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Loop-structure stability of a double-well-lattice Bose-Einstein condensate
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In this work, we consider excited many-body mean-field states of bosons in a double-well optical lattice by
investigating stationary Bloch solutions to the nonlinear equations of motion. We show that, for any positive
interaction strength, a loop structure emerges at the edge of the band structure whose existence is entirely due to
interactions. This can be contrasted to the case of a conventional optical (Bravais) lattice where a loop appears
only above a critical repulsive interaction strength. Motivated by the possibility of realizing such nonlinear Bloch
states experimentally, we analyze the collective excitations about these nonlinear stationary states and thereby
establish conditions for the system’s energetic and dynamical stability. We find that there are regimes that are
dynamically stable and thus apt to be realized experimentally.
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I. INTRODUCTION

A wealth of nontrivial quantum states has been realized
with Bose-Einstein condensates (BECs) in optical lattices
[1,2]. Conventionally, these states occupy the lowest energy
configuration of the parent Hamiltonian of the system. On
the other hand, motivated by the low levels of dissipation in
ultracold atomic gases, considerable recent effort has shifted
to the possibility of realizing interesting quantum states not
as the ground state, but as long-lived excited states [3]. In
particular, recent experiments have realized condensates in
excited bands [4-8]. Such efforts open the door to achieving,
for instance, states having Neél order, which is notoriously
difficult to realize as the ground state of a system of bosons
[9,10], and novel fermionic states [11,12] that have no parallels
in solid-state physics. Unconventional excited states realized
with ultracold atoms have been considered theoretically in
Refs. [13-18].

In the presence of interactions, the nonlinear Bloch band of
a BEC can develop interesting features. Although its ground
state is fairly conventional, at the Brillouin zone boundary,
the band can develop a cusp and subsequently form a loop as
interaction is increased [19-22]. However, for Bravais lattices
(with one lattice site per unit cell) such a loop appears only
above a critical interaction strength, which can be large. For all
realistic situations, the loop is also small and hence difficult to
detect. This limits the proposed experimental detection of the
loops to only indirect signals such as the nonlinear Landau-
Zener effect [19,23,24].

Similar looped band structures also appear for BEC on a
double-well optical lattice [22,25]. Unlike the conventional
looped structure described above, however, we find that a
significantly large loop is induced for any interaction strength,
and a large energy separation from the excited band is
possible by suitably tuning the lattice depth and the lattice
staggering. With the recent experimental realization of double-
well optical lattices [5,26,27] and the concomitant theoretical
investigations of the many-body phenomena in them [28-35],
it is now an appropriate moment to consider the possibility of
detecting the looped band on a double-well lattice.

Previously, the interaction-induced loop structure in a
double-well optical lattice was considered theoretically for
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some specific cases. In Ref. [22], a one-dimensional (1D)
Kronig-Penney potential was used to demonstrate period
doubling in a double-well lattice in one dimension. The
special form of the potential allowed analytic solutions to
be obtained. A tight-binding model of a one-dimensional
double-well system was analyzed in Ref. [25]. Reference
[36] found an analytical solution at the band edge for a
specific interaction energy by employing the Thomas-Fermi
approximation. However, the computation of the Bogoliubov
spectrum, and hence the stability, around the states of a
two-dimensional (2D) loop structure is lacking in the literature.

In this work, we compute the interacting Bloch solutions
of the Gross-Pitaevskii equation for two-dimensional double-
well lattices using realistic lattice potentials. This allows us
to elucidate the behavior of the loop structure at the band
edge as a function of the lattice potential. Essential to the
experimental realization of the loop states is their stability. By
analyzing the behavior of the collective modes about the mean-
field solutions, we find that a range of states in the excited band
are dynamically stable, which are in experimentally accessible
parameter regimes.

