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X-ray multimodal imaging using a random-phase object
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We demonstrate an extension of the x-ray grating interferometer three modal imaging method to a generalized
stepping scheme using a phase object with small, random features. The method allows the recovery of the
absorption, scattering, and two-dimensional phase image of the sample from a raster scan of the phase object. An
additional extension of the method to recover the effective wave-front curvature is also described. The technique
provides fine sensitivity and high spatial resolution and has only low requirements on spatial and longitudinal
coherence of the x-ray beam. Imaging modes and processing methods are explained, and an experimental
demonstration of the technique is provided by imaging a feather and the quantitative characterization of a
compound refractive lens.
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I. INTRODUCTION

Imaging has been one of the main applications of x rays
since their discovery. While the highly penetrating nature of
x rays is commonly used to reveal the interior of material
objects, the scientific community has also exploited the short
wavelength of x rays to image sample features down to the
nm scale. To achieve high spatial resolution or image light
material, new x-ray imaging techniques exploiting the phase
of the waves were developed over the two last decades [1].
One such technique is x-ray grating interferometry.

The use of x-ray grating interferometers (XGIs) has quickly
spread following the adaptation of the device from visible
optics [2,3] to hard x rays [1,4,5] and the demonstration of
coherence mapping. Today, a large community takes advan-
tages of this device using both synchrotron and laboratory
sources [6,7]. Indeed, its imaging capabilities make it very
attractive: in addition to an absorption map of the sample, it
also provides the phase shift and the scattering map induced
by the sample [8] on an x-ray beam.

The phase shift corresponds to both the delay and the local
angular deflection on the photon beam propagation by the
sample. Recovering this valuable information directly permits
the deduction of the refractive index δ of the sample. Such
information is of particular interest for low atomic number
material where the value of δ is many orders of magnitude
larger than the absorption factor β of the optical index n =
1 − δ − iβ.

For many years grating interferometers were limited to
the measurement of the phase gradient in only one direction
due to the technical challenges in fabricating two-dimensional
gratings. However, the issue has recently been overcome [9],
allowing the recovery of the two directional phase map in a
single scan. A few researchers also reported the possibility
of using XGIs in a magnification geometry in an attempt
to improve the spatial resolution of the device for imaging
purposes [10,11].

The idea of mapping the scattering properties of an object
came out only a few years after the extension of the grating
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interferometer to the x-ray regime [8]. The principle is to
calculate the local reduction of the coherence which arises
from small angle scattering in the sample. The mapping of this
scattering effect is also sometimes called a dark-field image
and reflects the degree of inhomogeneity at the nm scale inside
the sample.

A schematic of an XGI is shown in Fig. 1. The grating
interferometer is also sometimes called the “shearing interfer-
ometer” because it relies first on a phase grating to split or
“shear” the beam into two diffracting orders. The two parts
of the beam then interfere further downstream from the phase
grating, creating a fringe pattern. The position and amplitude
of these interference fringes allow the calculation of the phase
shift and absorption of the sample. Often the pixel size of
the detector is larger than the grating period, and placing a
second absorbing grating with a tuned pitch in front of the
detector creates larger resolvable Moiré fringes due to the
aliasing effect. For accurate phase retrieval, the XGI is usually
used in a scanning mode where several images are acquired
while moving one of the gratings relative to the other in a
plane transverse to the beam. In interferometry such a process
is called phase stepping [12]. From these images, Fourier
methods are used to recover the beam gradient through the
fringe phase calculation.

The fabrication of the XGI’s gratings is a technical
challenge [13], especially when the gratings are designed to
work at high energy. The grating lines are required to have a
period of a few microns to achieve good sensitivity and spatial
resolution of the device. At the same time, the aspect ratio need
to be very high to induce a phase shift large enough to produce
a workable contrast, leading to line depths ranging from 15 μm
to more than 100 μm when designed to introduced π phase
shift at high energy [14]. These gratings are usually made by
XUV lithography on silicon substrate. The second absorbing
grating has its lines filled with heavy elements, such as gold
deposited by electroplating. Hence, the grating pitch limits the
spatial resolution of the interferometer, while the absorption of
the device at lower x-ray energies can sometimes also become
an issue. Finally, as one might expect, the quality of the grating
can also affect the results [15].

