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The polarization state of a surface mode is a hybrid between linear and elliptical states, meaning that although
one of its electric- and magnetic-field components is linearly polarized, the other rotates on the transverse-
longitudinal plane, effectively in its elliptical polarization state. We show that the rotation of the electric-field
component can induce transverse spin angular momentum of the surface mode. The rotation of the magnetic-field
component, however, cannot generate the spin. We argue that this results from the fact that the rotation direction
of the magnetic field is invariant under time reversal.
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Interfaces between two materials having opposite signs
of constitutive parameters (permittivity ε and/or permeability
μ) have attracted research interest because they can support
a new class of waveguide mode, a surface mode [1]. One
of many interesting features of these surface modes is that
although their transverse wave numbers are imaginary and thus
they seem to propagate only in their longitudinal directions,
the optical power guided through them is transported in
a vortexlike way [2]. That is, some of the optical power
originally moving forward in one material layer is transported
transversely (i.e., across the interface) and made to flow
longitudinally again in the other layer, but in a backward
direction. This vortexlike power flow makes it clear that
the surface mode carries angular momentum (AM), as was
recently shown independently by Kim and Lee [3] and by
Bliokh and Nori [4].

Usually, optical waves can carry two different kinds of AM,
the orbital AM and the spin AM [5]. They can be distinguished
based on their interaction with matter, i.e., depending on
whether they induce orbiting or spinning motions of the
absorptive particles [6,7]. Light waves with helical phase fronts
can carry the orbital AM [8] while their circular polarization
states can induce the spin AM [9]. In this paper, we focus
on the spin AM carried by surface modes. In particular, we
pay attention to their polarization state, which is a hybrid
between the linear and the elliptical states. That is, one
of the electric- and magnetic-field components comprising
the surface mode is linearly polarized but the other is in
its elliptical polarization state, rotating on the transverse-
longitudinal plane with passing time. We show that the rotation
of the electric-field component can induce spin AM but that of
the magnetic component cannot by considering whether their
rotations are vector quantities like spin under time reversal.

Let us consider a material interface (with a normal vector x̂),
which supports a surface mode along the +z direction. In the
case of TM polarization, the magnetic field of this mode can
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be written in a complex form as H̃ = ŷφ(x) exp[i(βz − ωt)],
where ω is the angular frequency of light in vacuum and φ(x)
(= φr + iφi) denotes the transverse profile of the surface mode
whose complex propagation constant is β (= βr + iβi). In the
real-field notation, we have

H = Re{H̃}
= e−βizŷ[φr (x) cos(βrz − ωt) − φi(x) sin(βrz − ωt)], (1)

where Re{·} denotes the real part of the corresponding quantity.
Throughout this paper, vector quantities with a tilde (such as
H̃) are in a complex form while those without a tilde are real
vectors. The above mode field becomes that of the electric
component (E) if we assume TE light waves [see Eq. (8)]. For
the calculation of the spin AM carried by the surface mode,
we have to start with the linear momentum of light. Actually,
there are two different forms of the linear momentum density
of light in media: the Abraham and the Minkowski ones. The
Abraham form is gA = E × H/c2 while the Minkowski form is
gM = D × B, where D and B are the electric displacement and
the magnetic flux density, respectively. For the past hundred
years, extensive efforts have gone into determining which
of these is correct [10,11]. There remain strong theoretical
arguments in favor of both momenta [12–14]. Experimental
works have reported some evidence in favor of the Abraham
momentum [15] but other evidence as well in support of the
Minkowski momentum [16]. Only recently, it was pointed
out [17] that both of them are correct, with the Abraham form
being the kinetic momentum (the product of mass and velocity)
and the Minkowski form the canonical momentum (Planck’s
constant divided by the de Broglie wavelength, associated
with spatial translations). What appears in experiments that
measure the effect of a phase shift (which is proportional to
the spatial translation) or diffraction (which is connected to
the wavelength) is the Minkowski momentum [17]. Hereafter,
we will distinguish the quantities based on the Abraham
momentum and those based on the Minkowski momentum
using the superscripts A and M .

The Minkowski version of the total AM of light is given by
JM = ∫

r × [D × (∇ × A)] dV and can be written as a sum
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of its orbital (L) and spin (S) parts:

JM =
∫

r ×
∑

j

Dj∇Arot,j dV +
∫

D × Arot dV

= LM + SM. (2)

The Abraham version is JA = v−2
g

∫
r × [E × Re{μ−1(∇ ×

Ã)}]dV , where A = Re{Ã} and vg denotes the group velocity
of light, defined as (∂βr/∂ω)−1 in our case, resulting in

JA = 1

v2
g

∫
r ×

∑
j

Ej Re{μ−1∇Ãrot,j }dV

+ 1

v2
g

∫
E × Re{μ−1Ãrot }dV = LA + SA. (3)

Considering that surface modes are usually guided through
dielectric and metamaterial layers, we can interpret these
LM(A) and SM(A) as those carried by various types of polaritons
excited in each material layer. That is, the spin AM of the
surface mode is associated with the spinning of quasiparticles
at the left and right sides of the interface and their resultant
magnetic moment [18].

