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We consider the propagation of ultrashort optical solitons in media described by a general Hamiltonian
of multilevel atoms. Assuming that all transition frequencies of the medium are well below the typical
wave frequency, i.e., only the contribution of infrared transitions is taken into account, we use a short-wave
approximation and a rigorous application of the reductive perturbation formalism to derive a cumbersome
coupled system of nonlinear partial differential equations describing ultrashort soliton evolution in such systems.
The rather complicated set of coupled equations can be simplified to a generic double-sine-Gordon equation for
a special case of identical three-level atoms, whereas for a special case of identical four-level atoms the system of
coupled equations can be reduced to a generalized double-sine-Gordon equation. Numerical simulations showing
the formation of robust breather-type solutions of both the standard double-sine-Gordon and of the generalized
double-sine-Gordon equations from sinusoidal inputs with Gaussian envelopes are also presented.
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I. INTRODUCTION

Since the publication in 1999 by a few different research
teams [1] of the pioneering works in the area of producing
ultrashort optical pulses (in the two-cycle or even sub-two-
cycle regimes) by using Kerr-lens mode-locked Ti:sapphire
lasers, this fertile research area evolved in many directions,
ranging from light-matter interaction at ultrahigh peak powers
and laser focused intensities [2], single-cycle nonlinear optics
[3], and high-harmonic generation by ultrashort laser pulses
and attosecond physics [4]; see also the reviews [5,6] and
two relevant works on the attosecond control of electronic
processes by intense light fields [7] and on generation of
giant half-cycle attosecond pulses [8]. We mention also other
interesting recent developments in this very active research
field: the synthesis of single-cycle light pulses by using
compact erbium-doped fiber technology [9], the generation of
ultrashort optical vortex pulses in the few-cycle regime [10],
and the recent proposal (at a theoretical level) of a new
amplification method, opening the way to exawatt-zetawatt
level pulse generation [11].

The continuing experimental activity in the area of wave
dynamics of ultrashort, few-cycle pulses (FCPs) in both the
linear and nonlinear regimes has paved the way for the
development of new theoretical models which adequately
describe the propagation of ultrashort wave packets in
a lot of relevant physical settings. Within the past two
decades three classes of main dynamical models for FCPs
have been put forward: (i) the quantum approaches [12], (ii) the
refinements within the framework of slowly varying envelope
approximations (SVEA) of the nonlinear Schrödinger-type
envelope equations [13], and the non-SVEA models [14–28].
The propagation of FCPs in Kerr media can be described
beyond the SVEA by using the modified Korteweg–de Vries
(mKdV) [20,21], sine-Gordon (sG) [22,23], or mKdV-sG
equations [24–26]. Note that a special case of mKdV-sG

equation is the so-called short-pulse equation (SPE) which
was first introduced in Ref. [29], to describe FCP propagation
in silica fibers. The SPE was later used in the study of localized
structures in frequency band gaps of nonlinear metamaterials
[30]. Recently, two different versions of the SPE in (2 + 1)
dimensions were studied in detail [31] and it was shown
that ultrashort one-dimensional breathers appear to be fairly
robust in the two-dimensional setting, while rather general
two-dimensional localized initial conditions are transformed
into quasi-one-dimensional dispersing wave forms, which are
reminiscent of the one-dimensional solitons.

Though the SVEA is no longer valid for ultrashort optical
pulses with duration of only a few femtoseconds, several gen-
eralizations of the SVEA have been proposed and have proven
their efficiency. Note that these generalizations were referred to
in the literature as higher-order nonlinear Schrödinger (NLS)
models; see, e.g., Refs. [13]. Here we mention that first-order
nonlinear evolution equations can be obtained under the so-
called unidirectional approximation [32]. Non-SVEA models
were proposed within the framework of the unidirectional
approximation; see, e.g., Ref. [33]. However, to the best of our
knowledge, the necessity of using the non-SVEA approach
for the adequate description of FCPs was put forward in the
early seminal work by Akhmediev, Mel’nikov, and Nazarkin
published in 1989 [34]. In a subsequent paper published in
1990, Belenov and Nazarkin [14] obtained some exact solu-
tions outside the approximation of slowly varying amplitudes
and phases for light pulses a few wavelengths long and with
high intensities, clearly stating that traditional SVEA methods
“are becoming ineffective in describing wave processes at such
small spatial and temporal scales and at such high fields.”
Moreover, in a recent work by Farnum and Kutz [35] on
ultrafast pulse propagation in a mode-locked laser cavity in the
few femtosecond pulse it was clearly stated that the standard
NLS-based approach of ultrafast pulse propagation, though,
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has been shown “to work quantitatively beyond its expected
breakdown, into the tens of femtoseconds regime, and has been
used extensively for modeling supercontinuum generation,
when pushed to the extreme of a few femtosecond pulses,
the NLS description becomes suspect.”