In spite of the advantages of the XGI, researchers are
still exploring and developing improved or derived methods
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FIG. 1. (Color online) Schematic of a two-dimensional x-ray
grating interferometer. Gratings are placed in an x-ray beam down-
stream from a sample to create an interference pattern. The distortion
of this pattern from the one obtained when no sample is inserted
into the beam permits the recovery of the phase shift induced by the
sample.

[16,17]. These efforts are motivated by the desire to image
matter at ever higher spatial resolutions while diminishing and
minimizing the x-ray dose delivered to the sample.

A new x-ray beam phase sensing technique has recently
been developed for imaging and metrology purposes: this
technique [18,19] relies on the use of x-ray near-field
speckle [20] combined with cross-correlation algorithms. In
addition to several other advantages, the technique has been
shown to provide a few tens of nanoradians sensitivity in the
measurement of wave-front gradients, and spatial resolution on
the micron scale. Despite promising possibilities for imaging
using the differential mode, in which the contribution of the
sample on the phase of the x-ray beam is isolated, the technique
suffers from several drawbacks, including: measurements are
limited by the magnification of the speckle upon propagation
while using the absolute mode to recover the effective phase
of the beam; the spatial resolution of the technique is limited
by the size of the speckle grains; and finally scattering maps
are not accessible, unlike with an XGI.

We propose a generalized method, derived from the XGI
that uses any phase generated pattern or speckle rather than a
periodic grating. A simple membrane with random features
replaces the phase grating. Using a complete mathemati-
cal description of the stepping scheme, we show that the
requirement of a grating with a perfectly known pitch, as
employed in the XGI, is not essential. The method provides
the two-dimensional beam phase gradient, employs a simple
setup, and achieves higher spatial resolution than the current
XGI devices. It is also shown that the XGI is a special case of
the generalized method presented.

II. THEORY

A. Basis

The concept of this paper is to consider a sample as a
time invariant system represented as a transfer function h,
which is linked to the optical index n of the sample. For the
following, we consider a monochromatic beam propagating

through a sample in the z direction of a frame (x,y,z) and with
transverse coherence lengths of the order or smaller than the
sample features. Placing an imaging detector downstream of
the sample, the intensity collected Idet at a point T = (x0,y0)
will be equal to the square modulus of the probing wave
u0 convoluted with the optical transfer function hT (x,y) =
h(x0,y0,x,y) [21,32]:

Idet(x0,y0) = |u(x0,y0)|2

=
∣∣∣∣∣∣
+∞∫∫
−∞

h(x0,y0,x,y)u0(x,y)dxdy

∣∣∣∣∣∣
2

=
+∞∫∫∫∫
−∞

hT (x1 − x0,y1 − y0)h∗
T (x2 − x0,y2 − y0)

×〈u0(x1,y1)u∗
0(x2,y2)〉dx1dy1dx2dy2. (1)

One approximation is made for the following treatment:
the small transverse coherence length of the beam is neglected
and the field correlation function 〈u(x1,y1)u∗(x2,y2)〉 =
I0( x1+x2

2 ,
y1+y2

2 )ψ0(x1 − x2,y1 − y2) is taken as incoherent
illumination. This means that ψ0(x1 − x2,y1 − y2) ≈ κδ(x1 −
x2,y1 − y2) with δ representing the Dirac distribution. While
this approximation for the width of the function ψ0 does not
affect the beam phase sensing, the partial coherence of the
x-ray beam will be responsible for some edge contrast in
the absorption image. Denoting F as the Fourier transform
operator, Eq. (1) can be then written using the convolution
theorem and the two functions F [|h|2] = H and F [|u0|2] =
Ĩ0 [21,32]:

Idet(x0,y0) = κ

+∞∫∫
−∞

|hT (x − x0,y − y0)|2I0(x,y)dxdy

= F−1[κH (x0,y0,ξ,ν)Ĩ0(ξ,ν)]. (2)

The way to recover the optical transfer function h of the sample
is to feed the system with a reference signal |u0|2, which is a
two-dimensional (2D) pattern, and compare this with the signal
collected at the exit of the system. Figure 2 schematically
describes this scheme which is a common problem in physics
and signal processing. More precisely, it consists of estimating
the transfer function H (x0,y0,ξ,ν) = HT (ξ,ν) of the sample
which is applied to the reference signal, and to do so for each
pixel T determined by the index pair (k,l):

Hkl = g̃
samp
kl

g̃ref
kl

, (3)

where the operator ∼ denotes the Fourier transform of the
function g̃ = F [g(x,y)](ξ,ν). The functions gref(x,y) and
gsamp(x,y), respectively, describe the 2D optical intensity

gref gsamp

H /

arg(H)

|H|

~ ~

FIG. 2. Processing representation.

