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Nonlinear ground-state pump-probe spectroscopy in an ultracold rubidium system
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We present results of our experimental investigations of nonlinear ground-state pump-probe spectroscopy
in ultracold 85Rb collected in a magneto-optical trap. These measurements represent an extension of a similar
pump-probe spectroscopy in a two-level atomic system when strongly driven by a near-resonant pump beam. In
the present three-level system, coherence-induced gain at the probe laser frequency can be observed at specific
frequencies within the spectrum. The absorption or gain spectra that we observe resemble those of the two-level
gain spectra, but different interference processes lead to features that are not present in the two-level case. We
describe our measurements of this interaction in this work.
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I. INTRODUCTION

A two-level atomic system driven by a coherent, single-
frequency, near-resonant laser (pump) field is known to exhibit
sideband structure, with the energy spacing between these
sidebands determined by the Rabi frequency of the interaction
[1]. A weak probe field, nearly degenerate with the pump
field, exhibits a distinctive absorption or gain spectrum when
interacting with this system, showing features when resonant
with transitions between states of the dressed atom [2].
The gain observed in this system is based upon an atomic
coherence produced in the atom by the pump beam rather
than an inversion of the bare state population of the system.
Pump-probe spectroscopy in strongly driven two-level systems
has been explored extensively both theoretically [3–6] and
experimentally [7–11].

Coherence effects in atomic three-level systems have
proven to be an even richer arena. �-configuration three-level
systems, when the terminal states are components of the
ground state, can be long lived since the ground states do
not decay, allowing for entangled states in these systems
[12–14]. Normally absorbing atomic vapors can be made
transparent through electromagnetically induced transparency
(EIT) [15–17], and slowing and storage of light [18] has been
demonstrated. Recently, subwavelength localization of excited
atomic states through coherent population trapping has been
investigated [19–21].

With recent availability of high-power tunable laser
sources, Raman-coupling strengths can be quite large, even
when the detuning of the laser frequencies from the interme-
diate state resonance is large, permitting superposition states
with significant amplitude in each ground-state component,
but with little or no population of the intermediate state. Thus,
measurements of the probe beam absorption or gain spectrum
in a Raman-coupled ground-state atom become interesting as a
means of fully exploring the behavior of this highly nonlinear
system.

Berman and Dubetsky [22] considered the system shown in
Fig. 1 theoretically. While the spectra that they calculated are
similar in some regards to those of the two-level system [2],
they also discovered a new interference effect that leads to
different features in the spectrum. In the present work, we ex-
plore this nonlinear ground-state pump-probe spectroscopy in

a system of ultracold atomic 85Rb and report our observations
of absorption and gain features in these spectra. The hyperfine
structure of 85Rb presents technical challenges to observing the
system under the conditions assumed by Berman and Dubetsky
that we discuss in the next section, which includes significant
effects due to spontaneous emission and optical pumping.
To study these effects we record transient probe absorption
in order to observe the evolution of the probe absorption
in real time as optical pumping processes take place. While
conditions assumed in the theory could not be fully attained
in the laboratory, many of the qualitative features predicted by
Berman and Dubetsky in the steady state are apparent in our
spectra.

In this work, we observe gain and absorption in a weak
probe laser interacting with a three-level atomic system driven
by a pair of strong laser fields that couple the two ground
states of the � system. We observe direct signatures of the
two-photon Rabi frequency through the probe absorption, as
measured on the real-time probe beam intensity. The spectra
of the transmitted probe beam show prominent features at
the sideband frequencies of the driven system, as predicted
by Berman and Dubetsky. In the following, we discuss the
underlying theory, describe our experimental configuration,
and present our results.

II. THEORY

Berman and Dubetsky [22] proposed a type of nonlinear
ground-state pump-probe (NLPP) spectroscopy for probing
the ground-state structure of an atomic medium dressed by
a strong Raman interaction. The specific interaction involves
three coherent laser fields interacting with a three-level atomic
medium in a � configuration, as shown in Fig. 1.

The levels labeled |1〉 and |2〉 can be, for example, two
hyperfine levels of the atomic ground state, while the level |e〉 is
an excited state that is dipole-coupled to both states |1〉 and |2〉
through the two pump fields E1 and E2, respectively. The field
frequencies of the probe field E and the pump fields E1 and E2

are described by �, �1, and �2, respectively, and the detunings
of the fields from their respective transition frequencies are
given by

� = � − ωe1, �1 = �1 − ωe1, �2 = �2 − ωe2, (1)
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FIG. 1. (Color online) Three-level atomic system driven by two
pump fields E1 and E2, and probed by a field E.

where ωei is the atomic transition resonance frequency
between states |e〉 and |i〉. Following the notation of Ref. [22],
the single-photon Rabi frequencies for the |i〉 → |e〉 transi-
tions are 2χi = μi · Ei/h̄. The relative magnitude of χ1 and
χ2 is characterized by η = √

χ1/χ2. In our measurements,
described in the following section, states |1〉, |2〉, and |e〉
are served by the 5s 2S1/2,F = 3, 5s 2S1/2,F = 2, and 5p 2P3/2

states of atomic 85Rb, respectively. Two-photon Rabi frequen-
cies and Stark shifts are of key importance in this experiment.
Specifically, the two-photon Rabi frequencies are defined as

g = χ1χ2/�, g′ = χχ2/�, (2)

where g describes the coupling between states |1〉 and |2〉 by
pump fields E1 and E2, and g′ describes the coupling due to
pump E2 and the probe E. While g′ is much smaller than g, it
is not negligible in the theory. The Stark shifts are defined as

S1 = χ2
1

/
�, S2 = χ2

2

/
�, S = χχ1/�. (3)

The detunings �1 and �2 are chosen to be large enough that
the population of |e〉 remains small, yet small enough to yield
a large two-photon Rabi frequency, g. Two key detunings are
the pump-probe detuning δ1 and the two-photon detuning δ̃,
which are defined as

δ1 = � − �1 = � − �1, (4)

δ̃ = �2 − �1 = �2 − �1 + ω21, (5)

where ω21 is the hyperfine splitting of the ground state (for our
choice of states, ω21 = ω2 − ω1 is negative).

