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All-optical event horizon in an optical analog of a Laval nozzle
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Exploiting the fact that light propagation in defocusing nonlinear media can mimic the transonic flow of an
equivalent fluid, we demonstrate experimentally the formation of an all-optical event horizon in a waveguide
structure akin to a hydrodynamic Laval nozzle. The analog event horizon which forms at the nozzle throat is
suggested as a platform for analogous gravity experiments.
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Event horizons are well known in the context of astro-
physics and cosmology. Less known are the analogy between
an astrophysical event horizon and the sonic horizon in
transonic fluid flow, and the prediction that a thermal spectrum
of sound waves should be emitted from a sonic horizon, in
analogy with Hawking radiation [1]. These analogies set the
stage for attempts to create laboratory black hole analogs
involving various physical scenarios, from water flowing in a
channel to the acceleration of a superfluid to nonlinear optical
experiments [2–10]. We have recently proposed an alternative
approach to analog gravity experiments—an all-optical experi-
ment based on laser light propagation in a distinctive nonlinear
waveguide, which is analogous to a Laval nozzle (a well-
known device in the context of aerodynamics). This approach
has two great advantages over previous experiments: The
attainment of supersonic velocities is very easy, and the analog
of Hawking radiation has a unique optical signature, which can
be readily detected [9]. The analogy is based on the realization
that under certain conditions, light can “flow” through certain
types of media in a fashion reminiscent of actual fluid flow. A
prime example is a laser beam propagating through a Kerr-type
nonlinear medium, which is usually described analytically by
the nonlinear Schrödinger equation [11]. The latter can be
mapped, through the Madelung transformation [12], to a pair
of coupled equations for the amplitude and phase, which have
the form of continuity and Euler equations for an equivalent
fluid [4,9,12–17], which may be called “luminous fluid:”

∂zρ + ∇ · [ρv] = 0, (1)

∂zv + 1

2
∇v2 = − 1

β0
∇(Vqu + U + λρ). (2)

Equations (1) and (2) describe the evolution of the complex
amplitude f (x,y)e−iϕ(x,y) as the light propagates along the z
axis with the wave vector β0. Here ρ = f 2 is the light intensity,
and the transverse component of the wave vector, β0v = −∇ϕ,
plays the role of velocity. v itself is dimensionless. The
coordinate z plays the role of time, β0 is equivalent to the
mass of a particle, and the spatially inhomogeneous refraction
index assumes the role of a potential, Uext(x,y). The term
Vqu = − 1

2β0

∇2f

f
is a “quantum potential” corresponding to

diffraction. The nonlinear term is due to the Kerr effect. Thus
incident light, which propagates at an angle relative to the z
axis, is mapped onto a fluid with a finite transverse velocity, and
a change of that angle corresponds to acceleration of the fluid.
This approach has proved to be an extremely powerful one

when applied to the problem of coherent tunneling [18–23].
It has also been used to model dispersive shock waves that
appear when the nonlinearity is repulsive (i.e. self-defocusing,
λ > 0), and consequently an equivalent real sound velocity
can be defined [14–17,24–26].

The simplest way to analyze Eqs. (1) and (2) is first to
neglect the quantum potential and then to linearize these
equations with respect to the small fluctuations ρ − ρ0 = ρ0ψ

and φ − φ0 = ϕ around a steady solution ρ0(x,y) and ϕ0(x,y).
The result is a Klein-Gordon equation

(−g)−1/2∂μ(−g)1/2gμν∂νϕ = 0 (3)

in a space whose curvature is determined by the metric gμν

with the interval

dσ 2 = gμνdxμdxν

=
√

β0

λρ0

[
d r2 − 2dzv0 · d r −

(
λρ0

β0
− v2

0

)
dz2

]
, (4)

where gμμ′
gμ′ν = δμ

ν and g is the determinant of the metric.
Ordinary “sound waves” in the effective luminous fluid arise
as solutions of Eq. (3) around the equilibrium solution ρ0 =
const, φ0 = const, and v0 = 0 that exists at U = 0, so that
λρ0/β0 = s2 is the squared sound velocity. The nonlinearity
coefficient is positive, λ > 0, otherwise the “sound velocity”
becomes imaginary and various instabilities arise. Corrections
due to the quantum potential become important on length
scales shorter than l−2

nl = λρ0β0, which we call here the
nonlinearity length. It corresponds to the well-known healing
length in BEC.