In the following we list a series of relevant recent works
on the formation and dynamics of few-cycle pulses in a
variety of physical settings: the propagation and interaction of
extremely short electromagnetic pulses in quadratic nonlinear
media [36], the study of few-cycle light bullets created by
femtosecond filaments [37], the investigation of ultrashort
spatiotemporal optical solitons in quadratic nonlinear media
[38], the ultrashort spatiotemporal optical pulse propagation in
cubic media without the use of the slowly varying envelope ap-
proximation [39], the possibility of generating few-cycle dis-
sipative optical solitons [40], the generation of unipolar pulses
from nonunipolar optical pulses in quadratic nonlinear media
[41], the existence of guided optical solitons of femtosecond
duration and nanoscopic mode area [42], and single-cycle gap
solitons generated in resonant two-level dense media with a
subwavelength structure [43]. Other recent theoretical works
study a class of few-cycle elliptically polarized solitary waves
in isotropic Kerr media [44] and robust circularly polarized
few-optical-cycle solitons in Kerr media in both long-wave and
short-wave approximation regimes [45]. Drozdov et al. [46]
performed a comprehensive study of self-phase modulation
and frequency generation with few-cycle optical pulses in non-
linear dispersive media. The nonlinear effects associated with
the spatiotemporal propagation of few-cycle optical pulses
in nonlinear dispersive media, including nonlinearity-induced
self-phase modulation, generation of higher harmonics, and
the effects of diffraction, were analyzed in detail [46]. A
detailed study of ultrashort pulses and short-pulse equations
in (2 + 1) dimensions was also performed in a recent work by
Shen et al. [31]. Two versions of the short pulse equation in
(2 + 1) dimensions were derived and by using Maxwell’s equa-
tions as a starting point, and suitable Kramers-Kronig formulas
for the permittivity and permeability of the medium, which are
relevant, e.g., to left-handed metamaterials and dielectric slab
waveguides, a multiple scales technique to obtain the relevant
models was employed [31]. Kolesik et al. [47] quantified the
limits of unidirectional ultrashort optical pulse propagation,
explored the limits of the unidirectional pulse propagation
equation in general nonlinear media, and investigated under
which physical conditions two-way propagation becomes
significant, and leads to a breakdown of the unidirectional
approximation. Whalen et al. [48] studied optical shock and
blowup of ultrashort pulses in transparent media and examined
various ultrashort pulse propagation models and their relative
effectiveness in explaining these phenomena. In particular,
the modified Kadomtsev-Petviashvilli equation of type 1
was examined in some detail; see [48]. Another interesting
recent theoretical study by Yan [49] deals with complex
PT-symmetric extensions of the nonlinear ultrashort light pulse
model. A family of interesting complex PT-symmetric exten-
sions of the short pulse equation was presented and unique
properties of these equations with some chosen parameters
were studied; see Ref. [49]. In particular, Yan [49] obtained
exact solitary wave solutions, doubly periodic wave solutions,
and compacton solutions.

Most of the theoretical investigations concerned only FCPs
propagating in nonlinear optical media described by two-level
Hamiltonians. However, in two recent works [50,51] we
extended the existing studies to a more general physical situ-
ation involving N -level Hamiltonians in the framework of the
reductive perturbation method (multiscale analysis) [52]. First,
in the long-wave approximation regime we gave in Ref. [50] a
detailed mathematical derivation of the mKdV equation for a
general N -level Hamiltonian. We assumed that the absorption
spectrum of the nonlinear medium does not extend below some
cutoff frequency, and that the typical frequency of the FCP is
much less than the latter; therefore, a Kerr medium which has
no transition in the infrared was actually described in Ref. [50].
Second, in the same long-wave approximation regime, we
derived in Ref. [51] a coupled system of KdV equations
describing ultrashort soliton propagation in quadratic media by
using a general Hamiltonian for multilevel atoms. In Ref. [51]
a detailed study of linear eigenpolarizations in the degenerate
case and the corresponding formation of half cycle solitons
from few-cycle-pulse inputs were discussed.