The two-photon detuning of these pump fields from the
Raman transition, δ̃, is small, leading to strong Raman coupling
of states |1〉 and |2〉. The effective, Stark-shifted two-photon
detuning is given by

δ = δ̃ − (S1 − S2). (6)

In analogy with the dressed states of a two-level atom, the
ground states in this interaction can be considered as being
dressed by the two-photon pump field, as detailed in Ref. [22].
The frequency separation of the dressed states is given by

ωBA =
√

δ2 + 4g2, (7)

where the dressed states |A〉 and |B〉 are superpositions of the
bare states |1〉 and |2〉, and the form of ωBA is reminiscent of
the generalized Rabi frequency in a two-level system.

Berman and Dubetsky calculated the absorption spectrum
of a probe field E, detuned from the |1〉 → |e〉 transition by �
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FIG. 2. (Color online) Absorption spectra of the probe beam.
(a) The Stark-shift-corrected two-photon detuning δ of E1 and E2

is set to 0, while the relative amplitudes of the two laser fields are
characterized by η = 1/5 (solid line, blue), η = 1 (dot-dashed line,
black), or η = 5 (dashed line, red). (b) We vary the detuning from
two-photon resonance, keeping η = 2 in each trace. The solid line
shows the absorption spectrum for δ = −g, while in the dot-dashed
curve δ = g.

as a function of δ1 ≡ � − �1. We show a few of their spectra
in Fig. 2.

In Fig. 2(a), we show examples of probe absorption spectra
for δ = 0 for three different pump beam intensity ratios (η =
1/5, 1, and 5). For each, 	/2π = 0.1 MHz is the loss rate of
the ground state, as described in Ref. [22], and the two-photon
Rabi frequency is g = 10	, or g/2π = 1 MHz. Since ground
states are by definition very long lived, losses are due primarily
to atoms expanding out of the interaction region. On these
curves, α < 0 indicates gain. For η = 1/5 (weak E1), shown as
the solid blue curve, the absorption consists of three dispersion-
shaped line shapes, centered near δ1 = −ωBA = −2g, 0, and
ωBA = 2g. The central feature at δ1 = 0 is relatively small
compared to those at δ1 = ±2g. For η = 1 (χ1 and χ2 are
equal), shown as the dot-dashed black curve, the magnitude
of the central feature is comparable to that at δ1 = 2g, while
the peak at δ1 = −2g has vanished. Finally, when η = 5 (weak
E2), shown as the red dashed curve, the peak at δ1 = −2g has
reappeared, but it is inverted relative to its appearance for weak
E1, and the magnitudes of the three peaks are comparable with
one another. Note that we have magnified the curves for η = 1
and 5 by a factor of 5 to improve their visibility. The variation
in the ratio of the beam intensities I1 and I2 for the two pump
beams is extremely large (∼4 × 105) between η = 1/5 and
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η = 5, much larger than one can realistically attain in the
laboratory. Still, these plots illustrate the wide variability of
the probe absorption spectra with pump beam intensities.

In Fig. 2(b), we show the probe absorption spectra for
two different two-photon detunings, δ = −g for the solid blue
curve, and δ = +g for the black dot-dashed curve. We keep
η = 2 for each case. The resonances at δ1 = ±ωBA = ±√

5g

are no longer dispersion shaped, but rather single-peaked
absorption or gain. The peak at δ1 = +√

5g dominates: a gain
peak for δ = −g, but an absorption peak for δ = +g. The
feature at δ1 = −√

5g is of the opposite sign from the primary
peak and the dispersion-shaped resonance at δ1 = 0 is small
in each case. The central peak shows an interesting property
as one varies η. For η > 1.5, this peak inverts as we switch
the detuning from δ = −g to δ = +g. At η ∼ 1.5, however,
this peak vanishes, and for η < 1.5, the peak remains the same
from δ = −g to δ = +g.

In addition to the analysis based on the time dependence
of the amplitudes of the eigenstates of the three-level atom
interacting with the three laser fields, Berman and Dubetsky
also developed a dressed-state analysis of the interaction. This
picture allows simple interpretation of the gain and absorption
peaks in terms of the admixture coefficients of the dressed
states, as well as their equilibrium population. Absorption
results when a probe photon is scattered into one of the pump
fields, associated with an atomic transition among the dressed
states. Gain is observed in the probe when the transition moves
in the opposite direction, scattering a pump photon into the
probe field. As we describe in the next section, we have used
a cooled and trapped atomic 85Rb system to carry out the
measurements of probe gain and absorption.

III. EXPERIMENT

We investigate the NLPP process in an ultracold sample
of approximately 1 × 108 85Rb atoms produced in a magneto-
optical trap (MOT). Suppression of Doppler broadening, as in
the trapped atoms, is important in these measurements in order
to maintain uniform detunings, �1, �2, and �, for all atoms.
The experiment is cycled between loading and probe cycles,
in which the MOT beams and the magnetic field are switched
off and the NLPP experimental fields are switched on to probe
the freely expanding cloud of atoms.

After preparation in the MOT, the Rb atoms are left in the
F = 3 hyperfine level of the ground 5s 2S1/2 state. This state
serves as state |1〉 of the three-level system. We couple this
initial state to the F = 2 hyperfine level of the ground state,
level |2〉, via a two-photon Raman interaction driven by two
intense pump fields E1 and E2, whose generation we describe
later in this section. The frequencies of the pump fields are
close to resonance with the 5p 2P3/2 state, which serves as
level |e〉. We show the relevant energy levels of 85Rb, including
hyperfine structure of the 5s 2S1/2 and 5p 2P3/2 states, in Fig. 3.
We have chosen the polarizations of the lasers to be linear and
perpendicular to one another to optimize the Raman coupling
strength at large detunings. Defining the quantization axis of
the atoms parallel to the field of E2, this field couples hyperfine
components of the same mF , shown as the solid lines in Fig. 3.
E1 couples components whose z component of F differs by
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FIG. 3. (Color online) Energy-level schematic of the D2 line
of 85Rb including two-photon pump laser excitation with lin ⊥ lin
excitation. For the frequency of the lasers shown here, � is negative.

�mF = ±1, labeled as dashed (σ+) and dot-dashed (σ−) lines
in Fig. 3.

