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We discuss a device capable of filtering out two-mode states of light with mode populations differing by
more than a certain threshold, while not revealing which mode is more populated. It would allow engineering of
macroscopic quantum states of light in a way which is preserving specific superpositions. As a result, it would
enhance optical phase estimation with these states as well as distinguishability of “macroscopic” qubits. We
propose an optical scheme, which is a relatively simple, albeit nonideal, operational implementation of such a
filter. It uses tapping of the original polarization two-mode field, with a polarization-neutral beam splitter of low
reflectivity. Next, the reflected beams are suitably interfered on a polarizing beam splitter. It is oriented such
that it selects unbiased polarization modes with respect to the original ones. The more an incoming two-mode
Fock state is unequally populated, the more the polarizing beam-splitter output modes are equally populated.
This effect is especially pronounced for highly populated states. Additionally, for such states we expect strong
population correlations between the original fields and the tapped one. Thus, after a photon-number measurement
of the polarizing beam-splitter outputs, a feed-forward loop can be used to let through a shutter the field, which
was transmitted by the tapping beam splitter. This happens only if the counts at the outputs are roughly equal. In
such a case, the transmitted field differs strongly in occupation number of the two modes, while information on
which mode is more populated is nonexistent (a necessary condition for preserving superpositions).
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I. INTRODUCTION

The set of efficiently produced quantum states of light is
limited. It is especially difficult to produce nonclassical non-
Gaussian superpositions. Nevertheless, with quantum state
engineering, certain properties of accessible states can be mod-
ified or enhanced. In particular, measurement-induced state
operations which facilitate preparing a quantum state for some
further tasks, allow filtering out states of required features
and may lead to non-Gaussian characteristics of the resulting
states. Often, they involve intensity measurements, for which
threshold detectors are crucial, selecting Fock states or their
superpositions with sufficiently high population. Examples
of low-threshold detectors are realized with single-photon
on-off detectors or human eyes [1,2]. They can be applied
in setups that perform positive-operator valued measurement
(POVM) [3] leading to quantum operations. As a result, it
is possible to block light of unwanted properties (too low or
too high intensity). More complicated filters for Fock states
utilize interference effects [4,5]. A more challenging task is
to construct a filter selecting states of certain properties (on
request), while preserving quantum superpositions. This is
very important for superpositions of the Schrödinger-cat type.

Recently, macroscopic quantum superpositions became
experimentally accessible for light in the form of the micro-
macro singlet state [6] and the entangled bright squeezed
vacuum [7]. In the former state, produced by optimal quantum

cloning, a single photon is entangled with a “macroscopic”
qubit in a polarization singlet state. The latter is a macroscopic
analog of two-photon polarization Bell states [8]. Since
these states combine quantum properties with macroscopic
population and could enable efficient light-matter coupling,
they are interesting for quantum information technology:
quantum memory [9–11], quantum key distribution [12], quan-
tum metrology [13,14], and macroscopic Bell tests [15,16].
However, their distinguishability is low in analog detection and
they are easily destroyed by losses [17–20]. Special quantum
state filtering applied to these states gives hope to solve the
problem of detection and to enhance their properties useful for
quantum technology tasks.

We present a theory of a device capable of filtering out
two-mode states of light with mode populations differing
by more than a certain threshold. We call it the modulus
of intensity difference filter (MDF). It performs a non-
Gaussian operation and works as quantum scissors [21] for
general two-mode Fock-state superpositions. We show that,
effectively, MDF filters out superpositions of NOON-like
components, allowing an enhanced optical phase estimation
with macroscopic quantum states of light. We also show
that it improves distinguishability of “macroscopic” qubits in
realistic scenarios.

We propose a simple optical scheme, which gives an
approximate operational implementation of such a filter for
two orthogonal (linear) polarization modes. The field is fed
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M. STOBIŃSKA et al. PHYSICAL REVIEW A 86, 063823 (2012)

into a polarization-neutral (tapping) beam splitter of low
reflectivity. The weak reflected modes are suitably interfered
on a polarizing beam splitter oriented such that it selects
diagonal and antidiagonal polarization modes with respect
to the original ones. The more an incoming two-mode Fock
state is unequally populated, the more the output modes are
roughly equally populated. Since the reflected and transmitted
beams are correlated, estimating the modulus of population
difference for the former gives an estimate for the latter. This
effect is especially pronounced for highly populated states.
After a photon-number measurement of the outputs of the
polarizing beam splitter, a feed-forward loop can be used to
let through a shutter the field, which was transmitted by the
tapping beam splitter, only in the case of roughly equal counts
at the outputs. Such a field differs strongly in occupation
number of the two modes, while information on which mode
is more populated is nonexistent. Thus, a necessary condition
for preserving superpositions is satisfied.

The paper is organized as follows. In Sec. II, we discuss
the theoretical description and properties of modulus of
intensity difference filter. In Sec. III, we analyze the action
of the theoretical MDF on “macroscopic” qubits, a part of
micro-macro polarization singlet state. Section IV is devoted
to the operational scheme giving effectively an MDF.