063813-2



X-RAY MULTIMODAL IMAGING USING A RANDOM-PHASE . . . PHYSICAL REVIEW A 86, 063813 (2012)

recorded when the sample is out of the beam (flat field
reference) and when the sample is introduced into the beam.
These functions reflect physical recorded signals and are then
bounded by a finite subspace 	 of size 	x × 	y . Thus, the
Fourier transform is treated in the following in the exponential
Fourier series limit:

g̃(ξ,ν) = 1

	

∫
	

g(x,y)e−i2π(ξx+νy)dxdy, (4)

with ξ = p/	x,ν = q/	y,(p,q) ∈ Z2 the set of integers.
We show how to recover |H |, which represents the

absorption and decrease of coherence brought about by the
sample, and also demonstrate that the argument arg(H ) relates
to the beam gradient.

B. Stepping scheme

Instead of considering a grating producing interference,
consider a phase object with high frequency features creating
local phase shifts on a partially coherent wave front. As with
many propagation based contrast imaging techniques [22–24],
the object will create interference contrast after propagation
over a short distance z due to the local curvature of the beam.
This phenomena can be described by the transport of intensity
equation [25]:

2π

λ

∂I

∂z
= −∇ · (I∇ϕ), (5)

with λ the wavelength. In Eq. (5), I is the recordable intensity
and ∇ represents the transverse nabla operator in the plane
(x,y) perpendicular to the beam propagation direction z. The
phase of the beam is ϕ, and a surface defined by ϕ(x,y,z) = cst

is the wave front W .
When interferences arise from spatially uncorrelated

features, it creates a random interference pattern called
speckle [26]. With hard x rays and up to a certain propagation
distance, a more specific form of speckle is obtained: the
“near-field speckle.” This kind of speckle, used here, has been
demonstrated to be closely related to the form and structure of
the scattering object [20].

The experimental setup consists of mounting a phase object
with small features, downstream of a removable sample, on
a piezo motor that allows translation in the two transverse
directions of the x-ray beam. Likewise, a 2D detector able to
resolve the near-field speckle pattern is placed into the beam.
In this manner one can perform the so-called stepped two-
dimensional raster scan of the phase object. In the following,
each scan consists of M × N points, defining a surface 	 of
the high frequencies phase modulating scanned object.

Performing such scans, one records image stacks defining a
four-dimensional signal, which is used to recover the transfer
function. Indeed, performing two similar raster scans, one with
the sample in the beam, and the other without the sample, one
obtains two sets of 2D data for each pixel: (k,l): g

samp
kl when

the sample is in the beam; and gref
kl when the sample is removed

(this is often referred to as the flat field reference).
The average intensity μ, the standard deviation σ , and the

energy ε collected in a recorded pattern g in a given pixel are

defined by

μ = 1

	

∫
	

g = g̃(0,0), σ =
√

1

	

∫
	

(g − μ)2,

(6)

ε2 =
+∞∑
−∞

|g̃|2 =
∫

	

|g|2.

C. Absorption imaging

An absorption image is defined as the ratio of the number of
photons falling on a pixel of the detector with and without the
sample present in the x-ray beam. Retrieval of the attenuation
A image is calculated by taking the ratio of the energy collected
in each pixel in the scans:

A(k,l) = 1 − ε
samp
kl

εref
kl

(7)

Because the x rays are only partially coherent, most of the
recorded signal comes from noninterfering, background light.
Using the approximation ε ≈ μ, one can retrieve the formulas
based on the use of the Fourier transformed signals:

A(k,l) ≈ 1 − μsamp

μref
= 1 −

∣∣g̃samp
kl (0,0)

∣∣∣∣g̃ref
kl (0,0)

∣∣ = 1 − |H (0,0)|.