For each of our measurements, it is instructive to calculate
the relevant Rabi frequencies of the interactions and Stark
shifts of the levels. We determine the Rabi frequencies χ1 and
χ2 of the one-photon interactions for each of the transitions
indicated in Fig. 3, for all hyperfine levels F of the 5p 2P3/2

state, using the known transition moment and Clebsch-Gordon
coefficients [23]. Due to the selection rule �F = 0 or ±1
for single-photon electric dipole transitions, only the F = 2
and F = 3 levels of the 5p 2P3/2 state contribute to the
Raman coupling of levels |1〉 and |2〉. To determine the
two-photon Rabi frequency g for the 5s 2S1/2, F = 3, mF →
5s 2S1/2, F = 2, mF ± 1 transition given by Eq. (2), we eval-
uate χ1χ2/� for each of these two intermediate states, and
add. For transitions starting from the extreme components
|mF | = 3, we find

|g(|mF |=3)|/2π =
∣∣∣∣

0.279

�(F=3)/2π
+ 0.559

�(F=2)/2π

∣∣∣∣
√

I1I2, (8)

where �(F=3) and �(F=2) represent the detuning from the
F = 3 and F = 2 excited states, the frequencies g(i)/2π and
�(i)/2π are given in megahertz, and the pump intensities
I1 and I2 are given in W cm−2. Only one Raman transition
(�mF = −1 for mF = 3 and �mF = +1 for mF = −3)
is active for these components. For two-photon transitions
starting from |mF | = 2, we find

|g(|mF |=2)|/2π =
∣∣∣∣

0.456

�(F=3)/2π
+ 0.228

�(F=2)/2π

∣∣∣∣
√

I1I2 (9)

for the stronger allowed transitions (i.e., �mF = −1 for
mF = 2 and �mF = +1 for mF = −2). As we show later, our
measurements suggest that these are the dominant transitions
involved in the NLPP process. For determination of the Stark
shifts S1 and S2, we use Eq. (3). For S1, we calculate χ2

1 /�
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FIG. 4. Simplified experimental setup illustrating the arrange-
ment used to derive the pump fields, E1 and E2, and the probe field,
E, from a single master laser. The pump fields are combined on a
polarizing beam splitter, switched with an AOM, and directed into
the MOT. The transmission of the probe beam through the MOT is
continuously monitored by a fast photodetector (PD).

for each of the dipole-allowed levels (F = 2, 3, and 4) of the
5p 2P3/2 state, and sum. Similarly, for S2, we sum χ2

2 /� over
the F = 1, 2, and 3 levels of the 5p state. The Stark shifts are
relatively insensitive to mF of the initial state, as expected.

To carry out the NLPP measurements, we require two
pump beams of amplitudes E1 and E2, each at a relatively
high intensity, and a weak probe beam, E (in addition to the
MOT beams). Each of these beams is near resonance with the
5s 2S1/2 → 5p 2P3/2 transition in 85Rb at 780 nm and must be
frequency stable and independently tunable. To accomplish
this, we constructed a single master extended-cavity diode
laser (ECDL), whose absolute frequency is locked to an atomic
resonance, and three additional lasers injection-locked to the
master. We use various frequency offset techniques to generate
E1, E2, and E, as follows.

In Fig. 4, we show an overview of the injection locking
scheme. The frequency �0 of the master laser is locked to a
saturated absorption crossover resonance in a Rb vapor cell.
We derive the pump field, E1, using the laser labeled E1. A
small portion of the master laser beam is directed into this high-
power, bare laser diode, injection locking its frequency directly
to �0. This pump beam is frequency shifted by an amount
fAO ∼ 200 MHz in an acousto-optic modulator (AOM) before
being directed into the MOT. Thus the frequency of this beam
is �1 = �0 − 2πfAO. (We diagram the laser frequencies and
atomic resonance frequencies in Fig. 5.)

The second pump field E2 is derived from an ECDL that
is frequency offset from the master laser by an amount fμ ∼
3 GHz using a microwave offset locking technique. This beam
is also frequency offset in the same AOM described above
by fAO before entering the MOT. We tune the frequency
fμ to equal the hyperfine splitting of the ground state of
85Rb, less the detuning of the pump field from two-photon
resonance, resulting in a pump beam frequency of �2 =
�0 − 2πfAO + |ω21| + δ̃. In the microwave offset locking
technique, we modulate the diode laser injection current with
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FIG. 5. (Color online) Illustration showing the derivation of the
frequencies involved in the experiment relative to the resonant
frequencies from the 85Rb F = 3 ground state to the F = 2, 3, and 4
excited states (F = 1 excited state not shown). The laser frequencies
are shown in black, and the frequency modulation offsets are shown
as green arrows. The frequency �0 of the master laser is stabilized to
a saturated absorption crossover resonance (designated ‘2–4 c.o.’ in
the figure). Laser E1 is derived from the master laser with an AOM
frequency shift, fAO. The probe laser E is derived with a frequency
shift from an EOM (fEO) and a double-pass AOM shift (2 × fAO′ ).
Laser E2 is derived from the master laser with a microwave frequency
offset, and an AOM frequency shift, fAO.

a signal at the microwave frequency fμ to produce small
sidebands on the optical field [24]. Optical injection locking
occurs when one of the diode laser modulation sidebands is
tuned within the capture range of the injected frequency �0.
We derive an error signal from the interference between the
master laser and the diode laser, which we use to stabilize
the laser. (In brief, we combine this diode laser output and the
master laser output on a fast photodiode and observe the beat
signal at frequency fμ. The phase of this rf signal varies across
the capture range. By mixing this beat signal with the output
of the fμ oscillator in a double-balanced mixer, we generate a
dc error signal related to this phase, which enables long-term
stabilization of the diode laser frequency. High-performance
phase locking as described here is detailed in Ref. [25].)

Finally, we describe the generation of the probe field
E, whose frequency must be independently tunable across
�1 (e.g., positive, negative, and zero frequency offsets).
We accomplish this using a second offset injection locking
technique, an electro-optic modulator (EOM), and an AOM.
In this case, we place modulation sidebands on a beam picked
off from the master laser output with an EOM driven at a
frequency fEO, and we inject this modulated laser into another
ECDL, which is used to derive the probe field, E. Similar
to the E2 laser case, we observe injection locking when the
probe laser is tuned within a capture range of the master laser
carrier or one of its sidebands. In this case, we observe a dc
interference signal between the master and probe laser, which
is suitable for locking without the need for demodulation.