Equation (4) is analogous to the equation proposed by
Unruh [1] for a description of fluctuations on the background
of a transonic flow in an isentropic fluid. Therefore, the
conclusions made in Ref. [1] can be applied to our optical
system as well. In particular, an effect that is analogous to
Hawking radiation from the vicinity of the horizon of a black
hole should, in principle, also be observed here.

A conceivable way to create such a transonic flow is to use
a Laval nozzle [27,28], i.e., a vessel with a variable cross
section S(x), whose application to other condensed-matter
analogs was discussed in Refs. [29,30]. The flow velocity
initially increases with decreasing S(x) until it reaches the
sound velocity at the narrowest part of the vessel, called the
throat. Further acceleration of the supersonic fluid is obtained
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FIG. 1. An illustration of a laser beam propagating inside the
optical Laval nozzle. The beam, with a small initial angle relative
to the z axis, bends more toward the x direction as it propagates
along the z direction (“time”). The bend in the illustration is strongly
exaggerated. A fluctuation is schematically shown near the Mach
horizon as it is cut in two parts which propagate in opposite directions.

by increasing S(x). Here we analyze the transonic flow for the
optical analog of the Laval nozzle shown in Fig. 1.

The incident laser beam, nearly parallel to the z axis, is
tilted in the x direction at an angle arctan(kx/β0), i.e., the
initial phase of the complex electric field amplitude A(x,y)
is ϕ = kxx. kx/β0 plays the role of “flow velocity” in the
x direction. Acceleration of the flow within the channel of
variable width (along the y axis) corresponds to bending of
the beam (i.e., an increase of kx), as shown in Fig. 1. It also
leads to small corrections to β0 that are quadratic in kx/β0 � 1
(we assume that the wavelength 1/β0 is smaller than all the
other relevant scales).

Reference [9] considered such a flow, bounded by walls
of hyperbolic shape. The x dependence of the flow velocity
along the symmetry line of the nozzle, y = 0, then has the
form

v0(x) = s(1 + αx), ρ0 = ρ(1 − αx), (5)

where overlined quantities refer to the throat at x = 0. The
coefficient α characterizes the spatial acceleration of the flow
in the vicinity of the throat, and the particular value α =
1/(

√
3c), with c = √

a2 + b2, is obtained for the hyperbolic
throat with hyperbola parameters a and b. This type of
description is generic, though, and will still hold in the vicinity
of the throat, even if the vessel profile has a general form,
not necessarily exactly hyperbolic. Equations (5) satisfy the
one-dimensional (1D) continuity equation ∂x[ρ0(x)v0(x)] = 0
up to terms of order O(αx). The sound velocity of the luminous
liquid is λρ(x) = β0s

2(x), and the corresponding values of
these quantities at the throat are related as λρ0 = β0s

2.
Thus low-incidence (“subsonic”) laser light is predicted to

accelerate (i.e., change its propagation direction) while travers-
ing the nozzle, reaching a critical velocity which is equivalent
to the sound velocity in a real fluid, at the nozzle throat, and
exiting the nozzle at a “supersonic” velocity. Reference [9] also
showed that such a flow can give rise to classical fluctuations
near the Mach horizon that are analogous to Hawking
radiation. Such a fluctuation, cut in two parts which propagate

in opposite directions, is schematically shown in Fig. 1. These
fluctuations are, however, beyond the scope of this paper.