In the present work by using the reductive perturbation
formalism (multiscale analysis) [52] we give a detailed math-
ematical derivation of the set of coupled nonlinear equations
describing ultrashort soliton propagation by considering a
general Hamiltonian for multilevel atoms in the short-wave
approximation regime. Thus by taking into account the effect
of the infrared transitions we are left with a rather cumbersome
set of coupled partial differential equations. In two special
physical situations this rather complicated set of coupled
equations can be simplified to either a generic double-sine-
Gordon equation (for a special case of a three-level system)
or to a generalized double-sine-Gordon equation (for a special
case of a four-level system). It is to be mentioned that in the
simplest case of two-level identical atoms, this cumbersome set
of equations reduces to a sG model, formally identical to that
describing self-induced transparency (SIT), but in different
validity conditions.

This paper is organized as follows. In the next section we
present in detail the governing equations for the density matrix
in the case of the most general Hamiltonian for multilevel
atoms and we analyze the corresponding electromagnetic wave
equations. We work in the so-called short-wave regime and
we perform the multiscale analysis [52] order by order. In
Sec. III we analyze in detail a first special case, assuming that
a general four-level system may interact with the light wave
only through two independent transitions. In this simplified
situation we get a generalized double-sine-Gordon model.
This approach straightforwardly generalizes to an arbitrary
number of independent transitions. Then, in Sec. IV we
consider a second special case, accounting for the coupling
between two transitions with equal weights. Specifically,
it deals with a general three-level system, in which the
corresponding two excited levels are not coupled together.
We are left in this special case with the generic double-
sine-Gordon equation. In Sec. V we perform a detailed
numerical study of breather-type solutions of both the standard
double-sine-Gordon equation and the generalized double-
sine-Gordon equation. We show that robust breather-type
solutions can be formed from adequate inputs. Such breather
solutions are in fact the sought-after prototype wave forms
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of ultrashort two-cycle solitons which form in the corre-
sponding physical setting. Finally, in Sec. VI we present our
conclusions.

II. DERIVATION OF A GENERAL MODEL

A. Electromagnetic wave equation for a set of identical atoms

The evolution of the electric field E is governed by the
equation

�E − ∇(∇ · E) = 1

c2

∂2

∂t2

(
E + 1

ε0
P
)

, (1)

where c is the light velocity in vacuum, � is the Laplacian
operator, ε0 is the dielectric permittivity of vacuum, and P is
the polarization density. The considered medium consists of
an assembly of identical atoms with Hamiltonian H0, and the
density matrix will be denoted by ρ. The Hamiltonian H0 is
given in diagonal form, H0 = h̄diag(ω1,ω2, . . . ,ωN ); thus we
consider the general case of N -level identical atoms. The light
matter coupling is described by

P = NTr(ρμ), (2)

where μ is the dipolar momentum operator andN is the atomic
density. The evolution of ρ is determined by

ih̄
∂ρ

∂t
= [H,ρ], (3)

so that the total Hamiltonian is

H = H0 − μ · E. (4)

B. Short-wave approximation regime

We consider few-cycle optical solitons in the so-called
short-wave approximation regime, i.e., the situation in which
the transition (resonance) frequencies of the atoms are well
below the optical frequencies, thus all transitions are in
the infrared spectral domain. We next introduce the scaled
variables τ (a retarded time) and ζ ,

τ = t − z

V
, ζ = εz, (5)

where ε is a small parameter. Note that τ is not a slow variable,
whereas the propagation variable ζ is. Thus the variable
ζ gives account for long-distance propagation. We further
assume a linearly polarized electrical field, perpendicular to
the propagation direction z, say along ex , as E = Eex , and
expand E in a power series of the small parameter ε as
E = E(0) + εE(1) + · · · . The polarization P = P ex and the
density matrix ρ are expanded in the same way.

The physical assumption is that all transition frequencies ωn

involved in the process are very low with respect to the typical
wave frequency, i.e., we work in the so-called short-wave
approximation regime. Hence all differences ωmn = ωm − ωn

are assumed to be small quantities of order ε. Formally, it
is more convenient, and it does not modify the analysis, to
consider that the frequencies ωn themselves are small. Hence
H0 in Eq. (4) is replaced with εH0.