063819-4



NONLINEAR GROUND-STATE PUMP-PROBE . . . PHYSICAL REVIEW A 86, 063819 (2012)

Again, using this technique we are able to maintain stable
injection locking for many hours. To place the frequency of
this beam in the required range, we double-pass it through an
AOM, driven at frequency fAO′ ∼ 200 MHz, to apply a second
frequency offset, after which the frequency of the probe beam
is � = �0 + 2π (fEO − 2fAO′). This method produces a wide
range of frequency offsets between the probe E and the pump
E1 fields. The frequency offset can be made quite small, as long
as the capture ranges of the master laser carrier and sidebands
do not interfere with one another. The upper limit of the
frequency offset appears to be limited only by rf components
used for frequencies up to the single-mode tuning range of
the probe laser ECDL. With our choice of components, we
are readily able to generate EO sidebands in the range of
about 100–500 MHz, which is much greater than required for
the experiments presented here. When 2fAO′ − fEO = fAO,
the probe laser frequency, �, is equal to the pump laser
frequency, �1. The frequency detuning between the probe
and master laser can then be tuned by changing the value of
fEO. As a practical matter, this seemingly complicated scheme
allows us to explore the NLPP process over a wide range
of detunings by changing rf synthesizer frequencies, with a
minimal realignment of optical beams.

In the present experiment, we are interested in measuring
small changes in the transmission of the probe beam through
the MOT in the presence of off-resonant, but intense, pump
beams. We choose to leave the probe beam on constantly
during the experiment, at an intensity low enough so as not
to disrupt the MOT measurably. We are, however, required to
switch off the pump beams during the MOT loading cycles.
To this end we use the pump AOM described above as an
optical shutter, with turn-on and turn-off times of several tens
of nanoseconds, which is faster than the time scales important
to the NLPP experiment. We direct the collinear pump beams
through the center of the MOT. The probe is also directed
through the center of the MOT, but at a small angle with
respect to the pump beams to allow us to separate the beams
and measure the power of the probe beam after the MOT.

In order to minimize the pump beam intensity variation
across the probe beam, we chose to use pump beams (2–4-mm
diameter) that are significantly larger than the probe beam
(∼0.5-mm diameter). With this constraint and our low-power
laser diodes, we are able to produce intensities of about
500 mW/cm2 in each of the pump beams. We also keep the
probe intensity as low as possible, typically on the order of
10 mW/cm2, while maintaining good signal-to-noise ratio
with our fast photodiode.

We perform the probe absorption measurements by cycling
the MOT in periods of trapping and measurement, and we
record the transmission of the probe beam for an interval of
time before and after the pump beams are turned on. We cycle
the entire experiment at about 10–20 Hz, which allows fast
data acquisition while maintaining a trapping cycle that is long
enough to recapture atoms lost during the expansion of the cold
atoms after the trap is turned off and those lost during the probe
cycle. The experimental cycle begins with a trapping period,
after which the magnetic field coils are turned off. After the
magnetic field decreases sufficiently (several milliseconds)
the trapping light is turned off, and a short time later
(<1 ms) the repumping light is turned off. About 1 ms later, the

measurement cycle is initiated by turning on the pump fields
as described above. We keep the duration of the measurement
cycle short (∼50 μs) to maximize the time the MOT is on and
thereby maintain a high atom number in the trap.

We continuously monitor the probe power transmitted
through the MOT, and we record its change when the pump
beams are switched on. This provides a direct measurement
of the modification of the probe absorption due to the action
of the pump beams. We average the transient signals over
several (∼10) MOT cycles, which significantly improves the
signal-to-noise ratio. This method allows us to examine the
different time-dependent processes at play and their relative
time scales. After each series of averages, the probe beam
detuning δ1 is stepped and the process repeated until a full
spectrum is recorded. Using this method of detecting the probe
absorption, we are able to observe how the system behaves in
transient and steady-state regimes.

IV. RESULTS AND DISCUSSION

In this section we present the results of our measurements.
We first present a variety of transient waveforms that illustrate
the characteristic features we see in the data. We then present
a series of spectra constructed from these transient waveforms
to illustrate how the NLPP spectra change with two-photon
detuning. Third, we present a series of probe absorption spectra
in which we vary the intensity of the pump field, E1, for a
fixed intensity for pump field E2. This series nicely illustrates
that the probe absorption spectrum evolves from a two-photon
absorption process to a Raman gain process as the intensity I1

is increased. Finally, we discuss the role of optical pumping
due to the small, but finite, population of the excited-state Rb
atoms during the NLPP process and how this complicates a
quantitative comparison of our results to the theoretical results
of Berman and Dubetsky.

A. Transient waveforms

We show an example of the transient waveform in Fig. 6.
In this figure, t = 0 μs indicates the time at which the pump
beams turn on. The signal level before this time represents
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FIG. 6. (Color online) Representative probe transmission signal
to illustrate data collection technique, in which the dc value of
the probe transmission (labeled as Background) has already been
subtracted. Time t = 0 represents the time that the pump beams are
turned on. Early and steady-state signals are computed from averages
over the time periods labeled Early and Steady State, respectively.
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the background level, against which gain or absorption can
be observed. Positive signals represent gain, while negative
signals represent absorption. As seen in Fig. 6, the probe power
undergoes a rapid change upon application of the pump beams.
In this case, probe gain develops on a submicrosecond scale
and then relaxes to a steady-state value, while undergoing
damped oscillation at a frequency equal to the pump-probe
detuning, δ1. We designate the signal averaged over the first
1.5 μs after the pump fields are turned on as the “early”
signal, and the signal after a 20-μs delay as the “steady-state”
signal. We chose 1.5 μs as the duration for the early signal by
considering two relevant time scales of the signal: 1.5 μs is
long in comparison to the oscillation period (due to two-photon
Rabi oscillation or pump-probe detuning), so our signal is an
average over these oscillations. At the other bound, 1.5 μs is
shorter than the relaxation time as the signal approaches steady
state. The maximum gain that we observed was on the order
of 1%.

The nature of the transient waveforms varies quite dra-
matically depending on the intensities of the pump beams
and the pump and probe frequencies. We observe signatures
within the transient waveforms at two different characteristic
frequencies: the two-photon Rabi frequency, g, and the pump-
probe detuning, δ1. In Figs. 7–10 we show transient waveforms
that are representative of the variety of NLPP signals we
have observed. For each, the pump E1 detuning and pump
intensities are �1/2π = −158 MHz, I1 = 385 mW/cm2, and
I2 = 232 mW/cm2. (In this and in the following examples, we
specify only �

(F=2)
1 , which we abbreviate as �1. This notation

sufficiently identifies the laser frequency. The two relevant
detunings are related by (�(F=2)