The paper is organized as follows. In Sec. II, we set up the
problem and indicate the specific lattice used in our analysis.
We then describe the method of obtaining nonlinear Bloch
solutions to the mean-field equations of motion, and present
the loop band structure in Sec. III. In Sec. IV, we compute
the collective excitations about the nonlinear Bloch solutions.
These are used to establish the energetic and dynamical
stability of the system prepared in these states. In Sec. V, we
present a tight-binding model that captures some, but not all,
of the salient features of the more accurate continuum results.
We conclude in Sec. VI.

II. THE DOUBLE-WELL OPTICAL LATTICE

In arecent experiment [26], a two-dimensional double-well
lattice was realized by superimposing standing waves in the x
and y directions. To ensure phase stability, a single light source
was used and the lattice is formed in a folded-retroreflected
geometry. We consider a lattice potential that is realizable with
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FIG. 1. (Color online) (Left) The double-well-lattice potential
used in this work. The unit cell (dotted red square) and lattice constant
a are shown. Each black cross corresponds to a site of a bosonic
annihilation operator in Eq. (8). The minima are colored deep-blue
(gray), in accordance with the scale in the lower-right. (Upper-right)
A slice of the lattice potential along the diagonal line in the left panel.

this geometry, given by
Via(x,y) = Vilcos(2kpx) — cos(2k. y)]
+ 2V, cos(2kp x) cos(2kr y), (D)

where k; = w/aanda = A/ V2 is the lattice constant (shown
inFig. 1). By adjusting the path-length differences of the lattice
beams, a more general lattice can be generated. We further
restrict ourselves to the case where 2V, > V| > 0, which gives
double-well lattices with degenerate maxima and staggered
local minima (see Fig. 1).

With this lattice potential, the full Hamiltonian of the system
is given by

~ —n? n
H= / d3r{w<r)[—v2 + Mr)}w(r)
2m
+ %W @) (r)lif(r)xir(r)}, @)

where g = , (r) describes the destruction of a boson at
position r, m is the mass of the constituent bosons, and a; > 0
is the s-wave scattering length.

For the mass and scattering length, we use parameters
for 8’Rb. We consider spatially averaged densities 5 below
1 x 10" cm™3, since for larger densities three-body losses
become important. In the following analysis we restrict our
attention to the case where V; and V, are <10Eg, and set

the recoil energy to be Egp = h;’? = h x 1.75 kHz, given
by the experimental parameters. For such parameters the
tight-binding approximation is not necessarily valid. For this
range of V; and V,, the ground state is in the superfluid phase,

well away from the Mott insulating transition.

4nh’ay
m

III. MEAN-FIELD ANALYSIS OF THE INTERACTING
BAND STRUCTURE

In this section we describe the numerical method used to
obtain periodic mean-field stationary states of Eq. (2). These
solutions are shown to exhibit extra “looped” states which are
then further analyzed. We concentrate on the semiclassical
regime of H and approximate ¥ with ¢ = (). Thus, we seek
solutions of the Gross-Pitaevskii equation (GPE)

—hK?
py(r) = %vw(r) + ity (@) + gly @Py@).  (3)
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Here we consider only a 2D system. Qualitatively similar
structures should be expected in other dimensions, but we shall
focus on 2D for experimental relevance. Among the solutions
of this nonlinear differential equation, we are interested in the
solutions of the Bloch form:

Vk(r) = U (r), 4

where n is the band index, k is the crystal momentum,
and u,k(r) has the periodicity of the underlying lattice. The
corresponding mean-field energy per unit cell is then

h2
Ex=x / dr(——w;‘kvzvfnk + Viae®) Wi * + §|wnk|4).
cell 2m 2
(5)

Throughout the paper, we choose the zero of energy such that
the ground-state energy is zero.

We numerically compute the nonlinear Bloch band by
expanding u,k(X) as uk(x) = Y g cuke’ " where K are
reciprocal lattice vectors and the summation includes a
sufficient number of harmonics to ensure accuracy. This is
then substituted to Eq. (3) and a set of coupled equations is
obtained by equating coefficients of equal harmonics. Together
with the normalization condition, {c,k} and u are then solved
for numerically. We start with an initial solution {c,k} atk = 0,
found with imaginary-time propagation. Then k is changed
stepwise and {c,k} is computed through numerical root finding
at each step. The nonlinear band structures for several sets of
parameters are shown in Fig. 2.