C. Generic model

Thus the corresponding series expansions of E, P , and ρ

are reported into the basic equations and the coefficients of
identical powers of ε on both sides of the equations are then
identified.

1. Order ε0

Leading order ε0 in Eq. (3) is

ih̄
∂

∂τ
ρ(0) = −[μE(0),ρ(0)]. (6)

Then the polarization density at leading order is

P (0) = NTr(ρ(0)μ). (7)

From Eqs. (6) and (7), expanding the matrix operations, we
get

ih̄
∂

∂τ
P (0) = −E(0)N

( ∑
n,m,ν

μmνρ
(0)
νn μnm −

∑
n,m,ν

ρ(0)
mνμνnμnm

)
.

(8)

Adequate permutation of the dummy subscripts in Eq. (8)
shows that the two sums are identical and P (0) = 0.

The wave equation (1) at leading order ε0 is

1

V 2

∂2

∂τ 2
E(0) = 1

c2

∂2

∂τ 2

(
E(0) + 1

ε0
P (0)

)
. (9)

Since P (0) = 0, Eq. (9) has nonzero solutions if V = c.

2. Order ε1

At order ε1, Eq. (3) is

ih̄
∂

∂τ
ρ(1) = [H (0),ρ(0)] − E(0)[μ,ρ(1)] − E(1)[μ,ρ(0)], (10)

or, in terms of matrix elements

ih̄
∂

∂τ
ρ(1)

mn = h̄ωmnρ
(0)
mn − E(0)

∑
ν

(
μmνρ

(1)
νn − ρ(1)

mνμνn

)
−E(1)

∑
ν

(
μmνρ

(0)
νn − ρ(0)

mνμνn

)
. (11)

Here the fact that H0 is diagonal has been used. By computing

P (1) = NTr(ρ(1)μ), (12)

we find out that the last two terms in Eq. (11) give no
contribution to P (1) as was previously seen when we have
evaluated the right-hand side of Eq. (8). Thus we get

∂

∂τ
P (1) = −iN

∑
mn

ωmnρ
(0)
mnμnm. (13)

The wave equation (1) at order ε1 is

1

V 2

∂2

∂τ 2
E(1) − 2

V

∂2

∂ζ∂τ
E(0) = 1

c2

∂2

∂τ 2

(
E(1) + 1

ε0
P (1)

)
.

(14)

Using V = c and integrating once, with the assumption that
the field vanishes at infinity, it reduces to

∂

∂ζ
E(0) = −1

2ε0c

∂

∂τ
P (1). (15)
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Then we report Eq. (13) for P (1) into Eq. (15), which yields

∂

∂ζ
E(0) = iN

2ε0c

∑
mn

ωmnρ
(0)
mnμnm. (16)

The other equation is nothing else but Eq. (6), written in terms
of matrix elements, as

ih̄
∂

∂τ
ρ(0)

mn = −E(0)
∑

ν

(
μmνρ

(0)
νn − ρ(0)

mνμνn

)
. (17)

Equations (16) and (17) yield the sought system in the general
case.

Considering carefully Eqs. (16) and (17), it is seen that
they do not reduce to a single sG equation as soon as two
transitions are taken into account. Hence, in contrast to the
long-wave approximation which is relevant for the ultraviolet
resonances [51], the contribution of infrared resonances cannot
be reduced in the general case to a form equivalent to the one
which holds for a two-level system, which is sG. This is the
first result of our investigation, in some sense a negative one.
We may obviously consider the numerical solution of the full
system (16) and (17) for any fixed number N of levels, however
it is a quite heavy task, and we are rather looking for simplified
models. The question which arises now is whether a further
approximation may reduce this full system to some simple
generalization of sG.

We will consider two special situations: the first one is the
case of two independent transitions, which straightforwardly
generalizes to an arbitrary number of independent transitions.
A quite simple model, in which each transition gives rise to a
sine term in the equation, is derived. Numerical analysis of the
solutions in the case N = 2 show that their behavior is not so
far from that of the pure sG. Hence, if any interaction between
the transitions is neglected, the problem of generalization of sG
is solved. The question which remains is what happens when
interaction between the transitions is taken into account? From
the mathematical point of view, the problem is intractable and
anything may happen. We thus will restrict to the interaction
between two transitions only, i.e., a three-level system, in
which we assumed that no transition between the two excited
levels occurs. If both transitions involve the same transition
dipolar momentum, the problem simplifies to a double-sG
equation, which is in some sense one sine term form each of
the nonlinear modes formed by the coupling between the two
transitions.