(8)

D. Phase imaging

In the hard x-ray regime, due to the weak interaction of the
photons with matter, deflection angles induced by the refrac-
tion are usually very small, i.e., much less than a degree. When
an object is introduced into the x-ray beam, the propagation
direction of the light will be slightly changed, and the speckle
pattern recorded will be modified relative to its reference
“version” when no sample was present. This idea is the basis
of many deflection angle techniques, such as the Hartmann
sensor [27], the x-ray speckle tracking technique [18], or
the XGI [28] in which wave-front gradients are measured
through the displacement of an intensity modulation pattern.
The deflection angle α is equal to the wave-front gradient
α = |∇W |, and the transverse local shift v of the pattern will
be equal to [29]

v = d∇W = d
λ

2π
∇ϕ, (9)

where d is the propagation distance from the reference phase
objet to the detector. Hence, the recovery of the shift v between
recorded signals as shown in Fig. 3 can lead to the knowledge
of α and the local beam phase.

Here, the recovery of v is achieved using Eq. (3) by
separating the amplitude and phase of the transfer function H :

g̃
samp
kl = Hklg̃

ref
kl = |Hkl|g̃ref

kl e−iδ�kl . (10)

In this expression, the argument of H , δ�(ξ,ν) = arg[H (ξ,ν)]
is, according to the shift theorem, the delay between the
two signals gref and gsamp. A traditional method to derive
this phase component is to use the 2D cross-correlation
operation with the two recorded signals. Dropping the pixel
subscripts for the sake of clarity, and separating the orthogonal
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FIG. 3. (Color online) Schematic of a generalized stepping
imaging setup. A phase object with small features is mounted on
a 2D piezo motor beyond the sample, and a highly resolving detector
is placed at a distance d . The 2D raster scan of the scattering object
allows one to calculate the scattering vector v for each pixel when the
sample is introduced into the beam.

components of δ�(ξ,ν) = δ�x(ξ ) + δ�y(ν), we have

gsamp � gref = g̃∗
samp.g̃ref

= |H (ξ,ν)||g̃ref(ξ,ν)|2e−i[δ�x (ξ )+δ�y (ν)], (11)

where � denotes the correlation operator, and ∗ the complex
conjugate. Using the phase in the exponential part of this last
equation, one can deduce v from the shift theorem:

v = δ�x(ξ )

2πξ
ex + δ�y(ν)

2πν
ey. (12)

And finally combining Eqs. (9) and (12), one can calculate
the beam phase gradient in the two orthogonal directions:

∂ϕ

∂x
= k

d
(v · ex) = k

d

δ�x(ξ )

2πξ
,

(13)
∂ϕ

∂y
= k

d
(v · ey) = k

d

δ�y(ν)

2πν
,

where in this set of equations k stands for the wave number k =
2π/λ. In practice, for a better accuracy in Eq. (12), one uses the
frequencies (ξmax,νmax) corresponding to the peak of maximum
cross-spectral power, max(ξ,ν)>0(|H (ξ,ν)||g̃ref(ξ,ν)|2). In
Eq. (11), one can also note that δ� = �samp − �ref with
�samp = arg (g̃samp) and �ref = arg (g̃ref).

After calculating the local phase gradients for each pixel,
the global reconstruction of the beam phase can be performed
by simultaneously integrating the two transverse gradient
maps [30,31].

E. Dark-field imaging

The dark-field image, sometimes called the scattering
image, is a map of the local decrease of coherence of the beam
induced by passing through the sample [8]. With the XGI, the
variation of coherence in the section of the beam illuminating
a given pixel is calculated by taking the ratio between the
fringe amplitude of the sample scan and the reference scan,
normalized by the absorption.