© T X M r

FIG. 2. The lowest two bands computed with gp = 0.4E, and
V, = 4.8ER, while V| are (a) 0 (i.e., no staggering), (b) 0.04Eg,
and (c) 0.2E. The labeling of the crystal momenta k follows the
convention where I' = (0,0), X = (w/a,0), and M = (7w /a,w/a).
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The most prominent feature is the emergence of a looped
band structure when a lattice staggering V; # 0 is introduced.
Similar phenomena were also discovered in interacting BECs
onregular 1D [19-21,37,38] and 2D [39,40] lattices. However,
a substantial looped band on a regular (unstaggered) lattice
requires the interaction energy to be much larger than the
lattice depth, which is experimentally a stringent condition.
In contrast, a substantial looped band on a staggered lattice
only requires the interaction energy to be greater than the
staggering, which is achievable as a staggering of <1% can be
realized.

For a qualitative understanding of the emergence of the
looped band on a double-well lattice, we consider the band
structures for different staggering in Fig. 2. First consider
the case of V| =0 [Fig. 2(a)], in which case our unit cell
is twice the lattice’s natural unit cell. It is known that an
extra solution exists at the band edge [22] and a staggering
splits the upper and lower bands and hence a loop is induced
[Fig. 2(b)]. Further increasing the staggering enlarges the
energy gap between the excited band and the loop [Fig. 2(c)].
The importance of using a double-well lattice is apparent in
Fig. 2(c), where we see a substantial loop well separated from
the excited band.

Note that sharp edges are formed in the lowest band, which
can lead to interesting nonlinear Landau-Zener effects. This
was proposed to detect the loop band structure experimentally
in a 1D system [19,23,24]. In our current system, we expect
a similar effect to appear as one traverses the band edge from
the T" point to the X point.
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FIG. 3. (Color online) The wave function and current flow in
a unit cell (shown in Fig. 1) for three eigenstates where (a) ka =
(0.187,0) and [(b), (c)] ka = (;r,0). The corresponding points on the
energy band are shown in the upper-left panel. [The other degenerate
solution at point (b) of the band is given by the horizontal reflection
of figure (b)]. The other panels show the contours of |{(x)| and
the field of j. The parameters are gp = 0.4Eg, V; = 0.4ER, and
V, = 8Eg.
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The superfluid current density is obtained from the Bloch
solution ,k(x) as

. h .
Jnk = _Im(wnkv'(pnk)
m

h
— Y K+KkcjgekcosK -r—K-r).  (6)
m

KK’

In Fig. 3 we plot the wave function and current density of
several indicated states. A currentless state is found at the
band edge of the interaction-induced state [Fig. 3(c)]. For a
noninteracting system, it is well known that the cell-averaged
current satisfies jx = hlvkE,,k. This relation, in fact, can also
be shown to hold for the nonlinear system in Eq. (3). Therefore
currentless solutions can only appear at the I point or the
(c) point in Fig. 3, where the energy band attains its local
extrema. The state at (c), however, has identically zero current
everywhere instead of just an average zero current. This is
because the period doubled state can be taken to be real
everywhere, and hence currentless by virtue of Eq. (6). It is
easy to see that a real solution is possible only at the I', X, or M
points of the Brillouin zone. Because ¥/(r) = Yy cke KT,
the reality of ¥ requires 2k be equal to a reciprocal lattice
vector and that ck = c_g_pk. This is satisfied by the states of
the loop at the X and M points.