III. APPROXIMATION OF INDEPENDENT TRANSITIONS

Let us consider a much simpler physical situation where a
four-level system may interact with the light wave only through
two independent transitions, i.e., we assume that the dipolar
momentum operator has the form

μ =

⎛
⎜⎜⎜⎝

0 μ12 0 0

μ∗
12 0 0 0

0 0 0 μ34

0 0 μ∗
34 0

⎞
⎟⎟⎟⎠ . (18)

Equation (16) reduces to

∂E(0)

∂ζ
= −N

ε0c
(ω12Q12 + ω34Q34), (19)

where we have set

Q12 = Im(μ21ρ
12), Q34 = Im(μ43ρ

34). (20)

Defining the population differences as w21 = ρ22 − ρ11 and
w43 = ρ44 − ρ33, the diagonal components of Eq. (17)
reduce to

h̄
∂w21

∂τ
= −4E(0)Q12, (21)

h̄
∂w43

∂τ
= −4E(0)Q34. (22)

The evolution of Q12 and Q34 is obtained from the off-diagonal
component of Eq. (17) as

h̄
∂Q12

∂τ
= E(0)|μ12|2w21, (23)

h̄
∂Q34

∂τ
= E(0)|μ34|2w43. (24)

The coupled equations (19) and (21)–(24) constitute the
reduced system in the special case considered in this section.
Recall that, in the case of a single transition for two-level
systems, the analogous set of equations reduces to the sine-
Gordon equation. Next let us try a change of variables
analogous to the one which did allow this reduction, as

w21 = A cos u, (25)

w43 = B cos v, (26)

Q12 = aA sin u, (27)

Q34 = bB sin v. (28)

Reporting into Eqs. (21) and (23), an adequate combination of
both equations yields

h̄a
∂A

∂τ
= E(0)A sin u cos u(|μ12|2 − 4a2) (29)

and consequently, if we choose a = |μ12|/2, the function
A becomes constant. Obviously, so does B if b = |μ34|/2.
Adequate combination of Eqs. (21)–(24) yield

∂u

∂τ
= 2

h̄
|μ12|AE(0), (30)

∂v

∂τ
= 2

h̄
|μ34|BE(0), (31)

i.e., both u and v are proportional to the τ -antiderivative∫ τ
E(0)dτ of the electric field. Then Q12 and Q34 are

straightforwardly computed, and the evolution equation for
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the electric field becomes

∂E(0)

∂ζ
= −N

ε0c

[
ω12|μ12|A

2
sin

(
2

h̄
|μ12|A

∫ τ

E(0)dτ

)

+ ω34|μ34|B
2

sin

(
2

h̄
|μ34|B

∫ τ

E(0)dτ

)]
, (32)

The boundary conditions are as follows: we assume that, far
from the pulse, the electric field is zero and the atoms are at
thermal equilibrium. Let us denote by ρ th the density matrix at
equilibrium; therefore ρ th is diagonal. Then Q12 and Q34 are
equal to zero at infinity, and consequently so are u and v. Then

A = lim
τ−→−∞ w21 = ρ th

22 − ρ th
11. (33)

In the same way B = ρ th
44 − ρ th

33, and the antiderivative∫ τ
E(0)dτ of the electric field vanishes at infinity.
Let us introduce some reference electric field Er and define

a dimensionless field ψ = E0/Er . Then, setting

Z = Nω12|μ12|
(
ρ th

22 − ρ th
11

)
2ε0cEr

ζ, (34)

and

T = 2

h̄
|μ12|

(
ρ th

22 − ρ th
11

)
τ, (35)

Eq. (32) reduces to the dimensionless form

∂ψ

∂Z
= sin

(∫ T

−∞
ψdT ′

)
− q sin

(
λ

∫ T

−∞
ψdT ′

)
, (36)

where we have set

λ = |μ34|
(
ρ th

44 − ρ th
33

)
|μ12|

(
ρ th

22 − ρ th
11

) , (37)

and q = λω34/ω12.
Equation (36) is a generalization of the double-sine-

Gordon equation, which is exactly Eq. (36) with λ = 2. The
above analysis straightforwardly generalizes to an arbitrary
number M of independent transitions, which formally would
correspond to a dipolar momentum matrix presenting a set of
2 × 2 matrices (

0 μj

μ∗
j 0

)

along the diagonal, and zero everywhere else, and more
physically to the assumption that the interaction between the
transitions do not contribute. The evolution equation (32) then
generalizes to

∂E(0)

∂ζ
= −N

ε0c

M∑
j=1

ωj |μj |wj

2
sin

(
2

h̄
|μj |wj

∫ τ

E(0)dτ

)
,

(38)

in which ωj and wj are the angular frequency and the
population difference at thermal equilibrium for the j th
transition, respectively.