From a more general perspective, the partial beam coher-
ence variation affects the amplitude of the interference created

by the wave-front modulation pattern [32]. In other words,
the coherence effect translates into the standard deviation
of the recorded intensity pattern. Hence, to quantitatively
map the coherence decrease C due to the sample scattering
properties, one can calculate the ratio of the signal standard
deviations between the two scans. Furthermore, this ratio has
to be normalized by the absorption to account for the lower
number of photons falling on the detector when the sample is
inserted in the beam. The values of interest for the two signals
are then the normalized standard deviation μ/σ , also known
as the coefficient of variation, which leads to the expression of
the scattering factor:

1 − C = ζkl = μ
(
gref

kl

)
μ

(
g

samp
kl

) σ
(
g

samp
kl

)
σ
(
gref

kl

) . (14)

From the definition of σ in Eq. (6) and dropping once again
the subscript kl for the sake of clarity, one can write

ζ 2 = μ2
ref

μ2
samp

∫
g2

samp − μ2
samp∫

g2
ref − μ2

ref

= μ2
ref

μ2
samp

ε2
samp − μ2

samp

ε2
ref − μ2

ref

. (15)

F. Measurement of the effective local wave-front curvature

It is sometimes necessary to know the effective second
derivative of a wave-front beam, i.e., its local curvature. From
Eq. (5), the beam phase second derivative is responsible for
the creation of interference in a coherent beam. While this
phenomena is used in some propagation techniques sensitive to
�W , for other applications it can lead to unwanted interference
contrast or optical distortions.

As described for the x-ray speckle tracking related tech-
nique [18], one can identify different modes when working
with near-field speckle. A differential working concept has
been described so far, that allows us to isolate the optical
transfer function of the sample. Now, to recover the absolute
second derivative, one can use the cross-correlation operation
between signals collected simultaneously in different pixels.
This process has the advantage of not requiring a reference
signal and then, when used as such, can be used to monitor the
quality of a probing beam.

When performing a raster scan of a surface 	 of a membrane
much larger than the pixel size of the detector, the patterns
recorded in nearby pixels are very similar. Each pixel will
see the same pattern but at different times, as depicted
schematically in Fig. 4. If we consider a perfectly collimated
beam [Fig. 4(a)], the collected signals in two different pixels
(k,l) and (k + r,l + s) of size Spix are connected by

gk+r,l+s(x,y) = ϒkl(r,s)gkl(x − rSpix,y − sSpix), (16)

where ϒ accounts for the difference of both intensity and
coherence in the probing beam at the position of the pixels.
We choose to ignore this factor because it accounts for an
amplitude modulation factor that does not distort the signal
shape.

Similarly, for a noncollimated beam, with different local
ray propagation directions, Eq. (16) becomes from Fig. 4(b)
with χ = χxex + χyey the delay between the signals recorded
in the two different pixels:

gk+r,l+s(x,y) = gkl(x − χx,y − χy). (17)
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FIG. 4. (Color online) (a) The blue (dark gray) and the red (light
gray) area on the phase object represent the pattern seen by two
different pixels when scanning this object in a collimated x-ray beam:
in this case the pixels are adjacent and (r,s) = (1,0). (b) A similar
sketch for the case of a noncollimated beam. The distance χ is defined
as the offset between the similar part of the recorded pattern.

Expanding χ from Eq. (16) and using the Fourier shift theorem,
we obtain

g̃k+r,l+s = g̃kl(ξ,ν)e−i2πSpix(ξr+νs)

× e−i2π[ξ (χx−rSpix)+ν(χy−sSpix)]. (18)

While the term in the first exponential matches the distance
on the detector separating the considered pixels, the second is
related to the local curvature of the beam. Indeed, as we have
from Fig. 4(b):

|χ | = Spix

√
r2 + s2 + d(α2 − α1). (19)

Noting χ ′ = χ − Spix

√
r2 + s2 = χ − δSr,s and as for small

angles |∇α| = ∇2W (x,y) ≈ 1/R(x,y):

R ≈
(

δα

δSr,s

)−1

. (20)

By projection on the transverse vectors (ex,ey), the orthogonal
local radii are

Rx ≈ drSpix

χ ′
x

, Ry ≈ dsSpix

χ ′
y

. (21)

Thus, calculating the shift between signals collected in two
nearby pixels, and using the cross-correlation algorithm, one

can recover the local second derivative of the beam. Compared
to the x-ray speckle tracking technique in absolute mode,
this new method is not limited by the magnification of the
beam when the distortion of the speckle pattern between
images becomes too large. This means that using this stepping
mode, larger propagation distances d can be used, providing
improved angular sensitivity.