IV. STABILITY

A crucial factor determining the realizability of the states on
the loop is their stability. In general, there are two qualitatively
different types of instabilities that could potentially occur
for interacting BEC: energetic instability and dynamical
instability. Energetic instability occurs if the system is not
at a local minimum of the mean-field energy. This, however,
is often unimportant in experiments since the time scales for
energy dissipation are long. In contrast, when the system has
collective fluctuations with complex frequencies, small pertur-
bations will grow exponentially fast: a dynamical instability.
This type of instability does not require energy dissipation,
and it will cause rapid depletion and fragmentation of the
condensate [41,42]. Thus realizing a dynamically unstable
state is difficult if the instability time scale is much shorter
than the experimental time scale.

To analyze the stability of states [19], it is therefore
necessary to consider the fluctuation modes of the metastable
excited states (every point on the nonlinear Bloch band). We
follow the standard procedure for computing the Bogoliubov
spectrum. That is, we expand the Hamiltonian to quadratic
order in the field: ¥ — Y, + ¢*T(x) where ¥, is the
stationary nonlinear Bloch solution. Hence the term linear in
& vanishes and the term of second order in ¢ is

k+K+q? .
527'{ = Z I:T¢q+K¢q+K
Kq
+ VK*K/(ﬁ(J;FKéquK, + 2ng7K"5(T1+Kq§q+K’
+ 8(Pg_x barxd_qx + ﬁKK@LKqS*qK,)}, (7)

where ¢A>q is the Fourier transform of @¢(x). p = |¥uk|? is an
effective potential created by the BEC, and g = I/f,fk- The
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FIG. 4. (Color online) Nonlinear Bloch bands with the same
parameters as Fig. 3, in the first quadrant of the Brillouin zone. States
in the blue region are stable, while states in gray regions are unstable,
both dynamically and energetically. Red regions are energetically
unstable but dynamically stable. The excited band is separated from
the ground band by ~1E and is not shown here.

Bogoliubov spectrum is then numerically found by canonical
transformation of Eq. (7). For each crystal momentum K,
we compute the spectrum wq. The presence of any complex
wq implies both dynamical and energetic instabilities, while
negative wq indicates an energetic instability. The stabilities
of the Bloch states are shown in Fig. 4. We find the top of the
loop has a region of dynamically stable states, which trace out
a roughly circular path in the Brillouin zone.

The stability phase diagram of the state at the tail at ka =
(,0) as a function of V; and V, is shown in Fig. 5. It is
divided into three regions: (1) when the lattice staggering is

o

Lattice Staggering V|/E,

Lattice Depth V,/E,

FIG. 5. (Color online) Stability of the eigenstate at ka = (7,0)
on the loop, as a function of V; (the staggering) and V, (the lattice
depth) in Eq. (1), with gp = 0.4ER (corresponding to a density p =
9 x 10" cm™?). The hashed region has no loop. The shaded region is
dynamically unstable and the white region is energetically unstable
but dynamically stable. Contours show the loop size [i.e., vertical
distance between (b) and (c) in Fig. 3] in units of Eg.
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sufficiently large, the loop is totally suppressed; (2) as the
staggering becomes smaller, a loop is formed but with all states
on it dynamically unstable; (3) further reducing staggering
enlarges the loop and a band of stable states is formed on it, of
which Fig. 4 is an example.

V. TIGHT-BINDING MODEL

In this section, we use a tight-binding model to understand
some of our previous results, in the limit of large lattice
potentials. The tight-binding Hamiltonian we consider is

Hop = —t Z(éjéf +He)+ A Z e'Qrhib,

(rr’) r

U Arara A
+5 Z bibb.by. (8)

where b, annihilates a boson at position r on a square lattice
with unit lattice constant, Z(rr,> indicates summation over
nearest neighbors, and Q = (;r,7). The hopping amplitude is
given by ¢, A > 0 is the on-site energy staggering between
sites, while U denotes the on-site interaction energy between
bosons. This model describes Eq. (2) in the limit of a strong
lattice potential, where we associate a bosonic annihilation
operator to each local minimum of the lattice (see Fig. 1).
Note that a term of staggered hopping is unnecessary because
the lattice has fourfold rotational symmetry and all nearest-
neighbor links are equivalent.