IV. INTERACTION BETWEEN TWO TRANSITIONS

Consider now a three-level system, in which the two excited
levels are not coupled together, i.e., the dipolar momentum
matrix is

μ =

⎛
⎜⎝

0 μ12 μ13

μ∗
12 0 0

μ∗
13 0 0

⎞
⎟⎠ . (39)

Equation (16) reduces to

∂E(0)

∂ζ
= −N

ε0c
(ω12Q12 + ω13Q13), (40)

with the Qmn defined in an analogous way as in Eq. (20). The
diagonal components of Eq. (17) reduce to

h̄
∂ρ22

∂τ
= −2E(0)Q12, (41)

h̄
∂ρ33

∂τ
= −2E(0)Q13, (42)

and

ρ11 = 1 − ρ22 − ρ33. (43)

The off-diagonal components are written as

ih̄
∂

∂τ
μ∗

12ρ12 = −E(0)[|μ12|2(ρ22 − ρ11) + μ∗
12μ13ρ32], (44)

an analogous equation can be written for ρ13, and

ih̄
∂

∂τ
μ∗

13μ12ρ23 = −E(0)(μ∗
13|μ12|2ρ13 − μ12|μ13|2ρ∗

12).

(45)

We set μ∗
1nρ1n = P1n + iQ1n, for n = 2,3 and μ∗

13μ12ρ23 =
R + iS, with P1n, Q1n, R, and S real. After reporting these
definitions into Eqs. (44) and (45), and separating real and
imaginary parts, it is seen that S, P12, and P13 are zero, and
we get the equations

h̄
∂R

∂τ
= −E(0)(|μ12|2Q13 + |μ13|2Q12), (46)

h̄
∂Q12

∂τ
= E(0)(|μ12|2(ρ22 − ρ11) + R), (47)

h̄
∂Q13

∂τ
= E(0)(|μ13|2(ρ33 − ρ11) + R), (48)

which, together with Eqs. (40)–(43), yield the sought after
system.

It is seen that this set of equations remains a complicated
one. However, if, in addition, the two transitions have the same
transition dipolar momentum, i.e., if

|μ12| = |μ13| = μ, (49)

then it can be considerably simplified.
Let us set Q± = Q12 ± Q13, and ρ+ = ρ33 + ρ22 + α with

α some constant, and ρ− = ρ33 − ρ22.
Then Eqs (40)–(43) and (46)–(48) become

h̄
∂R

∂τ
= −E(0)μ2Q+, (50)

h̄
∂Q+
∂τ

= E(0)[μ2(3ρ+ − 3a − 2) + 2R], (51)
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h̄
∂Q−
∂τ

= E(0)μ2ρ−, (52)

h̄
∂ρ±
∂τ

= −2E(0)Q±, (53)

and

∂E(0)

∂ζ
= −N

ε0c
(ω+Q+ + ω−Q−), (54)

with

ω± = ω13 ± ω12

2
. (55)

Comparing (50) and (54), it is seen that

R = μ2

2
ρ+ + K, (56)

where K is some constant. Equation (51) reduces to

h̄
∂Q+
∂τ

= 3E(0)μ2ρ+, (57)

if we set the arbitrary constant α to

α = −2

3
+ 2K

3μ2
. (58)

Consider then the change of variables analogous to
(25)–(28):

ρ± = A± cos u±, (59)

Q± = b±A± sin u±. (60)

Reporting (59) and (60) into (57), (52), and (53), it is seen that,
if

b+ =
√

2μ, and b− = μ√
2
, (61)

the equations for A± simplify to ∂A±/∂τ = 0. Then the other
equations are solved straightforwardly to yield

u+ = 2
√

2μ

h̄

∫ τ

−∞
E(0)dτ, (62)

u− =
√

2μ

h̄

∫ τ

−∞
E(0)dτ. (63)

Note that u± vanish at infinity since the wave does. The whole
set of equations reduces to the evolution equation for the
electric field, which becomes