G. The grating case

Grating interferometry is a special case of the technique
presented here, where the random probing pattern is replaced
with a well known and regular pattern, allowing simplified
Fourier analysis [5,33]. For instance, consider the case of the
2D gratings with pitches in the order of 2 to 8 μm for the first
phase grating G1 [9]. Approximating the square profile of the
grating lines to a sinusoidal shape, the intensity distribution
of the pattern produced by the grating interferometer and
recorded by the detector in pixel (k,l) can be approximated to

gkl(x,y) = B1 cos

(
2π

P
x + �x

)
cos

(
2π

P
y + �y

)
+ B2,

(22)

with B1,B2,�x,�y,and P some constants associated to each
(k,l). From the transform defined by Eq. (4):

g̃kl(ξ,ν) =
∑

(p,q)∈[[−1,0,1]]

apqδ

(
ξ − p

P
,ν − q

P

)
, (23)

where δ denotes now the Dirac distribution and where ap,q

are complex numbers. One can also note that a0,0 = μ. Hence
for phase imaging, the cross-correlation operation of Eq. (11)
reduces in Fourier space to

gsamp � gref = g̃∗
samp · g̃ref =

∑
(p,q)∈[[−1,0,1]]

aref
p,qa

samp
p,q ∗ . (24)

Denoting �x = arg(a1,0), �y = arg(a0,1), the two components
of the transverse displacement of the projected pattern with
respect to the reference are

vx =
(
�

samp
x − �ref

x

)
2π

P, vy =
(
�

samp
y − �ref

y

)
2π

P. (25)

Equation (25) is similar to Eq. (13) when using a single spatial
frequency ξ = ν = 1

P
. Finally, we retrieve the traditional

general phase grating interferometer equation in the plane of
G1 [9]:

∇ϕ · ex/ y = 2π

λ
∇W · ex/ y = P

λ

(
�

samp
x/y − �ref

x/y

)
d

. (26)

When using a second absorbing grating G2 with the same
orientation as G1, and with a pitch P ′ very close to P , by
the aliasing process, the frequencies of the fringes in one
image are rescaled [34]. The superposition of the two patterns
created by G1 and G2 generates a new pattern with a larger
fringe period equal to |P ′−P |

PP ′ , but does not affect the phase
distortion induced by the beam. The use of a second grating
is motivated by two advantages: it removes or simplifies
the phase unwrapping process necessary when employing a
single grating; and a detector with larger pixels can be used,
enabling usually a larger field of view.
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Concerning dark-field imaging with the grating interfer-
ometer, the application of formulas (15) to the spectrum
of the patterns recorded with the XGI directly leads to the
directional scattering imaging formulas already present in the
literature [9]:

ζx = μref

μsamp

∣∣a1,0
samp

∣∣∣∣a1,0
ref

∣∣ ,ζy = μref

μsamp

∣∣a0,1
samp

∣∣∣∣a0,1
ref

∣∣ , (27)

and equivalently for the diagonal directions.

H. Spatial resolution and sensitivity limitations

When using a grating interferometer combined with a high
resolving detector, the spatial resolution of the device is limited
by the shear distance [5,35]. It is defined, in the plane of
G1, by the distance separating two photons interfering in
the plane of the detector. In near-field speckle, because all
the spatial frequencies of the spectrum contribute to the phase
contrast, with an energy transmission predominance in the
lower frequencies, the shear effect does not become a limitation
when working with random patterns [26]. While the contrast
from a phase grating is obtained through the interferences of
the zeroth and first diffraction orders, for near-field speckle
the contrast is instead obtained from the self-interference
scheme [20]. The spatial resolution of the proposed method is
then limited by the detector.

However, higher derivatives of the wave front can also have
an effect on the spatial resolution of the system. As shown
in Fig. 3, the measured angle α of the technique is defined
in the plane of the detector. So, when the wave-front gradient
is strong, the vector v becomes larger than a detector pixel
and limits the local spatial resolution. While a short distance
d avoids a large vector v, it can also affect the wave-front
phase sensitivity. One solution to this resolution limitation
is to scan the detector instead of the membrane, which
requires high-resolution, heavy-duty motion stages. Such a
method would actually be an over-sampled version of the x-ray
speckle tracking technique [18] where the quantity measured
is equivalent to the one obtained with the Hartmann sensor.