1 − �
(F=3)
1 )/2π = 63 MHz,

the frequency difference between the F = 3 and F = 2
hyperfine states of the 5p 2P3/2 state.) For these intensities and
detuning, the two-photon Rabi frequency g/2π is 1.43 MHz
for atoms starting from the F = 3, |mF | = 3 level, and
1.05 MHz for atoms starting from the F = 3, |mF | = 2 level.
The average Stark shift is S1 − S2 = 0.0 MHz. We show
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FIG. 7. (Color online) Transient NLPP signals for δ̃ = −5 MHz,
δ1/2π = ±5 MHz. The waveform for δ1/2π = −5 MHz (left) shows
a strong transient absorption with small oscillations at 5 MHz, while
the waveform for δ1/2π = +5 MHz (right) shows oscillations of a
similar amplitude at a frequency of 5 MHz on top of a smaller transient
gain. The transients in this case decay to a small steady-state value
with the same sign (absorption and gain) as the transients.
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FIG. 8. (Color online) Transient NLPP signals for δ̃/2π =
−5 MHz, δ1/2π = ±0.5 MHz, near the central dispersion feature.
The signal shows a short transient burst at the two-photon Rabi
frequency, g/2π = 4.4 MHz, and a longer period oscillation at the
pump-probe detuning, δ1. The oscillations at frequency δ1 show a
π phase shift between δ1/2π = ±0.5 MHz, while the burst at the
two-photon Rabi frequency has the same phase.

only a few microseconds of the full record length. Similar
to the waveform shown in Fig. 6, each ultimately settles
to a steady-state level. With the exception of Fig. 8, these
waveforms show the transients at the peak of the absorption
and gain features at a given two-photon detuning.

Figure 7 shows transients for δ̃/2π = −5 MHz, which for
δ1/2π = −5 MHz (left panel) show a strong early absorption
with small-amplitude oscillations at a frequency of 5 MHz.
The waveform for δ1/2π = +5 MHz (right panel) shows
oscillations of a similar amplitude at a frequency of 5 MHz,
imposed on top of a smaller early gain. The transients in this
case decay to a very small steady-state value with the same
sign (absorption or gain) as the early signal.

In Fig. 8, we show transients at a smaller pump-probe
detuning δ1, i.e., closer to the central dispersion feature, for
δ̃/2π = −5 MHz. These waveforms show a very pronounced
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FIG. 9. (Color online) Transient NLPP signals for δ̃/2π =
−1 MHz, δ1/2π = ±2.2 MHz. In each of these transients, the tran-
sient and steady-state signals have the same sign, and the oscillations
at frequency δ1 are small. Interestingly, a short oscillating burst is
visible at the beginning of the transient for δ1/2π = +2.2 MHz,
while not for δ1/2π = −2.2 MHz.
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FIG. 10. (Color online) Transient NLPP signals for δ̃/2π =
+3 MHz, δ1 = ±3.5 MHz. The transients for δ1 = ±3.5 MHz have
similar character. In each case, the steady-state and transient signals
are opposite sign; e.g., steady-state absorption for δ1 = −3.5 MHz
evolves to a small steady-state gain.

slow oscillation at frequency δ1/2π = ±0.5 MHz. In addition,
they show a transient “burst” at a higher frequency, which lasts
only for ∼1 μs. This burst is present for all probe detunings,
although it is often obscured when the transient signals
vary with a similar frequency. However, close to δ1 = 0 the
burst is clearly distinguishable from other signal components.
The frequency of this burst, which we determine through
computation of the Fourier transform of the time-dependent
data, is the same for all values of δ1, but varies with the
two-photon detuning, δ̃, as shown in Fig. 11. This variation
suggests that this burst oscillation is related to two-photon
Rabi cycling in the ground-state populations and manifested
in the oscillation of the probe beam absorption signal. We fit the
data in Fig. 11 to Eq. (7), using the two-photon Rabi frequency
g and the differential Stark shift S1 − S2 as fitting parameters.
The best-fit value of g/2π is 1.26 MHz, and for (S1 − S2)/2π

is −1.19 MHz. While the Stark shift S1 − S2 does not agree
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FIG. 11. (Color online) Experimentally measured burst transient
frequencies (data points) and theoretical fit (dot-dashed blue line).
We find the best-fit parameters are g/2π = 1.26 MHz and (S1 −
S2)/2π = −1.19 MHz.

particularly well with the average value of 0.0 MHz that we
calculated based upon the experimental parameters of I1, I2,
and �, the value of g/2π falls between the corresponding
values that we calculated for the |mF | = 3 and |mF | = 2 states
that we discussed earlier, which could be an indication that the
population of atoms is preferentially distributed in states with
larger mF after the MOT is switched off. We note that this
frequency displays a small negative chirp, shifting from high
to low frequency.

In Fig. 9, we show a set of transients with much
larger steady-state values, for a two-photon detuning δ̃/2π =
−1 MHz. In each case, the steady-state signal is the same sign
as the early signal, and weak modulation at δ1 is observed.
Interestingly, there is a short burst oscillation at the two-photon
Rabi frequency visible for δ1/2π = +2.2 MHz. This feature is
not evident for δ1/2π = −2.2 MHz, but in the presence of the
large, broad, negative initial peak for these data, it is unclear
if this burst is absent in this case or simply obscured.

Finally, in Fig. 10 we show an example where the steady-
state signal has the opposite sign from the early signal.
Interestingly, the transients for δ1/2π = ±3.5 MHz have
similar character, each having similar amplitude oscillations
and steady-state value. We attribute the reversal of early gain
to steady-state absorption (and vice versa) to optical pumping
effects, as we discuss in Sec. IV E.

B. Varying pump detuning, δ̃

We use the waveforms discussed in the previous section
to generate a series of NLPP gain spectra, each as a function
of the pump-probe detuning δ1. In Figs. 12–15 we show the
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FIG. 12. (Color online) NLPP spectra for �1/2π = −108 MHz,
I1 = 212 mW/cm2, and I2 = 62 mW/cm2: (a) transient signal
spectra, (b) steady-state spectra. We vary δ̃, as labeled on each curve
in (b), for each of these spectra. The tick marks on each plot indicate
δ1 = ±ωBA, computed using Eq. (7), with g = g(|mF |=3) as listed in
Table I.
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FIG. 13. (Color online) NLPP spectra for �1/2π = −108 MHz,
I1 = 398 mW/cm2, and I2 = 119 mW/cm2: (a) transient signal
spectra, (b) steady-state spectra. We vary δ̃, as labeled on each curve in
(b), for each of these spectra. The tick marks on each plot indicate δ1 =
±ωBA, computed using Eq. (7), with g = g(|mF |=3) as listed in Table I.

dependence of the NLPP spectra on the two-photon detuning
δ̃. The range of δ̃/2π for our measurements varies for the
different data sets, with the maximum value of ±10 MHz.
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FIG. 14. (Color online) NLPP spectra for �1/2π = −158 MHz,
I1 = 385 mW/cm2, and I2 = 232 mW/cm2: (a) transient signal
spectra, (b) steady-state spectra. We vary δ̃, as labeled on each curve in
(b), for each of these spectra. The tick marks on each plot indicate δ1 =
±ωBA, computed using Eq. (7), with g = g(|mF |=3) as listed in Table I.
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FIG. 15. (Color online) NLPP spectra for �1/2π = +292 MHz,
I1 = 477 mW/cm2, and I2 = 356 mW/cm2: (a) transient signal
spectra, (b) steady-state spectra. We vary δ̃, as labeled on each curve
in (b), for each of these spectra. The tick marks on each plot indicate
δ1 = ±ωBA, computed using Eq. (7), with g = g(|mF |=3) as listed in
Table I.