II. THEORY AND PROPERTIES OF MDF

We define an MDF as a device which performs the following
projection operation:

Pδth =
∞∑

k,l = 0; |k − l| � δth

|k,l〉〈k,l|, (1)

where |k,l〉 is a two-mode Fock state. For simplicity, let
us consider polarization modes. If δth > 0, the filter acts as
“quantum scissors” [21]. It cuts out those Fock components
for which the modulus of occupation difference is below
the threshold (|k − l| < δth), and preserves the ones with the
modulus of difference above it (|k − l| � δth).

We would like to comment on two key features of the filter.
First of all, it estimates the absolute value of the difference
instead of the difference. This procedure is experimentally
more demanding, but it has an advantage. Since all nonzero
eigenvalues of the operator Pδth are equal to 1, the filter does
not provide any information on which polarization mode was
more populated. Thus, if a qubit is encoded in highly populated
polarization states, as, e.g., in Eq. (2), it does not discriminate
these states and filters them fairly. This property is important
for all quantum protocols requiring state preparation without
the state readout. The other main feature is that the filtering
is performed in a “yes”-“no” manner: the exact value of
the modulus is never measured. This is a key property for
quantum protocols which require engineering preserving the
superposition. For these reasons, we call this device a filter.

These features are the main difference between the MDF
and the orthogonality filter (OF) executing direct intensity
difference measurements [22]. The OF is the basic ele-
ment in setups performing measurement-induced operations
on macroscopic polarization states [15]. Contrary to the
MDF, which performs a nondestructive measurement, the OF
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FIG. 1. (Color online) Comparison of two filtering techniques:
absolute difference (MDF) (a) and orthogonality filter (OF) (b). The
dots in (b) symbolize specific possible measurement results of photon
numbers. The state of the field filtered by an OF is represented by one
of the dots. In the case of MDF, the state is projected onto the whole
YES region, which preserves quantum coherence of components
occupying both regions. k and l denote numbers of photons in two
orthogonal polarization modes.

destroys superpositions and allows only for efficient state
discrimination in detection, not filtering, and is not suitable
for preselection strategies in Bell tests [15]. In the case
of a micro-macro singlet, it identifies the state and breaks
entanglement. The action of the MDF and OF is compared
in Fig. 1. MDF projects onto S1 and S2 areas. Superpositions
of components belonging to S1 and S2 are preserved. OF,
combined with photomultipliers, projects the state on a Fock
state either in S1 or S2, illustrated as a red or blue dot in Fig. 1.

III. FILTERING OF “MACROSCOPIC” QUBITS

Let us analyze the action of the operator Pδth on specific
“macroscopic” qubits (macroqubits), which are the macro-
scopic part of micro-macro polarization singlets. They are
produced by optimal phase-covariant quantum cloning via
phase-sensitive parametric amplification [2,22,23] of single
photons of a defined polarization (ϕ or ϕ⊥, respectively):

|�〉 =
∞∑

i,j=0

γij |2i + 1,2j 〉, |�⊥〉 =
∞∑

i,j=0

γij |2j,2i + 1〉,

(2)

where, e.g., states |k,l〉 represent k photons in polariza-
tion state |ϕ〉, and l in |ϕ⊥〉, which in turn are defined
as |ϕ〉 = (eiϕ|H 〉 + e−iϕ |V 〉)/√2 and |ϕ⊥〉 = i(eiϕ|H 〉 −
e−iϕ |V 〉)/√2 [2], where H and V represent linear horizontal
and vertical polarizations. The probability amplitudes equal
γij = cosh g−2[(tanh g)/2]i+j

√
(1 + 2i)!(2j )!/i!/j !, where g

is the parametric gain. Due to a different parity of occupation
numbers of the two polarizations, the states |�〉 and |�⊥〉 are
orthogonal.

In a recent experiment [22], realizations of such states
contained up to 4 sinh2 g � 104 photons on average. However,
in the high-photon-number regime, the detectors are not
single photon resolving, but distinguish counts varying by
at least ±150 photons [23]. Thus, macroqubits are hardly
distinguishable with direct detection [22].

To overcome this problem, an MDF could be used to en-
hance the distinguishability. Two important traits of the states

063823-2



FILTERING OF THE ABSOLUTE VALUE OF PHOTON- . . . PHYSICAL REVIEW A 86, 063823 (2012)

are crucial. The average number of photons in polarization ϕ

in |�〉 is three times higher than the number of photons in
polarization ϕ⊥, and vice versa for |�⊥〉. Further, if one
excludes superposition components with approximately iden-
tical numbers of photons in the two polarizations, this
ratio increases. Thus, an MDF would definitely increase the
distinguishability of the states.

Imagine a scheme which uses an MDF, and behind it
we place a detection station which measures the number
of photons in the two polarization modes. In such a case,
the distinguishability may be quantified in terms of photon
distributions p�(k,l) = |〈k,l|�〉|2 and p�⊥(k,l) giving the
probabilities of finding simultaneously k photons in polar-
ization ϕ and l in ϕ⊥. For the filtered macroqubits with the
operator Pδth , they equal (see Appendix A)

p�(k,l) =
∞∑

i,j = 0; |2i + 1 − 2j | � δth

γ̃ 2
ij δk,2i+1δl,2j , p�⊥(k,l)

= p�(l,k), (3)

where γ̃ij are renormalized γij , and δa,b is the Kronecker
delta. Since the distribution p�⊥ is mirror reflected with
respect to p� along the k = l line, we divide the space (k,l)
into two triangular areas S1 for k � l and S2 for k < l. The
distinguishability reads as

v = P
(S1)
� − P

(S1)
�⊥ = P

(S1)
� − P

(S2)
� , (4)

where P
(Si )
� = ∑

k,l∈Si
p�(k,l) is the probability of finding |�〉

in Si and P
(S1)
� + P

(S2)
� = 1. It increases if |�〉 (|�⊥〉) starts

to occupy mostly one of the Si regions, e.g., S1 (S2), with
increasing δth. Fully distinguishable (indistinguishable) states
have v = 1 (v = 0).