The choice of the average speckle grain size is not strict
providing that the detector can resolve the features: it only
has a small influence on the accuracy of the cross-correlation
algorithms that are employed [36]. In any case, various scatter-
ing membranes made of small phase objects are commercially
available, for instance, as biological filters.

Concerning the angular sensitivity δθ of the deflection
measurement, it varies with d and with the smallest measurable
vector v. Denoting Sscan as the piezo scan step and δs as the
substep accuracy achievable in the cross-correlation process,
the angular sensitivity is δθ = δsSscan/d. This relation shows
that one can optimize the sensitivity of the method either using
a larger propagation distance and/or recording images within
scans of smaller steps.

Nevertheless, if one opts for diminishing the scanning step
size or increasing its number, it should be kept in mind that
the number of recorded images increases at a square law
rate, equivalently to the 2D XGI. An alternative to this 2D
scan image number increase is that when the propagation
distance or expected deflection of the wave front is small,
one can use the stepping scheme by performing only two
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FIG. 5. Differential characterization of a 2D CRL. (a), (b) First
image of the scan, respectively, with and without the sample inserted
in the beam. The bounded squares show the patterns recorded in each
of the scans in the pixel marked T . (c) Horizontal and (d) vertical
differential wave-front slopes.

orthogonal scans as with a 1D XGI [37]. This approximation
has shown good efficiency when the pattern shift is a fraction
of the speckle grain size. The rate of increase law makes
the 1D grating interferometer of great interest. Indeed, such
a device projects and separates the 2D gradient onto two
orthogonal components, rendering the required image number
law increasing at an O(2n) rate. This law should be compared
to the O(n2) images law necessary with the 2D XGI or
the presented generalized scheme when increasing the steps
number for noise robustness and accuracy.

III. EXPERIMENTAL APPLICATION

A set of experiments were performed at the test beamline
B16 at Diamond Light Source where the x rays are produced
by a bending magnet on the 3 GeV storage ring [38].

A. Numerical implementation aspects

The numerical implementation of the theory described in
this paper is a straightforward translation of the equations
to discrete space: well known numerical recipes have been
used for the implementation of the technique on a standard
desktop computer. Considering each pixel (k,l) independently,
the intensity signal collected during the scan will describe a 2D
pattern gkl(xm = mSx,yn = nSy) with (m,n) ∈ [[0,M − 1]] ×
[[0,N − 1]] and (Sx,Sy) are the piezo motor scan steps in the
two transverse directions. The calculation of the signal delay
described by Eq. (11), necessary for the calculation of the
beam local phase shift, can be performed either in real space or
Fourier space. In Fourier space, discrete Fourier transforms are
typically performed using the fast Fourier transform algorithm
which significantly reduces the number of operations and
thereby the calculation time. Spectral leakage that can arise
from the transformation can be reduced by previous zero
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FIG. 6. (Color online) (a) First image acquired during the scan
of the membrane. (b) Effective second derivative of the x-ray
beam wave-front after propagation through the CRL. (c) Effective
wave-front slope obtained by integrating the measured beam’s
second derivative. The inset shows the effect of the multilayer
monochromator phase errors on the amplitude of the fringes. The
dashed and plain lines show, respectively, a horizontal and a vertical
cut across the CRL.

padding of g. This signal can be then expressed from its 2D
Fourier series:

g(xm,yn) = 1

MN

M−1,N−1∑
p,q=0

ap,qe
[i2π( pm

M
+ qn

N
)+i�p,q ], (28)

and the argument of ap,q can be used for the recovery of the
phase, as with the XGI. However, it can be more interesting

to perform the operation described by Eq. (11) in real space,
with substep accuracy [36]. This processing method becomes
of particular interest when the wave-front gradient is strong,
because it allows one to avoid the unwrapping process that can
sometimes become problematic.