Since the waveforms display rather different behaviors, there
are several parameters needed to fully quantify them. The
spectra that we determine display two of these parameters:
the early response and the steady-state response. Each of
these is indicated in the transient waveform shown in Fig. 6.
As we stated earlier, we define the early response as the
average of the transient waveform over the first 1.5 μs after
the pump lasers are turned on, and the steady-state response
as the average signal strength after the transient behavior of
the waveform has died away. The NLPP spectra consist of,
in general, three features: rather broad absorption or gain
peaks near δ1 = ±ωBA, where ωBA =

√
δ2 + 4g2, and a strong

(usually dispersion-shaped) feature near δ1 = 0. We have
marked ±ωBA on each plot with short tick marks to aid the
eye. For this purpose, we use g(|mF |=3), as defined in Eq. (8), to
calculate ωBA. We understand the peak near δ1 = δ̃ as the direct
two-photon Raman transition of the atom with the probe beam
and E2. We see absorption or gain at this peak depending, as
we support later, on the relative populations of states |1〉 and
|2〉. We estimate the uncertainty of the data points of these
spectra to be about 10 μV for Figs. 12–14, or slightly greater
than the width of the lines. For Figs. 15 and 16, the data were
collected with a different detector and the uncertainty is about
0.5 mV, but the signal-to-noise ratio is similar.

We present a summary of the experimental parameters for
each of the series of experiments performed in Table I. We list
the field detuning, intensities, the two-photon Rabi frequency,
g, and Stark shifts S1 − S2 that are important to the spectra
shown in this section. We display the field detuning �1 with
two values: the first value is the detuning from the F = 2
excited state, and the second from the F = 3 excited state. The
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NONLINEAR GROUND-STATE PUMP-PROBE . . . PHYSICAL REVIEW A 86, 063819 (2012)

−10 0 10
−6

−4

−2

0

2

4

6

δ
1
/2π (MHz)

T
ra

ns
m

is
si

on
 (

 1
00

 m
V

)
(a)(a)(a)(a)(a)(a)(a)(a)

−10 0 10
−6

−4

−2

0

2

4

6

δ
1
/2π (MHz)

(b)

I1 =0

(b)

I1 =10

(b)

I1 =20

(b)

I1 =40

(b)

I1 =80

(b)

I1 =160

(b)

I1 =320

(b)

I1 =640

FIG. 16. (Color online) NLPP spectra for �1/2π = +292 MHz,
δ̃ = 0, and I2 = 356 mW/cm2: (a) transient signal spectra, (b) steady-
state spectra. The intensity I1 varies, taking values of 0, 10, 20, 40,
80, 160, 320, and 640 mW/cm2. The tick marks on each plot indicate
δ1 = ±ωBA, computed using Eq. (7), with g = g(|mF |=3) as listed in
Table I.

two-photon Rabi frequencies |g| and differential Stark shift
S1 − S2 are as we described in Sec. III. The two values of the
Rabi frequency |g| represent |g(|mF |=3)|/2π and |g(|mF |=2)|/2π ,
i.e., the interaction strength when the initial state of the F = 3
ground-state atoms is |mF | = 3 and |mF | = 2, respectively.

We show the lowest-intensity data in Fig. 12, where we
have set �1/2π = −108 MHz, I1 = 212 mW/cm2, and I2 =
62 mW/cm2. For the spectra for which |δ̃/2π | > 2 MHz, there
is little evidence of any peak at δ1 = −δ̃. The peak near δ1 = δ̃

shows absorption in the early spectrum, but gain in the steady-
state spectrum. The dispersion-shaped feature at δ1 = 0 is, in
each case, of the same polarity: negative for δ1 slightly less
than 0, and positive for δ1 slightly greater than 0. We label
this the positive polarity, and the inverted shape the negative
polarity.

In Fig. 13, �1/2π = −108 MHz remains the same, but we
have increased I1 to 398 mW/cm2 and I2 to 119 mW/cm2.
The probe intensity is �10 mW/cm2. These spectra are
qualitatively similar to those in Fig. 12, with the transient
spectra showing strong absorption at δ1 = δ̃, and gain peaks
at these δ1 in the steady-state spectra. The dispersion-shaped
feature at δ1 = 0 is also similar, showing constant polarity in
each case as well. Perhaps the most notable feature of these two
series of data is that the linewidth is sub-megahertz throughout.

We start to see some variation in the spectra of Fig. 14,
for which we have increased the intensity I2 to 232 mW/cm2,
but kept I1 = 385 mW/cm2 similar to the previous value. We
have also increased �1/2π to −158 MHz. The probe beam
intensity is 42 mW/cm2. While the absorption peak in the
early spectrum near δ1 = δ̃ is still the strongest feature, the
peak near δ1 = −δ̃ is now evident, and shows gain for all δ̃.
Perhaps even more interesting is the sign of the corresponding
peaks in the steady-state spectra. The peak at δ1 = δ̃, which
showed gain in the lower-intensity spectra of Figs. 12 and
13, now shows absorption for δ̃ < 0, but gain for δ̃ > 0. With
one exception, the polarity of the dispersion-shaped feature at
δ1 = 0 is the same as it was in the low-intensity spectra, but
very weak in the early spectra. The notable exception to this
observation can be seen in the early spectrum, for δ̃ = +1, in
which the polarity of this central feature is inverted.

We have recorded the additional NLPP spectra with these
same intensities, but for which �1/2π to −108 MHz, which
we do not show. These spectra are very similar to those shown
in Fig. 14.