We study the flow of luminous liquid through an optical
Laval nozzle experimentally by launching a continuous-wave
laser beam into an appropriately shaped waveguide with
reflective walls, filled with a Kerr-type defocusing nonlinear
material. The experimental challenge here is to create con-
ditions of steady flow with a subsonic input velocity. Such
input conditions imply a small input angle of the beam and
a high nonlinearity and/or input intensity. (Note that, for a
given angle, low and high intensities correspond to supersonic
and subsonic flow, respectively.) However, an unavoidable
consequence of these conditions is strong self-defocusing of
the beam, and as a result the wave packet, which traverses
the nozzle, is an expanding “droplet” of liquid, with a
tendency of the power density in the cavity to decrease with
increasing input power. Furthermore, while the peak intensity
of the droplet may correspond to subsonic flow, it is always
surrounded by supersonic flow (in contrast to the usual case in
hydrodynamics), and when confined to a Laval nozzle such as
the one discussed in Ref. [9], the fluid flows from the throat
toward both sides of the nozzle. It is thus impossible to generate
the steady sonic background flow conditions stipulated by
the theory in a simple waveguide with a convergent-divergent
cross section formed by two convex walls. To circumvent this
problem, we use an alternative waveguide design, based on
a light pipe of circular cross section drilled in an aluminum
block, with a groove of triangular cross section, cut along the
side of the channel, acting as the divergent section of the nozzle
(see Fig. 2). The total length of each light pipe is L = 67 mm,
and the groove extends over the second half of this length. This
design is intended to “trap” the expanding beam and confine it
in a homogeneous, high-density, and low-velocity mode, thus
preparing it for ejection through the groove, and it is akin to
the configuration of a rocket engine: a high-pressure gas is first
loaded into a combustion chamber and is then expelled through
the nozzle. The aluminum block, with several nozzles of
different diameters, aperture sizes, and groove opening angles,
is enclosed in a plexiglass cell with glass windows, which is
sealed and filled with iodine-doped ethanol. The nonlinear
index variations result from optical absorption by the iodine,
which in turn leads to thermally induced changes of the index
of refraction—a nonlocal nonlinearity, which slightly washes
out the thermal gradients [17]. The nonlinearity λρ can be
expressed, in terms of the nonlinearly induced refractive index

(a) (b)

FIG. 2. (Color online) Images of the waveguide structures.
(a) The input plane, with six circular openings of light pipes of
different dimensions. (b) The exit plane, with grooves of triangular
cross section, cut half-way along the sides of the channels, and
forming the divergent sections of the nozzles.
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FIG. 3. (Color online) Waveguide exit plane images and corre-
sponding power density cross sections along the nozzle axis for
an input power of 2 W and an iodine concentration of ∼40 ppm.
(a) and (b) Data for a 2-mm-diam waveguide, (c) and (d) data for
a 3-mm-diam waveguide, and (e) the free expansion of the beam
outside the waveguide structure. Part (f) is a reference image of the
3-mm-diam waveguide.

change δn, as δnβ0/n0, where n0 is the linear refractive index
of the material [17]. The corresponding dimensionless sound
velocity is then s2 = δn/n0, meaning that the input beam
is subsonic for kx/β0 <

√
δn/n0. We use a continuous-wave

frequency-doubled YAG laser (532 nm) and focus the beam
to an ∼0.5 mm waist at the input of a waveguide. The input
power is varied by means of the laser controller in order to
avoid thermal effects in variable-density filters. Images of the
exit plane of the waveguide are recorded by means of a CCD
camera. In all cases, images were acquired after stabilization
of the thermal gradients.

Figure 3 presents images of the exit plane of two of
the waveguides and the corresponding power density cross
sections along the nozzle axis for an input power (2 W)
that is sufficiently high to completely fill the waveguides (at
an iodine concentration of ∼40 ppm). Figure 3(a) shows a
2-mm-diam waveguide, and Fig. 3(c) shows a 3-mm-diam
waveguide, both having an ∼0.5 mm opening (i.e., nozzle
throat). Figures 3(b) and 3(d) are the power density cross
sections corresponding to Figs. 3(a) and 3(c), respectively,
obtained by summation over 12 CCD lines at the center of each
nozzle. Figure 3(e) shows the free expansion of the beam when
it propagates outside the waveguide structure, and Fig. 3(f)
shows a reference image of the 3-mm-diam waveguide,
obtained with incoherent light and with the laser beam blocked.
Figures 3(a)–3(d) clearly show the jets of luminous liquid
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FIG. 4. The measured jet velocities as a function of input power
for an iodine concentration of ∼40 ppm. Data are shown for two
waveguides and for free expansion of the beam outside the waveguide
structure. The calculation of velocities is explained in the text. The
lines are guides to the eye.