B. Setup

A double multilayer monochromator, located 15 m
from the source, was used to select x rays of an energy
E = 15 keV (�E/E ≈ 10−2) which illuminated samples at
distance of 50 m from the source. Samples were mounted
on a multitranslation and rotation station that allowed easy
alignment and removal from the x-ray beam. Another stage
on the optics table had several biological filtering membranes
mounted on it. Membranes were fixed on a two-dimensional
translation piezo motor capable of displacements with nm
accuracy. Finally, the last stage of the optics table was
occupied by the detector. The camera was a CCD detector
imaging an x-ray scintillator through a microscope objective,
resulting in a pixel size of 0.9 μm. Care was taken to ensure
that the resolution of the detector was sufficient to resolve the
speckle features in each image. A schematic of the experiment
is shown in Fig. 3.

C. Characterization of a 2D CRL

1. Differential wave-front slope

The technique described in Sec. II D was first applied to
the characterization of a 2D compound refractive lens (CRL)
to evaluate the quantitative accuracy of the method and for
comparison [39,40]. The CRL under test was a single Be
refractive lens with an ellipsoidal shape and a design radius
at the apex of R = 200 μm. The theoretical focal length
f = R/2δ of this lens is 66 m [41]. Two orthogonal wave-front
gradients induced by the CRL were derived using two sets of
16 × 16 images acquired while scanning a cellulose acetate
membrane of 1 μm size pores. The results are showed in
Fig. 5. The focal lengths derived from the measurements are

FIG. 7. (a) Vertical and (b) horizontal differential wave-front gradients. (c) Scattering image. (d) Absorption image. One can see in the
absorption and scattering images vertical stripes due to the multilayer monochromator instabilities.
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65.98 m in the vertical, and 64.87 m in the horizontal plane.
While there is very good agreement with the theoretical value
in the vertical plane, the values differ by 1.5% in the horizontal.
While considering if such a level of error is acceptable, one
should remember that the bandwidth of the monochromator
was of ∼2%.

In Fig. 4, one can see that no speckle pattern is present
in the wave-front gradient maps, as they are only used as an
information carrier.

2. Absolute wave-front curvature

To illustrate the efficiency of the method explained in
Sec. II F, the local radius of curvature of the beam after passing
through the Be CRL lens is plotted in Fig. 6. Despite the high
quality of the lens, the wave-front slope of the transmitted
beam is not monotonous due to imperfections in the incoming
beam, especially in the vertical direction where phase defects
from the multilayer monochromator are visible.

These results show the feasibility and validity of the method
as a quantitative absolute wave-front measuring tool, which
could be used for metrology purposes.

D. Imaging of a feather

As a “real” sample illustration case, the three modal imag-
ing of a bird feather was performed using this technique. The
setup was identical to that employed for the characterization
of the CRL in Sec. III C. The propagation distance remained
at d = 520 mm. Two raster scans of 32 × 32 images were
recorded, moving a scattering membrane made of cellulose
acetate with 1 μm pore size. Absorption, phase, and scattering
images were retrieved from the collected data and the results
are displayed in Fig. 7. From the small visible details, one can
get an idea of the spatial resolution of the system (pixel size
= 0.9 μm) and the fine sensitivity of the method for phase
contrast imaging.

IV. CONCLUSION AND PERSPECTIVES

We have demonstrated, theoretically and experimentally,
the extension of the three modal imaging scheme from a grating
interferometer to a more generalized method that allows the
use of any phase objects. The grating case has been shown to be
a special case of this general scheme. The proposed technique
offers better spatial resolution compared to the XGI, and does
not require an x-ray grating, which can be expensive and
difficult to purchase for high energy experiments. However,
as previously exposed, the XGI and notably the 1D case,
still offer noticeable advantages, such as a smaller number of
required exposures and a capability to work with a larger field
of view.

As a future development, one can already think about using
the method in a magnifying geometry to access nm resolutions.
Indeed, as one can find grains of any size to generate speckle,
the achievable resolution when using a magnifying optic is
expected to be pushed down near the diffraction limit. In
parallel, the advantage of this technique is that it can be used
for very strong gradients, as the unwrapping process can be
totally avoided by performing cross correlation in real space.
Another idea is to replace the phase object that generates the
speckle by a statistical absorption object in order to use the
technique with a totally incoherent x-ray beam. We expect
that this technique will find many applications for microphase
contrast imaging and can be soon exploited in a tomography
process to render three-dimensional (3D) objects.
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