic density
at the detuning �/ω0 ∼ ±8 × 10−6 ensures that these atoms
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contribute little or nothing to the pulse evolution. We also
remark that the boxcar pulse produces much larger precursors
than the Gaussian. In particular, our simulations show that
using a boxcar pulse with duration τ0 = 2T ∗

2 and area 1.1π

produces a precursor with a peak amplitude ∼0.95E0, while
for a Gaussian pulse the precursor amplitude was negligible
(see Fig. 1).

In this study, pulse energy loss through spontaneous
emission (occurring at a rate 1/T1) has not been taken into
account. Typically, the emerging 2π soliton is not stable if
it does not exit the material well within a time T1, and can
collapse to a 0π pulse [24]. This effect could be included
with an additional complexity, but does not provide further
insight into the physics. Nevertheless, it places restrictions
on the materials and pulses one can use for the experimental
verification of the above results. For example, an input area of
1.1π may result in a soliton that is so slow that it loses most
of its energy through spontaneous emission before it exits the
material.

In summary, by solving the Maxwell-Bloch equations
numerically, we predict the existence of 0π area precursors in
inhomogeneously broadened two-level materials for resonant
pulses, where the main pulse is a 2π SIT soliton. These results
show several interesting features: The soliton and its precursor
are temporally separated, and this separation can be quite
large due to the reduced velocity of the soliton. Depending

on the relationship between the input pulse duration and the
inhomogeneous lifetime, the precursor can interact linearly
or nonlinearly with the material. Due to the symmetry of the
input pulse and absorption line around the line center, neither
the precursor nor the soliton are phase modulated. Lastly,
although boxcar pulses produce very strong precursors, even
smooth Gaussian pulses can yield precursors of relatively large
amplitudes. We envision experimental confirmation of these
results in a low-pressure warm vapor of one of the alkali-metal
atoms. An exact resonance condition can be established
using a magnetic field (which also enhances the two-level
approximation), and the desired relationship between the pulse
duration and the Doppler lifetime can be achieved by adjusting
the pressure and temperature of the gas cell. Finally, the
results in this paper are generic to the two-level atom and
it is therefore interesting to speculate if they can be derived
from the general solution [16,19] (i.e., can the shape and decay
rate of the precursor be found from the continuous spectrum
of the eigenvalue problem?). Such a study is interesting in its
own right and has not, to the best of our knowledge, been
performed to date.

This work was partially supported by the Norwegian
University of Science and Technology. We thank the referee
for insightful comments and for pointing out some older
references.
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