ejected from the nozzles as the beam propagates through the
waveguides. Note that the jets extend farther than the edge
of the beam undergoing free expansion [Fig. 3(e); a detailed
analysis is presented in Fig. 4]. Furthermore, there is a sharp
drop in the density as the jet exits the nozzles, which is clearly
seen in the images and in the power density cross sections.
This demonstrates that the luminous liquid is accelerating at
the nozzle throat rather than gradually expanding through the
opening. Finally, while the confined beam propagates along
the waveguide walls at a very slow (i.e., subsonic) velocity,
the following analysis shows that the jet of luminous liquid
is indeed supersonic: The dimensionless velocity of the jet
outside the waveguide is first calculated from its extension
in the transverse direction, deduced from the images. The
relation is simply v = x/z = 2x/L ∼ 0.1, where x

is the transverse distance from the nozzle throat to the edge
of the jet, and z = L/2 is the distance along the z axis
that the same part of the jet has propagated by the time it
reached the exit plane. This velocity should be compared to
the local sound velocity, which can be estimated by analyzing
the light intensity distribution in the exit plane and the rate
of expansion of the freely expanding (i.e., self-defocusing)
beam. The latter, deduced from Fig. 3(e), allows us to calculate
λρ0 and the corresponding sound velocity at the input. The
former in turn allows us to deduce the sound velocity, which
corresponds to the lower density of the jet, taking into account
the expansion of the beam in the light pipe, the relative
intensities of the jet and inside the light pipe, and measured
losses. This calculation gives a local sound velocity in the jet
on the order of 1 × 10−3 or less, meaning that the local Mach
number is >100. This clearly establishes that the luminous
liquid undergoes transonic acceleration and forms a “sonic”
horizon as it expands through the nozzle.

In Fig. 4, the dimensionless velocities (v = 2x/L) of the
jets emanating from the 3 and 2 mm nozzles are plotted as a
function of the input intensity, for a fixed iodine concentration.
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Also shown is the velocity at the envelope of the freely
expanding beam, which we estimate as dx/dz ≈ x ′/L. (In
this case, we measure x ′ from the center of the beam, which
we determine from low-intensity measurements; this velocity
corresponds to the asymptotic expansion angle, obtained for
L � 1/λρ0, i.e., when the propagation distance is much longer
than the characteristic defocusing distance, and is a reasonable
estimate for intensities >1 W.) Figure 4 clearly shows that the
velocity of the jet is higher than that of the freely expanding
beam throughout the experimental intensity range, in spite
of the fact that the initial conditions for the free expansion
involve higher pressures (the equivalent of pressure in a
luminous liquid is P = 1

2λρ2). On the other hand, Fig. 4
shows that the jet emanating from the 2 mm waveguide is
slower than that ejected from the 3 mm nozzle, although, for
a given input intensity, the pressure in the latter is supposed
to be lower. This discrepancy may result from the fact that the
opening in the 2 mm waveguide forms a larger angle, resulting
in a less directional jet [compare Figs. 3(a) and 3(c)]. We
also measure higher losses (due to scattering and absorption)
in the smaller waveguide, so in fact the power densities in
the two waveguides are comparable. Finally, the nonlocality
of the nonlinearity may have a stronger effect on the 2 mm
waveguide.