For our final data set showing the variation of the NLPP
spectra vs δ̃, we have tuned the pump lasers to �1 > 0,
i.e., frequencies greater than the single-photon transition

TABLE I. The parameters relevant to the NLPP spectra shown in Figs. 12–16. The two values for the detuning �1 are �
(F=2)
1 , the detuning

from the F = 2 excited state, and �
(F=3)
1 , the detuning from the F = 3 excited state. The two-photon Rabi frequencies |g| are |g|(|mF |=3),

for atoms initially in the |mF | = 3 component of the F = 3 ground state, and |g|(|mF |=2), for atoms initially in the |mF | = 2 component, as
computed using Eqs. (8) and (9). The two-photon Stark shift S1 − S2 includes a sum of contributions for each ground-state magnetic sublevel
from all excited states and does not vary significantly across ground-state magnetic sublevels.

�1/2π I1 I2 |g|/2π S1 − S2

Figure (MHz) (mW/cm2) (mW/cm2) (MHz) (MHz)

12 −108/−171 212 62 0.78/0.55 −0.7
13 −108/−171 398 119 1.48/1.04 −1.4
14 −158/−221 385 232 1.43/1.05 0.0
15 292/229 477 356 1.29/1.14 4.0

0 0/0 −2.4
10 0.187/0.165 −2.2
20 0.264/0.234 −2.1

16 292/229 40 356 0.373/0.331 −1.8
80 0.529/0.468 −1.3

160 0.748/0.662 −0.2
320 1.057/0.936 1.9
640 1.495/1.323 6.2
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frequencies: �1/2π = +292 MHz. These spectra are shown
in Fig. 15. The pump laser intensities are also greater, with
I1 = 477 mW/cm2 and I2 = 356 mW/cm2, and the probe
beam intensity is �10 mW/cm2. The peaks in the transient
spectra at δ1 = ±δ̃, while weak for δ̃ < 0, show the same
signature as those in Fig. 14, i.e., absorption at δ1 = δ̃ and
gain at δ1 = −δ̃ for all δ̃. The dispersion-shaped feature at
δ1 = 0, however, has reversed polarity. For δ̃ < 0 it has the
same sign as the low-intensity data, but reverses for δ̃ > 0.
The peaks in the steady-state spectra are reversed from those
in Fig. 14: gain at δ1 = δ̃ for δ̃ < 0 and absorption for δ̃ > 0,
and absorption at δ1 = −δ̃ for δ̃ < 0 and gain for δ̃ > 0.
The dispersion-shaped feature at δ1 = 0 has reversed sign for
δ̃/2π = 0 and δ̃/2π = +4 MHz.

C. Varying pump intensities

We show in Fig. 16 a series of probe transmission spectra
for varying intensity I1 of the pump E1 field. The pump laser
frequencies are tuned to the two-photon Raman resonance, δ̃ =
0, the single-photon detuning from the F = 2 state is �1/2π =
+292 MHz, the intensity of pump E2 is I2 = 356 mW/cm2,
and the probe beam intensity is �10 mW/cm2. We observe that
the early spectra and the steady-state spectra are quite different
from one another. For I1 = 0 we see a simple absorption profile
that is Stark-shifted toward higher frequencies due to E2. As I1

increases, we see the spectrum begin to change considerably. In
the early spectrum, absorption turns to gain for δ1 > 0, with the
frequency of the peak occurring near δ1 = 2g. The central peak
at δ1 = 0 becomes dispersion-shaped with increasing I1. The
steady-state spectrum, on the other hand, shows an absorption
peak near δ1 = 2g. These spectra are rather complicated for
increasing I1, showing rapid fluctuations near δ1 = 0 for I1 �
160 mW/cm−2.

D. Comparison of early spectra to theoretical steady state

While the steady-state spectra observed in the experiment
share some features, under some conditions, with the steady-
state theoretical spectra, broad agreement is lacking because
the theory does not include optical pumping effects, nor does
it include the many magnetic sublevels in the real atom.
Before discussing these effects, we compare the early spectra
recovered from the data with the steady-state theory. We focus
our attention on the data shown in Fig. 14, where �1/2π =
−158 MHz, I1 = 385 mW/cm2, I2 = 232 mW/cm2, as listed
in Table I, and the probe beam intensity I = 42 mW/cm2. We
note that the Rabi frequencies and Stark shift parameters listed
in Table I for a single three-level subsystem do not faithfully
reproduce the experimental spectra. Our goal is to find a set
of effective values for the two-photon Rabi frequency, g, the
Stark shifts, S1 and S2, and the ratio of Rabi frequencies, η,
that allow us to reproduce the early spectra shown in Fig. 14.

We measure the frequency detuning (δ1) of the peaks of
the absorption and gain resonances (which are symmetric
about δ1 = 0) from Fig. 14(a) and plot these as a function
of δ̃ (green) in Fig. 17. We fit these detunings to Eq. (7) to
determine the best-fit parameters (dotted green line), which
yields g/2π = 0.76 MHz, and (S1 − S2)/2π = 0 MHz. We
then use these parameters to obtain the theoretical spectra
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FIG. 17. (Color online) Experimentally measured absorption and
gain resonant frequencies (green squares) and theoretical fit (dot-
dashed green line) vs two-photon field detuning δ̃ for the data shown
in Fig. 14. We find the best-fit parameters are g/2π = 0.76 MHz and
(S1 − S2)/2π = 0.

shown in blue (solid lines) in Fig. 18. We adjusted the
value of η to best reproduce the relative heights of the gain
and absorption peaks, and we find, for η = 1.5, the fit to be
reasonable across all values of δ̃. While the correspondence of
this fit to the measured spectra is encouraging, it is important
to recognize that the atom is not in steady state during this
time, as the model of Ref. [22] assumes; the dispersion-shaped
feature at δ1 = 0 of the experimental spectra is much more
pronounced than that in the calculated spectra, the ratio η is
not theoretically independent of g and S1 − S2, and the best-fit
values do not make up a consistent set of simple three-level
atomic parameters. All of these suggest that a more complete
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FIG. 18. (Color online) Theoretical steady-state NLPP spectra
(dot-dashed red lines) for �1/2π = −158 MHz, g/2π = 0.76 MHz,
(S1 − S2) = 0, and η = 1.5, plotted with the experimental early signal
data (solid blue lines) from Fig. 14 for varying δ̃.
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model of the interaction is required for full understanding of
these spectra.