Originally, the photon-number distribution p�(k,l) occu-
pies both S1 and S2 and is almost equally distributed between
them, giving v = 0.64, independently of the gain g [see
Fig. 2(a)]. Figure 2 is plotted for g = 1.87. The filtering
cuts out a stripe,

√
2δth wide, located symmetrically along

the k = l line. In Fig. 2(b), we took δth = 200. The state |�〉
occupies two disjoint regions of space: the bottom (S1) and
top (S2) triangles, but increasing the threshold from δth = 0
to δth = 200 reduces the contribution of p� in S2: the peak
value goes down originally from 8.3 × 10−3 to 1.4 × 10−4.
Simultaneously, the distribution peak in S1 increases from
1.4 × 10−2 to 3.5 × 10−2. Similar behavior is observed for
higher gains. The behavior of p�⊥ is identical but mirror
reflected. Thus, distinguishability increases.

The effect of increased distinguishability remains even in
the presence of losses. The losses can be modeled by a beam
splitter (BS) with a reflectivity R (see Appendix A) put in
front of an ideal detector. The p� distributions evaluated for
g = 1.87, δth = 200, and 50% and 90% of losses are depicted
in Fig. 3. The loss results in shifting the distribution towards
the origin of the coordinates, i.e., the vacuum state. The
distribution peaks become smooth and symmetric. The edges
along the threshold lines are blurred and the bigger the losses,
the smaller the width of the gap. It disappears completely for
90% of losses. With increasing losses, the height of the upper
and left peak first drops, and next increases, because the total
probability over the whole space (k,l) has to be 1.
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FIG. 2. Photon distribution p� for the macroscopic state |�〉
computed for g = 1.87 and filtering threshold δth = 0 (a) and δth =
200 (b). k and l denote numbers of photons in two orthogonal
polarization modes. The one-dimensional plots show values of p�

for k = 0 (the left one) and l = 0 (the bottom one), respectively.

For states (2), we have numerically computed their distin-
guishability v for gain g = 1.87 and several filtering thresholds
δth as a function of losses (see Fig. 4). If no filtering is
applied, then v = 0.64, but drops quickly to 0 if R > 0.9.
If δth increases, v increases as well and approaches unity
with a reasonable probability of success, e.g., v = 0.96 with
ps = 10−4. Obviously, for R = 1 the states become vacuum
and we get v = 0 independently of δth (this is indicated by an
open circle in the upper curves and a full circle in the solid
line in Fig. 4).

IV. SIMPLE OPERATIONAL SCHEME
FOR APPROXIMATE MDF

Our scheme for an approximate realization of an MDF
for polarization modes is shown in Fig. 5(a). The setup in
Fig. 5(b) shows its application for the measurement-induced
operations on quantum states. It uses tapping of the original
field, with a polarization-neutral BS of a low reflectivity
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FIG. 3. Photon distribution p� for the macroscopic state |�〉
computed for g = 1.87, filtering threshold δth = 200, and 50% (a)
and 90% (b) of losses. k and l denote numbers of photons in two
orthogonal polarization modes. The one-dimensional plots show
values of p� for k = 0 (the left one) and l = 0 (the bottom one),
respectively.

[Fig. 5(b)]. The reflected beams ar , ar⊥ are suitably interfered
on a polarizing beam splitter (PBS) oriented such that it selects
unbiased polarization modes with respect to the original ones
[Fig. 5(a)]. The more an incoming two-mode Fock state is
unequally populated, the more the output modes are roughly
equally populated. This effect is especially pronounced for
highly populated states, and additionally for such states we
expect strong population correlations between the original
fields and the tapped one. Thus, after a photon-number
measurement of PBS outputs, a feed-forward loop can be used
to let through a shutter the field, that was transmitted by the
tapping BS. This happens only in the case of roughly equal
counts at the outputs. Such a field differs strongly in occupation
number of the two modes, while information on which mode
is more populated is nonexistent (a necessary condition for
preserving superpositions).

Let us move to the details of operation of the part of the
device shown in Fig. 5(a). A two-mode r , r⊥ polarization light
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FIG. 4. Distinguishability v of macroqubits [Eq. (4)] evaluated
for gain g = 1.87 and several threshold values δth as function of
losses R.

beam enters PBS which works in a basis d, d⊥ unbiased with
respect to the basis in which we write the original superpo-
sition. For example, the beam could be defined in diagonal-
antidiagonal basis, while PBS may select a left-handed or
right-handed polarization basis. Let us denote the annihilation
operators of the polarization modes entering PBS by ar , ar⊥ .
PBS transforms them according to the unitary operation such
that its output mode operators equal ad = 1/

√
2(ar + ar⊥ ),

ad⊥ = 1/
√

2(ar⊥ − ar ). The two orthogonally polarized exit
beams d and d⊥ propagate to a pair of detectors, which measure
their photon numbers Id = K and Id⊥ = L.