Measurements at lower intensities illustrate another regime
of operation of the nozzles. Figure 5(a) shows an image of the
3 mm waveguide for self-defocusing (i.e., beam expansion)
that is not sufficiently strong to completely fill it (an input
power of 2 W and an iodine concentration of only ∼20 ppm).
Figure 5(b) shows the corresponding power density cross

FIG. 5. (Color online) Acceleration of supersonic flow. (a) An
image of the exit plane of the 3 mm waveguide. (b) The corresponding
power density cross section along the nozzle axis. (c) The jet velocity
as a function of the distance between the beam axis and the nozzle
throat, for four input powers (the curves are guides to the eye). The
iodine concentration is ∼20 ppm.

section along the nozzle axis. To produce the jet seen in
Fig. 5(a), the nozzle throat had to be displaced (horizontally)
relative to the beam axis. Figure 5(c) shows the dependence of
the jet velocity on the displacement and the input power. Note
that as the input power increases, the optimum acceleration is
obtained when the beam axis is moved farther away from the
throat (at an input power of 2 W, the beam axis is then near the
center of the waveguide). A comparison of the data in Fig. 5(c)
with the divergences of the freely expanding beam, measured
separately for the same input powers, shows that optimum
acceleration at the nozzle is obtained when the envelope of
the freely expanding beam coincides with the nozzle throat
halfway through the waveguide (i.e., at z = L/2). Under these
conditions, the luminous liquid entering the nozzle is already
supersonic and is accelerated further in the divergent section
of the nozzle. The smooth power density cross section shown
in Fig. 5(b) supports this interpretation (compare this to the
sharp density gradients at the throat in Fig. 3). In this case,
however, the nozzle operates in a regime that is not typical of
a Laval nozzle.

In conclusion, we demonstrate experimentally the transonic
acceleration of a luminous liquid through an optical analog of
a Laval nozzle. The analog of a sonic event horizon, which
forms at the nozzle throat, lends itself to studies of classical
(and possibly quantum) fluctuations that are akin to Hawking
radiation [9]. Compared to other experiments and proposals for
“analog gravity” [2–8,10], our experiment has the advantage
that it allows for easy generation of supersonic flow conditions.
While the nonlinearity length lnl = 1/

√
λρ0β0 ∼ 30 μm in

our experiment is sufficiently short to give way to fluctuations
with a linear dispersion relation [9], the challenge is to create
an equivalent Hawking temperature that is high enough to
measure experimentally. Note that this is not a real temperature
but rather a constraint on the minimum light intensity (and
sound velocity) required in the waveguide: As explained in
Ref. [9], the ratio of amplitudes of the two parts of a classical
fluctuation with wave vector ν0—the part which is carried
away with the supersonic flow (i.e., “falls” into the black hole)
and the part which penetrates into the subsonic region (i.e.,
“escapes” from the black hole), is exp( 2πcν0√

3s
) > 1, where c is

a characteristic length scale of the nozzle (c = √
a2 + b2 for

a hyperbolic throat) and s is the sound velocity at the throat.
This ratio needs to be of order unity so that both parts would
be observed in the experiment and allow direct measurement
of the Hawking temperature TH . The same condition can
also be written as lH ≈ 2l0, where lH = h̄/TH = 4πc/

√
3s

and l0 = 1/ν0 are characteristic length scales of the horizon
and the fluctuations, respectively. In the experiment described
here, lH is on the order of a few meters (c ≈ 1 × 10−3 m,
s ≈ 1 × 10−3), while l0 must be on the order of a few
centimeters (the length of the cavity). This may still allow
observation of the part of a fluctuation which is carried away
with the supersonic flow, but the part which penetrates into
the subsonic region will most likely be submerged in noise.
Therefore, lH must be decreased by two orders of magnitude.
Note, however, that for given input intensity and nonlinear
coefficient, the factor c/s in the expression for lH grows
like c2. We therefore estimate that an order of magnitude
smaller cavity will be sufficient for observing both parts of a
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straddled classical fluctuation. The requirement for a slow rate
of acceleration can be met by a refined, smoother waveguide
cross section, compared to the rudimentary prototype that we
have used here for demonstration purposes.
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