E. Effect of population redistribution by the pump beams
on steady-state spectra

The redistribution of the population of the various levels of
the Rb atom plays a primary role in the steady-state spectra that
we observe. In particular, the redistribution of the population
qualitatively explains many of the differences between the
transient and steady-state spectra, as well as the difference
between either of these observed spectra and that predicted by
Berman and Dubetsky. In Ref. [22], the authors considered the
optical Bloch equations for the three-level system as described
earlier. Since the pump lasers are far detuned from their
respective single-photon transitions (i.e., �, �1, and �2 	 	),
they adiabatically eliminated |e〉 from the equations and solved
for the steady-state population difference,

W = ρ
(0)
22 − ρ

(0)
11 = (�2 − �1)

	

	2 + δ2

	2 + δ2 + 4|g|2 , (10)

where damping of the system is due to departure of atoms from
the interaction region. �1 and �2 in this expression are con-
stants describing the incoherent growth rate of levels |1〉 and |2〉
due to some external agent. We show the line shape described
by Eq. (10) as a function of two-photon detuning δ̃ for different
values of the Rabi frequency χ2 in Fig. 19(a), using �1/2π =
	/2π = 100 kHz, and �2 = 0. W approaches zero for larger
values of χ2 but never becomes positive. It always has the same
sign as (�2 − �1). The minimum of W occurs at the effective
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FIG. 19. (Color online) The population difference W from
Ref. [22] (top), for 	/2π = 100 kHz, and from numerical integration
of the optical Bloch equations for the three-level system (bottom), for
atoms initially in state |1〉 (W = −1). In each case the Rabi frequency
χ1/2π = 15 MHz, and χ2/2π is as labeled.

two-photon resonance, which is shifted relative to δ̃ = 0 by the
ac Stark shift of levels |1〉 and |2〉 by the pump fields, E1 and
E2. This measure of the population difference W differs in our
laboratory measurements for several reasons. First, the initial
population at the end of the trapping cycle in the MOT leaves
the atoms primarily in level |1〉, the 5s 2S1/2,F = 3, distributed
among the various mF substates. (We know very little of this
initial distribution among the mF states, in that the polarization
of the trapping and repump fields, as well as the magnetic field
of the MOT, vary throughout the trapping region.) During the
measurement cycle, there is likely expansion of the atoms out
of the interaction region, as well as collisions with background
gas, that lead to damping of the system, but no mechanism that
would lead to growth of the populations of levels |1〉 or |2〉,
i.e., no appreciable values of �1 or �2. Second, the population
of the excited state |e〉, and the subsequent spontaneous
emission, cannot be ignored. While the pump fields E1 and
E2, which drive the Rabi precession of the system at the rate
g, are tuned well away from resonance with the single-photon
transitions, there is a nonzero probability of excitation of state
|e〉, which introduces damping to the system. We support this
premise through study of the optical Bloch equations, which
we analyze through numerical integration. We calculate the
steady-state population difference in the bare state basis as
W = ρ

(0)
22 − ρ

(0)
11 using the density matrix formalism so that

we may account for spontaneous emission from excited state
|e〉. Using this formalism we can track the dependence of the
population difference on the field parameters, in particular χ2

and δ̃. Solving the system of equations describing a three-level
system coupled by the two intense pump fields, we obtain
time-dependent solutions such as those shown in Fig. 20. There
are a few notable features of these solutions. First, we notice
that the population of the excited state, ρee, is always small, but
not zero; the spontaneous emission rate is proportional to this
population. Second, we see that the ground-state populations
have two primary contributions, an oscillating component and
exponential decay. The oscillations occur at the two-photon
Rabi frequency of the pump fields, and the exponential decay
corresponds to the spontaneous emission scattering rate. We
observe the greatest two-photon Rabi flopping amplitude
when the two-photon resonance condition is met (δ = 0),
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FIG. 20. (Color online) Time-dependent populations of states |1〉,
|2〉, and |e〉, calculated by numerically integrating the optical Bloch
equations: (a) δ̃ = −5 MHz, (b) δ̃ = +5 MHz.
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in which case the steady-state population difference, W , is
zero. For nonzero detunings a population difference develops,
and in the case shown in Fig. 20 with Rabi frequencies
χ1/2π = χ2/2π = 15 MHz, we see a population inversion
that is equal and opposite for δ̃/2π = ±5 MHz. Also, we
note that the nature of the transient-state populations depends
on the initial state, but the steady-state values do not. We
compute the population difference for a range of detunings and
numerically integrate the density matrix equations of motion
to account for the effects of spontaneous emission. Although
the population of the intermediate state is small compared to
that of the ground states, spontaneous emission modifies the
situation significantly.

We perform these calculations over a wide range of two-
photon detunings and the Rabi frequency χ2 for a particular
value of χ1. We show the dependence of the population
difference W on χ2 and δ̃ in Fig. 19(b). In this simulation,
χ1/2π = 15 MHz, and �1/2π = −110 MHz. This figure is
very instructive as it clearly illustrates the intensity-dependent
effects we see in our data. For small values of χ2, in steady
state, W (t → ∞) = 1, which is a complete inversion from
its initial value, W (t = 0) = −1, except near the two-photon
resonance condition, where W approaches zero. The two-
photon resonance is shifted to lower frequencies (for � < 0)
because of the ac Stark shift of |1〉 due to E1.

As χ2 is increased the line shape near the two-photon
resonance broadens and becomes asymmetric. For χ2/2π =
χ1/2π = 15 MHz we see that the steady-state value of W

crosses zero at δ̃ = 0. For δ̃ < 0 we find W < 0, and for δ̃ > 0
we find W > 0. This impacts the probe absorption spectrum
as follows: the population starts in state |1〉 (W = −1) and

evolves as a damped sinusoid exponentially to the steady-state
value of W . Therefore, we expect to see the transient and
steady-state absorption and gain features to have the same
sense for δ̃ < 0 and the opposite sense for δ̃ > 0. This is
precisely what we observe in the data for red detunings from
the intermediate states (�1 < 0).

V. CONCLUSION

In this work, we have presented measurements of the gain
and absorption features of a weak probe laser beam interacting
with a cooled sample of 85Rb atoms strongly driven by a pair
of pump fields via a Raman interaction coupling ground-state
levels. We observe many of the features, including sideband
peaks at the two-photon Rabi frequency and dispersion-shaped
central peaks, predicted by the theory of Berman and Dubetsky
in Ref. [22]. A more complete analysis, which includes the
more complex structure of the atom and the damping of
the interaction due to the weak off-resonant excitation of the
5p intermediate state, will be required for a full quantitative
evaluation of the interaction.
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