We will examine the work of the setup [Fig. 5(a)] by its
action on a general two-mode polarization input state which
is a Fock state |n,m〉r . Detection behind PBS projects this

state onto a two-mode Fock state |K,L〉d = 1√
K!L!

a
†
d

K
a
†
d⊥

L|0〉.
The states |n,m〉r form a basis in the considered subspace
of photon states. Note that one can introduce a different

FIG. 5. An approximate operational scheme of an MDF. The box
MDF in (b) is the setup given in (a). The details are in the main text.
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indexation of the basis, namely, | 1
2 (Sr + �r ), 1

2 (Sr − �r )〉r ,
where Sr = n + m and �r = n − m, which is one to one.
Let us denote such basis states |�Sr,�r 〉r . The states |K,L〉d
also form such a basis, which is related to the previous
one via the unitary transformation of BS. The probability of
obtaining |K,L〉d from |�Sr,�r 〉r input is p(K,L|Sr,�r ) =
|〈�Sr,�r |K,L〉d |2. However, p(K,L|Sr,�r ) = p(Sr,�r |K,L)
due to the bistochastic nature of such quantum probabilities
[24]. Note that the measured total number of photons S =
K + L, if the initial state is |�Sr,�r 〉r , must be S = Sr .
Let us change the variables L and K , so that they would
correspond to the quantities useful for the further analysis of
the filtering: the total sum S and the population difference � =
L − K of the registered photons. The probability distribution
of the occupation difference �r in the incoming modes r

and r⊥ given that S and � were measured pS,�(�r ) =
p[Sr,�r | 1

2 (S − �), 1
2 (S + �)], due to the fact that under BS

transformation p[Sr,�r | 1
2 (S − �), 1

2 (S + �)] is proportional
to the Kronecker delta δSr ,S , simplifies to the following:

pS,�(�r ) = 1

2S
(

S−�
2

)
!
(

S+�
2

)
!

∣∣∣∣
S−�

2∑
q=0

S+�
2∑

p=0

δp+q, S−δ
2

×
( S−�

2

q

)( S+�
2

p

)
(−1)p

×
√(

S − �r

2

)
!

(
S + �r

2

)
!

∣∣∣∣
2

. (5)

The calculations that lead one to the formula closely resemble
those presented in Appendix B, for a slightly more general
process.

The analysis of Eq. (5) shows that for a Fock-state input with
|�r | ≈ 0 one finds |�| ≈ S with higher probability than |�| ≈
0. Vice versa, when |�r | ≈ S the result |�| ≈ 0 is more likely
than |�| ≈ S [25]. Thus, the filter works probabilistically, and
for any outcome S and � obtained all values of �r are possible,
but not equally probable. So, we argue if K and L differ little
(� ≈ 0), |�r | ≈ S is the most probable case, which means that
a large initial population difference is anticipated. If K and L

differ a lot (� ≈ S), we obtain that |�r | ≈ 0 is favored and
a small initial population difference has probably occurred.
Figure 6 depicts the probability distribution pS,�(�r ) plotted
for exemplary values of S = 200, � = 0, � = 80, and � =
200. The erratic shape of distributions in Fig. 6 reveals the
interference between two nonzero Fock states entering a beam
splitter.

Imposing a filtering threshold in Eq. (1) corresponds to fix-
ing two independent threshold values. We choose a threshold
value δth for which we check if |�r | � δth. Next, since the pro-
cess is probabilistic [is governed by the probability distribution
pS,�(�r )], we fix the level of trust for it, i.e., the minimum
probability, e.g., equal 90%, with which the condition
|�r | � δth is fulfilled. The probability that the condition holds
true is denoted by p(|�r | � δth). It is evaluated by summing
all probabilities pS,�(�r ) of these possibilities where
|�r | � δth, i.e., for �r ∈ [−S, − δth] ∪ [δth,S]. Thus, if for a
fixed value of δth S increases, the probability p(|�r | >= δth)
increases as well. In Fig. 6, we set δth = 30. For � = 200, the
probability of |�r | � 30 equals p(|�r | � 30) = 0.028 < 0.9
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FIG. 6. Distribution of the population difference pS,�(�r ) in a
superposition Fock input state |�in〉 = |n,m〉r conditioned on the
measurement of S = 200 photons and � = 0 (a), � = 80 (b), � =
200 (c) at the PBS output. The vertical dashed lines show the threshold
δth = 30. The probability that |�r | � 30 is given by p(|�r | � 30).

and, thus, this event is discarded. For � = 0, the probability
is p(|�r | � 30) = 0.9 and the event is accepted.