In deriving Eqs. (2) and (3), we have decomposed the
vector potential A as A = Arot + Airr , where Arot and Airr

represent its rotational (whose divergence becomes zero) and
irrotational (whose curl vanishes) parts, respectively. Although
the vector potential itself is dependent on the gauge, Arot is
gauge invariant, causing the orbital and the spin AMs to be
gauge invariant as well. If we choose the Coulomb gauge, Airr

reduces to zero and Arot becomes equal to A, resulting in the
following spin AM densities:

sM = D × A = Re{εẼ} × Re{Ã} = εr

ω
Re{Ẽ} × Im{Ẽ}, (4)

sA = 1

v2
g

E × Re{μ−1Ã} = 1

v2
g|μ|2 Re{Ẽ} × Re{μ∗Ã}

= μr

ωv2
g|μ|2 Re{Ẽ} × Im{Ẽ}, (5)

where Im{·} denotes the imaginary part of the corresponding
quantity, and we have used Ẽ = iωÃ or E = −∂A/∂t since
no sources are present in our case. We can easily calculate Ẽ
of the TE and TM surface modes as follows:

ẼT E = e−βizŷφ exp(jϕt ), (6)

ẼT M = e−βiz

ωε
[x̂βφ exp(jϕt ) + ẑiφ′ exp(jϕt )], (7)

where ϕt = βrz − ωt and the prime indicates differentiation
with respect to x. They give us

ET E = Re{ẼT E} = e−βizŷ[φr cos ϕt − φi sin ϕt ], (8)

ET M = Re{ẼT M}
= e−βiz

ω|ε|2 (−ẑ[(εrφ
′
i − εiφ

′
r ) cos ϕt

+ (εrφ
′
r + εiφ

′
i) sin ϕt ] + x̂{[(βrεr + βiεi)φr

+ (βrεi − βiεr )φi] cos ϕt + [−(βrεr + βiεi)φi

+ (βrεi − βiεr )φr ] sin ϕt }). (9)

Using Eqs. (6) and (7), and the definitions of sM and sA in
Eqs. (4) and (5), we can derive the following spin AM carried
by TE and TM surface modes:

SM(A)
T E = 0, (10)

SM(A)
T M = −e−2βiz

ω3
ŷ

∫
�M(A)[βr (φrφ

′
r + φiφ

′
i)

−βi(φ
′
rφi − φrφ

′
i)] dx, (11)

where �M = εr/|ε|2 and �A = μr/(v2
g|μ|2|ε|2). We have

�A = μr/εr

v2
g|μ|2 · �M, (12)

where it can be easily seen that �A and �M have the same sign
in dielectric [or positive-index medium (PIM)] and negative-
index metamaterial (NIM) layers, but different signs in singly
negative media such as ε-negative (ENG) and μ-negative
(MNG) metamaterials. This entails that sA

T M and sM
T M are

mutually parallel in PIM and NIM but become antiparallel
in ENG and MNG materials. (Some more discussion will be
given in the later part of this paper.)

We can observe two points in Eqs. (10) and (11). The
first is that S is independent of the choice of the origin of
the spatial coordinates. It is also independent of time, i.e.,
it is constant over time although the surface mode has a
harmonic time dependency [exp(−iωt)]. These characteristics
confirm that it is an intrinsic quantity of the surface mode. The
second point to note is that only the TM surface mode can
carry the spin AM. The key principle behind the derivation
of Eqs. (10) and (11) is that we can write the magnetic
flux density B as a curl of the vector potential A. This, in
turn, originates from the nonexistence of magnetic monopoles.
Therefore, we can say that the fundamental difference in the
characteristics of electric and magnetic fields, especially with
regard to their monopoles, results in this breaking of duality.
This interesting feature can be experimentally observed by
using a Stern-Gerlach-like configuration with various scanning
probe microscopy technologies such as the near-field scanning
optical microscope (NSOM) or the photon scanning tunneling
microscope (PSTM) [19]. Since the TM surface mode with
a nonzero spin AM is associated with quasiparticles that
have a nonzero magnetic moment, it will be deflected during
propagation if we exert a magnetic-field gradient in a Stern-
Gerlach way. By checking whether TE and TM surface modes
undergo such a deflection or not, we can determine that they
do or do not carry spin AM. In addition, by measuring the
amount of the deflection or the transverse displacement, we
can figure out the actual spin values carried by them. This
measurement can also determine which form of the spin AM
(Minkowski or Abraham) is involved. Actually, there is a
very similar experiment which measured the deflection of a
circularly polarized optical beam in a medium due to the
acquired magnetic moment of the resultant polaritons [18].
However, there are two factors that can make our measurement
more difficult. One is the short propagation length of the
surface mode (due to the loss of metamaterials), which would
result in a very small transverse displacement even if we
use slow surface modes [20] as in [18]. The other, which
is closely related to the above, is the change of the spin AM
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FIG. 1. (Color online) (a)–(d) Schematics showing the propa-
gation of the electric-field component of a TM-polarized surface
mode at t = 0, π/2ω, π/ω, and 3π/2ω, respectively. We assumed an
interface between materials whose permittivities have opposite signs,
which supports a forward mode. Peak positions of the induced (and
accumulated) polarization charge density are denoted as + and −. (e)
Polarization states of the E field near the dotted area in (a)–(d).