∂E(0)

∂ζ
= −N

ε0c

[
ω+μ

√
2A+ sin

(
2
√

2μ

h̄

∫ τ

−∞
E(0)dτ

)

+ω−
μ√

2
A− sin

(√
2μ

h̄

∫ τ

−∞
E(0)dτ

)]
. (64)

The conditions at infinity show directly that A+ = ρ th
22 +

ρ th
33 + α, while R on one hand tends to 0, and on the other

hand, tends to K + μ2A+/2, which gives the value of K and
then

A+ = 3
4

(
ρ th

22 + ρ th
33

) − 1
2 , (65)

while

A− = ρ th
33 − ρ th

22. (66)

By setting the dimensionless quantities

ψ = E(0)

Er

, (67)

T =
√

2μEr

h̄
τ, (68)

Z = Nμω−
ε0cEr

√
2

2

(
ρ th

22 − ρ th
33

)
ζ , (69)

we reduce Eq. (64) to the dimensionless form

∂ψ

∂Z
= sin

(∫ T

−∞
ψdT ′

)
+ q sin

(
2
∫ T

−∞
ψdT ′

)
, (70)

where we have set

q = (ω13 + ω12)
(
ρ th

22 + ρ th
33 − 2ρ th

11

)
2(ω13 − ω12)

(
ρ th

33 − 2ρ th
22

) . (71)

The obtained dimensionless equation (70) is the so-called
double-sG equation, which was studied in detail in the
mathematical literature; see, e.g., Ref. [53].

Equation (71), or in physical units, Eq. (64), involves
two sine terms, one of which involves the sum frequency
ω13 + ω12, the other the difference frequency ω13 − ω12. They
seem to arise from some kind of symmetric and antisymmetric
hybridization of the linear modes due to their nonlinear cou-
pling. Unfortunately, our mathematical analysis is restricted to
a specific situation, and cannot be generalized in an exact way.
However, we may expect that such a generalization, introduced
in a phenomenological way, might be relevant in many real
situations.

V. BREATHER SOLUTION TO THE
DOUBLE-SG EQUATION

The double-sG equation (36) with λ = 2 (or equivalently
1/2) has been often studied in the literature; however it
does not belong to the known set of completely integrable
nonlinear partial differential equations but it possesses a set of
analytical solutions. In Ref. [53] both a multiple sG equation
and a double-sG equation in the framework of SIT were
derived. Their soliton solutions were studied in Ref. [53],
especially two-lumped ones. Later, in Ref. [54], although
its title involves SIT, a physical situation closer to that of
the present paper was considered. The solitons discussed in
Ref. [54] are two-humped ones, as in Ref. [53]. In Ref. [55] a
perturbation theory was developed for the double-sG equation,
in order to treat additional small terms added to it, whereas
in Ref. [56] a formal expansion method was proposed to
find analytical solutions to sG-type equations, with specific
application to the double-sG equation. Also, in Ref. [57] a set
of exact solutions to the double-sG equation was given.

However, while both kinds of solitary wave type solutions
and periodic type solutions have been considered in the
above-mentioned works, solutions in form of ultrashort wave
packets, i.e., breather-type ones, have not. The latter are the
relevant solutions for few-cycle optical soliton propagation
in such physical settings. Numerical resolution of Eq. (36)
[or Eq. (70)] was performed using a standard fourth-order
Runge-Kutta scheme in the Fourier domain. The antiderivative
is obtained by division with 2iπν where the frequency ν is the

063825-6
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Z

T

ψ

FIG. 1. (Color online) One period of a breather of the standard
double-sG equation, for λ = 2, q = 0.2.

Fourier variable, under the assumption that the mean value,
obtained at ν = 0, is zero. Then the nonlinear, sine terms are
obtained by means of one inverse and one direct fast-Fourier
transforms at each substep of the Runge-Kutta scheme.