In order to apply the MDF for the measurement-induced
operations, e.g., preparing the state for some further tasks,
the whole setup must be like the one in Fig. 5(b). A small
portion of an incoming light is reflected (tapped) by a highly
biased BS and examined by the scheme of Fig. 5(a) located
in a feed-forward loop. Since the reflected and transmitted
beams are correlated, estimating the modulus of the population
difference for the former gives an estimate for the latter. In
this case, the MDF conditioned on the measurement outcome
for the reflected beam activates a shutter which passes or
blocks the transmitted (almost unaffected by tapping) beam.
It is worth noting that the tapping relies on the fact that
a polarization-neutral BS splits the average intensities of
both polarizations proportionally to its transmitivity t and
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reflectivity r � t . This, in case of high photon numbers,
means splitting with highest probability of photon numbers (of
incoming two-mode Fock basis states) also in this proportion
and that the initial ratio of occupations of the two polarization
modes in a Fock component is preserved in the reflected and
transmitted beams.

We will illustrate the action of the tapping and the feed-
forward loop from Fig. 5(b) using a Fock state |�in〉 = |n,m〉
with an unknown initial population difference �0 = n − m.
After the tapping BS, v photons of n are reflected from
the first and w photons of m are reflected from the second
input mode. The possible mode population differences equal
�r = v − w in the reflected beam and �t = n − v − m + w

in the transmitted beam, where v ∈ [0,n], w ∈ [0,m]. The
mode occupation difference registered at the detectors reads
again as � = L − K . If the reflectivity of the tapping BS is
r = 10%, the analysis of the probability distribution for the
BS shows that for highly populated input �r � 0.1�0 and
�t � 0.9�0. Now, the problem is reduced to that previously
discussed: from the analysis below [Eq. (5)] we know that if
the measured in MDF � � 0, then entering MDF difference
�r and thus �t are large; vice versa, if � is large, �r � 0
and in consequence �t � 0. In this setup, we directly set the
threshold δth from Eq. (1) for the transmitted beam, i.e., we
require that |�t | � δth, and the analysis of the reflected beam
by MDF tells us the probability distribution of the population
difference for the transmitted beam pS,�(�t ) and, thus, the
probability p(|�t | � δth) with which this condition is fulfilled.
Only if it is high enough does the MDF open the shutter.

The above discussion applies also for Fock superposition
states. See Appendix B for the complete calculus of the state
evolution through the setup from Fig. 5(b) for an arbitrary
superposition state and the derivation of the probability
distribution of the population difference for the transmitted
beam pS,�(�t ) [Eq. (B8)].

Finally, we would like to mention that the assumption of
the accurate measurement of K and L numbers is justified: a
setup involving losses after the tapping BS is equivalent to a
setup with losses introduced in the reflected beam before the
detectors. In the latter case, losses account for the imperfect
detection. Thus, considering losses only in the transmitted part
and perfect detection in the reflected part gives the full view. In
experiments, a measurement accuracy of 150 photons, together
with mean photon numbers per mode 104, would give a very
good relative accuracy.

The discussion concerning weak disturbance of a state by
the MDF measurement on the beam leaving the shutter is
moved to Appendix C.

V. CONCLUSIONS

Thus, we have shown that the MDF is feasible and allows
one to perform a threshold measurement while maintaining
quantum superpositions. It works for any highly populated
two-mode polarization states containing a single frequency and
wave-vector mode. Realization of such a device is demanding,
but the properties of the MDF are worth the effort. The
filter would be useful in the engineering of macroscopic
quantum states of light. In the case of macroqubits, it
circumvents the problem of inefficient detection, and improves

distinguishability. Thus, it makes them useful in quantum
information and metrology protocols.
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APPENDIX A: ACTION OF THEORETICAL MDF ON
MACROQUBITS TAKING INTO ACCOUNT LOSSES

After filtering with the operator Pδth , the macroqubits in
Eq. (2) take the form

|�〉 =
∞∑

i,j = 0; |2i + 1 − 2j | � δth

γ̃ij |2i + 1,2j 〉,
(A1)

|�⊥〉 =
∞∑

i,j = 0; |2i + 1 − 2j | � δth

γ̃ij |2j,2i + 1〉,

where the new probability amplitudes γ̃ij ensure the correct
normalization. Next, the filtered macroqubits are subjected
to losses, modeled by a BS with the reflectivity R, which
transforms them into mixed states

ρ� =
∞∑

i,j = 0; |2i + 1 − 2j | � δth

γ̃ij

∞∑
i ′,j ′ = 0; |2i ′ + 1 − 2j ′ | � δth

γ̃i ′j ′

×
min(2i+1,2i ′+1)∑

n=0

min(2j,2j ′)∑
m=0

c(2i+1)
n c

(2j )
d c(2i ′+1)

n c
(2j ′)
d

× |2i + 1 − n,2j − m〉〈2i ′ + 1 − n,2j ′ − m|,

ρ�⊥ =
∞∑

i,j = 0; |2i + 1 − 2j | � δth

γ̃ij

∞∑
i ′,j ′ = 0; |2i ′ + 1 − 2j ′ | � δth

γ̃i ′j ′

×
min(2i+1,2i ′+1)∑

n=0

min(2j,2j ′)∑
m=0

c(2i+1)
n c

(2j )
d c(2i ′+1)

n c
(2j ′)
d

× |2j − m,2i + 1 − n〉〈2j ′ − m,2i ′ + 1 − n|, (A2)

where c(x)
n =

√(
x

n

)
Rn (1 − R)x−n is the BS probability ampli-

tude for the BS reflecting of n from x photons.
The photon-number distribution for these states is

p�(k,l) = Tr{ρ�|k,l〉〈k,l|},
(A3)

p�⊥ (k,l) = Tr{ρ�⊥|k,l〉〈k,l|},

p�(k,l) =
∞∑

i,j = 0; |2i + 1 − 2j | � δth

γ̃ 2
ij

(
c

(2i+1)
2i+1−k

)2(
c

(2j )
2j−l

)2

×	(2i + 1 − k)	(2j − l),
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FIG. 7. Physical implementation of the MDF with the notation
indicating the state evolution in different parts of the setup.