during propagation [note that ST M (z) = ST M (0) exp(−2βiz)
in Eq. (11)] [3]. That is, the polaritons involved do not have
a constant magnetic moment as in the usual Stern-Gerlach
configuration. More research is now under way.

In what follows, we will investigate this polarization
dependency of the spin AM further, focusing on the po-
larization states of TE and TM surface modes. In the case
of a TM mode, although its magnetic-field component is
always along the ±y directions, its electric component lies
on the x-z plane, effectively in its elliptical polarization state.
This is evident mathematically from Eq. (9), which gives
us ET M ∝ x̂(β/ε) cos ϕt − ẑ(κ/ε) sin ϕt in the lossless case
where κ = ±

√
β2 − εμω2 and φ′ = κφ [21]. However, we

can draw a physical picture of this rotation of the E field
by considering the induced polarization charges [22] given
by ρv = ε0∇ · E, where ε0 is the permittivity in vacuum. In
Fig. 1, we depict the temporal change of the E component
of a TM surface mode, focusing on the induced polarization
charges and their accumulation. As the peak positions of
the accumulated polarization charge density (denoted as +
and −) move along the +z direction as time goes on, the local
directions of the E field change accordingly. For example, let
us look into the area enclosed by (green) dotted lines. At t = 0,
π/2ω, π/ω, and 3π/2ω, the E field is along the −z, +x, +z,
and −x directions in the left layer, and along the −z, −x,
+z, and +x directions in the right layer, respectively [23].
These characteristics are summarized in Fig. 1(e), where we
can see that the E field is in a kind of elliptical polarization
state although its rotation directions are mutually opposite at
the left and right sides of the interface.

On the contrary, in the TE mode case, the B field comes
to be in the elliptical polarization state with the E field along
the ±y directions. In Fig. 2, we described the propagation
of the B field of a TE surface mode, similarly focusing
on the induced magnetization currents [22] given by Jm =

(a) (b) (c) (d)

μ > 0 μ < 0

FIG. 2. (Color online) As Fig. 1 for the magnetic flux density (B)
of a TE-polarized surface mode. We assumed similarly an interface
between materials whose permeabilities have opposite signs, which
also guides a forward mode. Peak positions of the induced (and
accumulated) magnetization current density are denoted as � and ⊗.
Straight arrows near the dotted area indicate the local directions of
the B field there.

(1/μ0)∇×B, where μ0 is the permeability in vacuum. Both
the B fields in the left and right layers are in the elliptical
polarization state but their rotation directions are mutually
opposite as in the case of Fig. 1(e).

We would like to argue that these rotations of the field
components or their elliptical polarization states induce the
spin AM carried by the surface modes. For this, however,
we have to address two questions. The first is why only the
rotation of the E field can generate the spin AM. The answer
can be obtained by asking a different question: Is the spin
even or odd under time reversal? That is, does the spin AM
retain or reverse its original direction if time flows backward?
Classical intuition lets us presume that the spin would change
its direction, i.e., it is odd under time reversal. In Fig. 3(a),
we plotted the polarization state of the E-field component of
the TM surface mode analyzed in Fig. 1 under time reversal,
taking Fig. 1(d) as a new initial field (at t ′ = 0). From the
figure, we can see that the rotation directions of the E field are
reversed. That is, the rotation direction of the E field is odd
under time reversal. This is not the case, however, in the case of
TE polarization. Let us look at Fig. 3(b) which is actually equal
to Fig. 2(d). Under time reversal, the surface mode (i.e., the
peak position of the induced magnetization current density)
moves along the −z direction, resulting in the field pattern
shown in Fig. 3(c′). However, since the magnetization currents
result from the movement of charges, their direction should be
reversed as well, resulting in Fig. 3(c) instead of Fig. 3(c′).
We note that Fig. 3(c) is actually equal to Fig. 2(a). That is,
the same field pattern is produced irrespective of whether time
flows forward or backward, which implies that the rotation
direction of the B field is even or invariant under time reversal.
The rotation of the B field is thus a kind of pseudovector under
time reversal, making it impossible to be associated with vector
quantities like the spin AM (which would require a sign flip).
We argue that this is the reason why TE surface modes cannot
carry the spin AM.