Breathers form spontaneously from a sinusoidal input with
a Gaussian envelope. However, during pulse reshaping, an
appreciable amount of radiation is emitted. The question of
whether the breather formed this way is stable then arises. In
order to evaluate its stability, an input datum close enough
to a breather is built. Note that, in contrast to the solitary
wave, the breather is not the solution of an ordinary differential
equation. It is not stationary but evolves periodically, together
with moving at some nonlinear group velocity different of
the linear one (see Fig. 1). To isolate a breather, we used
the following procedure: starting from a Gaussian pulse, the
evolution is computed over some distance (we used 226.5),
then the radiation is removed by replacing with zero the field at
some distance from the maximum (we used a window width of
7.5), then the field is multiplied with some constant, so that the
energy is the same as the initial one. This operation is iterated
until the energy loss decreases below some fixed precision (we

FIG. 2. (Color online) Propagation of a breather of the standard
double-sG equation, for λ = 2, q = 0.2. Dashed line: a numerically
computed breather as initial data; solid line: after propagation
over Z > 10 000 (for the same value of the breather phase and
compensation of group velocity).

Z

T

ψ

FIG. 3. (Color online) One period of a breather of the generalized
double-sG equation, for λ = √

3, q = 0.4.

used 0.1%). Although very slowly, it converges. The result
can be considered as a good numerical approximation of the
breather. It is used as input and its evolution is computed
over a very long propagation distance (Z = 10 000). Then, the
evolution of the output is monitored over a short distance, with
a high resolution in Z, which yields the results shown in Fig. 1.

Finally, we select within this monitoring the exact propa-
gation distance at which the breather phase (carrier-envelope
phase) is the same as at the input, and move it along the
T axis so that the pulse location coincides with that of the
input. This yields the results displayed in Fig. 2. Thus the
robustness of the breather-type solution is demonstrated in
this way. The question also arises whether stable breathers
also exist for values λ of the frequency ratio of the two sine
functions in the double-sG equation, other than 2, i.e., for
a generalized double-sG equation, which describes a much
broader physical situation. We consider a value with the same
order of magnitude, but such that both frequencies are not
commensurable, e.g., we take λ = √

3. The corresponding
computations yield analogous results, shown on Figs. 3 and 4.

FIG. 4. (Color online) Propagation of a breather of the gen-
eralized double-sG equation, for λ = √

3, q = 0.4. Dashed line:
a numerically computed breather as initial data; solid line: after
propagation over Z > 10 000 (for the same value of the breather
phase and compensation of group velocity).
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Thus the existence of a stable breather solution is also
evidenced in the most general case.

VI. CONCLUSIONS

In conclusion, we have derived a generic model beyond
the slowly varying envelope approximation of the nonlinear
Schrödinger-type evolution equations, describing the propa-
gation of few-optical cycle pulses in a generic medium. We
used the density-matrix formalism for a general Hamiltonian
of multilevel identical atoms, and assumed that all transition
frequencies of the medium are well below the typical wave
frequency, i.e., only the contribution of infrared transitions
is taken into account. Then the application of the reductive
perturbation formalism in the short-wave approximation, up
to the second order in some small perturbation parameter,
allowed us to give a rigorous derivation of a coupled system
of nonlinear partial differential equations describing FCP
evolution in such systems. However, this model remains very
complicated in the general case. If any coupling or interaction
between transitions is neglected, it simplifies to a sG-type
equation, involving one sine term for each transition. We
specifically analyzed the case of two independent transitions,
where the general system can be reduced to a generalized
double-sine-Gordon equation.

The coupling between transitions is investigated only in
the most simple case, of two transitions in three-level atoms,
and assuming that both oscillators have exactly the same
weight, i.e., the same dipolar momentum. In this special
case, the model reduces to a standard double-sine-Gordon

equation. Direct numerical simulations showed the formation
of robust breather-type solutions of both the standard and
the generalized double-sine-Gordon equations from sinusoidal
inputs with Gaussian envelopes.

The present work might be extended in two directions.
First, in a real optical medium, a broad transparency range is
required, and hence all atomic transitions must be far enough
from the pulse central frequency. However, in such materials
not all transitions belong to the infrared spectral domain.
Note that the contribution of the ultraviolet transitions in
the general situation of multilevel atoms was considered in a
recent work [50] and a modified Korteweg–de Vries model
was put forward by means of a long-wave approximation
applied to the same general quantum model. However, a
fully realistic model for ultrashort pulse propagation might
be obtained by putting together the results yielded by both
long- and short-wave approaches. Second, the present study,
which was restricted to (1 + 1) dimensions, can be extended to
(2 + 1) dimensions by incorporating into the generic model a
transverse spatial coordinate; thus the formation of ultrashort
spatiotemporal optical solitons (alias “light bullets”) [58] can
be investigated in the more general setting of a collection of
multilevel identical atoms.
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