p�⊥(k,l) =
∞∑

i,j = 0; |2i + 1 − 2j | � δth

γ̃ 2
ij

(
c

(2i+1)
2i+1−l

)2(
c

(2j )
2j−k

)2

×	(2i + 1 − l)	(2j − k), (A4)

where 	(x) = 1(0) for x � 0 (x < 0).

APPENDIX B: MDF MEASUREMENT AND THE STATE
EVOLUTION IN TAPPING AND FEED-FORWARD LOOP

In this Appendix, we will present the evolution of an input
state |�in〉 = ∑

n,m ξnm|n,m〉 entering the setup depicted in
Fig. 5(b). Figure 7 illustrates each stage of the experiment
performed by this setup. At stage 1, this state impinges on
a tapping BS, with the reflectivity coefficient r , which acts
independently on both polarization modes. This results in
transformation UBS|n,m〉. Its action on a single-polarization
Fock state reads as

UBS|0,n〉 =
n∑

v=0

c(n)
v |v〉r |n − v〉t ,

(B1)

c(n)
v =

√(
n

v

)
rv (1 − r)n−v.

The index r (t) corresponds to the reflected (transmitted) part.
The input state is transformed to |�1〉 = UBS|�in〉 where

|�1〉 =
∑
n,m

ξnm

n∑
v=0

m∑
w=0

c(n)
v c(m)

w |v,w〉r |n − v,m − w〉t .

(B2)

Next, in stage 2, the reflected beam impinges on the PBS. It
transforms the operators ar and ar⊥ according to the trans-
formation ad = 1/

√
2(ar + ar⊥ ), ad⊥ = 1/

√
2(ar⊥ − ar ). The

reflected part |v,w〉r = 1√
v! w!

(a†
r )v (a†

r⊥ )w looks as follows:

UPBS|v,w〉r
= 1√

v! w!

1√
2v+w

(a†
d − a

†
d⊥ )v (a†

d + a
†
d⊥ )w |0〉

= 1√
v! w!

1√
2v+w

v∑
p=0

w∑
q=0

(
v

p

)(
w

q

)
(a†

d )p (−a
†
d⊥ )v−p

×(a†
d )q (a†

d⊥ )w−q |0〉

= 1√
v! w!

1√
2v+w

v∑
p=0

w∑
q=0

(
v

p

)(
w

q

)
(−1)v−p

× (a†
d )p+q (a†

d⊥ )v+w−p−q |0〉. (B3)

After the PBS, the state equals |�2〉 = UPBSUBS|�in〉:

|�2〉 =
∑
n,m

ξnm

n∑
v=0

m∑
w=0

c(n)
v c(m)

w√
v! w!

1√
2v+w

×
v∑

p=0

w∑
q=0

(
v

p

)(
w

q

)
(−1)v−p

×
√

(p + q)! (v + w − p − q)!

× |p + q,v + w − p − q〉d |n − v,m − w〉t . (B4)

In stage 3, the detectors detect two Fock states |K,L〉d and
project the state |�2〉 to |�3〉 = d〈K,L|UPBSUBS|�in〉:

|�3〉 =
∑
n,m

ξ̃nm

n∑
v=0

m∑
w=0

c(n)
v c(m)

w√
v! w!

1√
2v+w

×
v∑

p=0

w∑
q=0

(
v

p

)(
w

q

)
(−1)v−p

×
√

(p + q)! (v + w − p − q)!

× δK,p+q δL,v+w−p−q |n − v,m − w〉t

=
∑
n,m

ξ̃nm

n∑
v=0

m∑
w=0

c(n)
v c(m)

w√
v! w!

1√
2v+w

v∑
p=0

w∑
q=0

(
v

p

)(
w

q

)

× (−1)v−p
√

K! L! δK,p+q δL,v+w−K |n − v,m − w〉t .
(B5)

The coefficients ξ̃nm are renormalized to ensure normalization
of |�3〉.

For the further discussion of the filtering process, it is useful
to compute the conditional photon-number distribution for the
transmitted beam pK,L(k,l) = |〈k,l|�3〉|2:

pK,L(k,l) = K! L!

⎛
⎝∑

n,m

ξ̃nm

n∑
v=0

m∑
w=0

c(n)
v c(m)

w√
v! w!

1√
2v+w

× δL,v+w−Kδk,n−v δl,m−w

×
v∑

p=0

w∑
q=0

(
v

p

)(
w

q

)
(−1)v−p δK,p+q

⎞
⎠

2

. (B6)

We change the variables L and K so that they were corre-
sponding to the quantities useful for the filtering: the total sum
of the registered photons S = L + K and the difference in the
occupation of the polarization modes � = L − K . We obtain
pS,�(St ,�t ) with St = k + l, �t = k − l:

pS,�(St ,�t ) =
(

S + �

2

)
!