The second question concerns the opposite rotation di-
rections of the E field at the left and right sides of the
interface. If we neglect material losses for simplicity of
discussion, the Minkowski and the Abraham forms of the
spin AM density can be written as sM = −βφφ′/(ω3ε)ŷ and
sA = −βφφ′/(ω3v2

gμε2)ŷ. The directions of sM at the left and
right sides of the interface are respectively proportional to
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FIG. 3. (Color online) (a) As Fig. 1(e) under time reversal. We
took Fig. 1(d) as a new initial field configuration (t ′ = 0). The rotation
direction of the E field is reversed or is odd under time reversal.
(b),(c) The case of TE polarization. We begin with (b) [which is
equal to Fig. 2(d)]. Under time reversal, the surface mode propagates
along the −z direction, resulting in (c′). However, the direction of the
magnetization current should be reversed as well, which produces
the field pattern shown in (c). It is actually equal to Fig. 2(a). That is,
the rotation direction of the B field is even under time reversal.

−β/ε and β/ε while those of sA are proportional to −β/μ

and β/μ. In Fig. 4, we compared the directions of sM and
sA at PIM-NIM, PIM-ENG, and MNG-ENG interfaces which
guide forward TM modes. We can see that their directions are
the same as the rotation direction of the E field in PIMs, but
are opposite to that in NIMs [see Fig. 4(b)]. This difference
can be easily understood by considering a circularly polarized
light incident from PIM to impedance-matched NIM layers.
From the continuity condition of the tangential E field and the
fact that the phase velocity becomes antiparallel to the group
velocity in a NIM, we can determine that the handedness of
the circular polarization state of the incident light changes in a
NIM (right-handed circular state to left-handed circular state
and vice versa) while preserving its spin AM. This clearly
indicates that the rotation direction of the E field in the NIM is
opposite to the direction of the spin AM, and thus the different
rotation directions of the E field at the left and right sides of
the interface actually indicate the same direction of sM or sA

as is shown in Fig. 4(b).
Unfortunately, however, we cannot think in this way in

the cases of singly negative media since incident light waves
cannot propagate through them. In Figs. 4(c) and 4(d), we can
see that there are two directions of the spin AM density in

ε > 0
μ > 0

ε < 0
μ < 0

sM

sA

(a) (b)

(c) (d) ε > 0
μ < 0

ε < 0
μ > 0

sM

sA

ε > 0
μ > 0

ε < 0
μ > 0

sM

sA

z

xy

FIG. 4. (Color online) (a) Rotation directions of the E field at
the left and right sides of the interface which supports a forward TM
mode (β > 0). (b)–(d) Directions of the Minkowski and the Abraham
forms of the spin AM density at various types of interface composed
of (b) PIM-NIM, (c) PIM-ENG, and (d) MNG-ENG layers. One
interface we neglected here is that between MNG and NIM layers.
This is in order to avoid any confusion because it usually supports a
backward mode, and in such a backward case, the directions of the
spin AM (since β < 0) as well as those of the E-field rotation are all
reversed [3].

singly negative layers, one being parallel with and the other
antiparallel to the rotating direction of the E field. These two
directions are respectively those of sM and sA, and what is
parallel with the rotation vector of the E field becomes sA and
sM in ENG and MNG materials, respectively. As a result, we
can observe that SM and SA carried by a TM surface mode at the
MNG-ENG interface have opposite directions. In addition, SA

of the surface mode at a PIM-ENG interface can vanish while
SM does not. Further study from this perspective is necessary.

In conclusion, we showed that the surface mode which
is supported not by the index difference but by the different
signs of ε or μ across the interface can carry the spin AM.
By investigating the polarization state of each field component
comprising the surface mode, we showed that this spin AM
originates from the rotation or the elliptical polarization state
of the electric-field component of the TM surface mode. The
TE surface mode, in which the magnetic component rotates
instead, cannot carry the spin because the rotating direction
remains invariant under time reversal, making its association
with the spin (which requires a sign flip under time reversal)
impossible.
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