(
S − �

2

)
!

×
⎛
⎝ ∑

n,m

ξ̃nm

n∑
v=0

m∑
w=0

c(n)
v c(m)

w√
v! w!

1√
2v+w
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× δ S+�
2 ,v+w− S−�

2
δ St +�t

2 ,n−v δ St −�t
2 ,m−w

×
v∑

p=0

w∑
q=0

(
v

p

)(
w

q

)
(−1)v−p δ S−�

2 ,p+q

⎞
⎠

2

.

(B7)

The probability distribution for the occupation difference in
the transmitted beam �t is given by

pS,�(�t ) =
∞∑

St=0

pS,�(St ,�t ). (B8)

The filtering is performed in stage 4 of the experiment. Here,
the detectors’ readings are analyzed and only those events and
realizations of |�3〉 are accepted where � � 0. Depending
on the result of measurement of �, the shutter is opened or
remains closed and the state is rejected.

1. Example

We consider a simple superposition of Fock states with fixed
total photon number S0 [it allows avoiding the summation
over St in Eq. (B8)] and with a uniform distribution of the
occupation difference �0:

|�in〉 = 1/
√

S0 + 1
S0∑

n=0

|n,S0 − n〉. (B9)

In Fig. 8, we have depicted the probability distributions
pS,�(�t ) for this state with S0 = 200 for three cases: � = 0,
10, and 20 for S = 20. These plots reveal that for small � ≈ 0,
the most probable values of �t in the transmitted beam are
large. The higher � is, the more probable are the superposition
components with �t = 0 to be present in the output beam. We
took δth = 150 and the probabilities that |�t | � 150 equal
0.974, 0.522, 0.001 for � = 0, 10, 20, respectively.

APPENDIX C: SMALL DISTURBANCE BY MDF
MEASUREMENT OF “MACROSCOPIC” QUBITS

In reality, one would aim at applying the MDF to more
complex quantum states, the superpositions like the one given
in Eq. (2), which constitute a “macroscopic” qubit. The
goal of the MDF apart from filtering of those states and
increasing their distinguishability in classical detection is to
avoid discriminating between them. Moreover, usually the
experimental conditions are not perfect and in the analysis
of the action of the filter, one has to take into account the
multimode character of the input state and the losses. We will
discuss these issues in this section.

Imagine a source producing a micro-macro polarization sin-
glet state of the form |�−〉 = (|1〉A|�⊥〉B − |1⊥〉A|�〉B)/

√
2.

The macroscopic part B of the singlet is fed to the setup in
Fig. 5(b). The initial state reads as

ρin = 1/2(|�〉〈�| + |�⊥〉〈�⊥|). (C1)

The state passes through the whole setup in Fig. 5(b). In Fig. 9,
we depicted the probability distributions pS,�(�t ) [Eq. (B8)
with ξ̃nm = γ̃nm] for this state as a function of the population
difference �t in the transmitted beam t after the shutter.

(a)
p(|Δt| ≥ 150) = 0.974
p(|Δt| < 150) = 0.026
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0.03

0.04
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0.06
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0.08

0.09

0.10

p20,0(Δt)

(b)
p(|Δt| ≥ 150) = 0.522
p(|Δt| < 150) = 0.478
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Δt

0.000
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0.006

0.009

0.012

0.015

0.018

0.021

p20,10(Δt)

(c)
p(|Δt| ≥ 150) = 0.001
p(|Δt| < 150) = 0.999
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Δt
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0.002
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0.016

0.018

0.020

p20,20(Δt)

FIG. 8. Distribution of the population difference pS,�(�t ) in
the transmitted beam t after the shutter for the state in Eq. (B9)
with S0 = 200 assuming that S = 20 photons were registered in
the reflected beam and the difference measured by detectors was
� = 0 (a), � = 10 (b), � = 20 (c). The vertical dashed lines show
the threshold δth = 150. The probability that |�t | � 150 is given by
p(|�t | � 150).

In our computation, we assumed the gain g = 1.87, S = 20
photons registered in the reflected beam and chose δth = 40.
The probabilities p(|�t | � 40) that |�t | � 40 are 0.87, 0.77,
0.01 for � = 0, 10, 20, respectively.

We also computed the photon-number distributions (useful
for the distinguishability estimation) for ρin processed by the
setup in Fig. 5(b) and compared them with the distributions
obtained in theoretical filtering performed by Pδth , which are
displayed in Fig. 2. The photon-number distribution for ρin

reads as

p�(k,l) =
∑
S∈S

pS,�=0(k,l), (C2)
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(a) p(|Δt| ≥ 40) = 0.874
p(|Δt| < 40) = 0.126
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(b) p(|Δt| ≥ 40) = 0.771
p(|Δt| < 40) = 0.229
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(c) p(|Δt| ≥ 40) = 0.012
p(|Δt| < 40) = 0.988
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p20,20(Δt)

FIG. 9. Distribution of the population difference pS,�(�t )
[Eq. (B8)] in the transmitted beam t after the shutter for ρin =
1/2(|�〉〈�| + |�⊥〉〈�⊥|) for g = 1.87 assuming that S = 20 pho-
tons were registered in the reflected beam and the difference measured
by detectors was � = 0 (a), � = 10 (b), � = 20 (c). The vertical
dashed lines show the threshold δth = 40. The probability that
|�t | � 40 is given by p(|�t | � 40).

where pS,�=0(k,l) is given by Eq. (B6) and S is a set of
S for which the filter shutter is open, i.e., the probability
of |�t | � δth evaluated for ρin is greater than a given level
of trust. We chose δth = 0, 5, 10, 15 and the level of
trust 90%. The distribution p�(k,l) and the corresponding
distinguishabilities are depicted in Fig. 10. Although there
is no clear separation between the regions S1 and S2 here,
still, some low-probability gap appears which results in the
increase of the distinguishability. For δth = 0, 5, 10, and
15, the distinguishabilities are 0.72, 0.93, 0.96, and 0.97,
respectively.

v = 0.72
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(c)
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(d)
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FIG. 10. Photon-number distribution p� [Eq. (C2)] and distin-
guishability v [Eq. (4)] of the macroscopic state |�〉 processed by the
setup from Fig. 5(b), computed for g = 1.87, the level of trust 90%,
and δth = 0 (a), δth = 5 (b), δth = 10 (c), δth = 15 (d). k and l denote
numbers of photons in two orthogonal polarization modes.
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(a) p(|Δt| ≥ 35) = 0.553
p(|Δt| < 35) = 0.447
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(b) p(|Δt| ≥ 35) = 0.459
p(|Δt| < 35) = 0.541
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(c) p(|Δt| ≥ 35) = 0.061
p(|Δt| < 35) = 0.939
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FIG. 11. Distribution of the population difference p
S,�
2 (�t )

[Eq. (C3)] in the transmitted beam t after the shutter for the two-mode
state in Eq. (C1) for g = 1.87 assuming that S = 20 photons were
registered in the reflected beam and the difference measured by
detectors was � = 0 (a), � = 10 (b), � = 20 (c).

1. Multimode case and losses

Let us consider two spatial or frequency modes in the
input state in Eq. (C1). Since the two modes are independent,
the probability distribution p

K,L
2 (k,l) resulting from detecting

K = n1 + n2 and L = m1 + m2 photons in the detectors,
where n1 (n2) and m1 (m2) are the contributions which come
from the first (second) mode, is given by the convolution

p
K,L
2 (k,l) =

K∑
n1=0

L∑
m1=0

k∑
k1=0

l∑
l1=0

pn1,m1 (k1,l1)

×pK−n1,L−m1 (k − k1,l − l1). (C3)

This distribution is depicted in Fig. 11. We note that the
filtering process is deteriorated by the increase of the mode

(a) p(|Δt| ≥ 35) = 0.704
p(|Δt| < 35) = 0.296
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(b)
p(|Δt| ≥ 35) = 0.539
p(|Δt| < 35) = 0.461
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(c)
p(|Δt| ≥ 35) = 0.007
p(|Δt| < 35) = 0.993
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FIG. 12. Distribution of the population difference p
S,�
R (�t )

[Eq. (D1)] in the transmitted beam t after the shutter for the state
in Eq. (C1) subjected to 20% of losses for g = 1.87 assuming
that S = 20 photons were registered in the reflected beam and
the difference measured by detectors was � = 0 (a), � = 10 (b),
� = 20 (c).

number. For the same parameters as in the single-mode case
(g = 1.87, S = K + L = 20, � = L − K = 0, 10, 20), but
for lower threshold δth = 35, we achieved similar values of
probabilities for a successful filtering p(|�t | � 35) equal to
0.553, 0.459, 0.061 for � = 0, 10, 20, respectively.

Next, we computed the probability distribution p
S,�
R (�t )

[Eq. (D1) with ξ̃nm = γ̃nm in Appendix D] for the state in
Eq. (C1) subjected to R = 20% of losses (see Fig. 12). Clearly,
the filtering effect is preserved even for high losses. The
higher gain and thus, the state population, the higher losses are
tolerable. Effectively, losses diminish the available threshold
values in comparison to the ideal case.
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APPENDIX D: LOSSES

The probability distribution p
S,�
R (�t ) for the state in Eq. (C1) subjected to losses R reads as

p
S,�
R (St ,�t ) =

∑
n,m

ξ̃nm

n∑
v=0

m∑
w=0

f (v,w)
∑
n′,m′

ξ̃n′m′

n′∑
v′=0

m′∑
w′=0

f (v′,w′)
min(n−v,n′−v′)∑

x=0

c̃(n−v)
x c̃(n′−v′)

x δn−v−x,n′−v′−xδn′−v′−x,
St +�t

2

×
min(m−w,m′−w′)∑

y=0

c̃(m−w)
y c̃(m′−w′)

y δm−v−y,m′−v′−yδm′−v′−y,
St −�t

2
, (D1)

where

f (v,w) = c(n)
v c(m)

w√
v! w! 2w+v

v∑
p=0

w∑
q=0

(
v

p

)(
w

q

)
(−1)v−pδ Sr +�r

2 ,v+w− S−�
2

δ S−�
2 ,p+q, (D2)

c̃
(n)
k =

√(
n

k

)
Rk (1 − R)n−k. (D3)
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