In the superfluid regime, the system is described
by a mean-field equation uby = —t) ;bpys + Ae'QTh, +
U|by|*by, where b, = (l;r) and § denote the positions of the
nearest neighbors. This is solved by

by = ﬁ(cos (%k + ¢ Q7 sin %)eik'r, 9)

where oy satisfies

2t(cos ky + cos ky)sin ax + A cos o
+ Up sin ak cos ai = 0. (10)

This yields the nonlinear Bloch band Egx/p = A sin o —
2t(cos ky + cos ky) cos oy — U,o(% cos®ay — 1).

In vanishing interaction (U = 0), this tight-binding model
generates two bands. When U is raised above a critical
threshold, however, four solutions appear in some regions
of k near the band edge. These are the extra states of
the loop. Since Eq. (10) has four solutions if (Up)*? >
A3 4 [2t(cos ky + cos ky)]*/3, the condition to have a loop
without it filling up the entire Brillouin zone (hence forming
a separate band) is therefore A < Up < [A?/3 4 (41)?/3]3/2.
Further, by demanding all Bogoliubov modes to be real, we
find that the condition of having the state at k = (7,0) on the

. . CAPR i .
loop dynamically stable is ¢ < %. Since in our lattice

[Eq. (1)] V| controls the amount of staggering and V, controls
lattice depth, the phase diagram in the continuum (Fig. 5)
is in qualitative agreement with the tight-binding model.
The wave function at the band edge (cos k, + cos k, = 0)
can be analytically solved. When Up > A, the state on the
loop has & = —%. Thus the state at the tail is by = /2p if
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¢'QT — _1 and zero otherwise, i.e., has all particles on the
lower wells. This too agrees with the continuum calculations
in Fig. 3.

This loop structure could also be understood from the
period-doubled solution [22]. It is known that this tight-binding
model without staggering (A = 0) admits period-p solutions,

where p is any positive integer. In particular, a period-doubled

. 412 (cos k +cos ky)? .
solution £ = (CM;T:COQ-‘) + Up always exists near the

band edge [21]. If we introduce small staggering A, the extra
band splits in a manner that generates a looped band structure
(Fig. 2). As the staggering gets larger, the splitting between
the two bands also increases but simultaneously suppresses
the loop size. As splitting becomes large, A > Up, the whole
loop structure is destroyed.

The adequacy of tight-binding models in describing our
loop structure could be compared with the situations in purely
interaction-induced loop structure [20,40]. In those systems,
a tight-binding model can never produce the loop structure
in continuum regardless of the lattice depth, and this was
attributed to an inappropriate choice of Wannier functions [40].
In our system, although a loop structure can be captured
with the tight-binding model, some qualitative features of
the continuum calculations are missing in the tight-binding
model. For instance, the tight-binding model predicts that a
dynamically stable region on the loop, if present, must include
the band edge. This is not consistent with our continuum
calculations in Sec. III, as shown in Fig. 4.

Although the tight-binding model is simple and gives
a physical picture, the continuum calculations are more
relevant from an experimental viewpoint. This is because the
experimentally tunable parameters are Vi, V,, and p, and it
is difficult to compute from these the suitable tight-binding
parameters ¢, A, and U of Eq. (8) as shown in [43]. In contrast,
the results we obtained for continuum Hamiltonian Eq. (2) can
be directly compared with experimental results. There are also

PHYSICAL REVIEW A 86, 063636 (2012)

experimentally relevant regimes considered above, where a
single-orbital tight-binding approximation is not correct.

VI. CONCLUSIONS

In this work, we have numerically computed the nonlinear
Bloch band structure for an interacting BEC on a 2D double-
well optical lattice. We also computed the Bogoliubov modes
of all the states, and thereby mapped out the stability phase
diagram as a function of lattice depth and staggering for
experimentally realistic parameters. A tight-binding model
was also considered and it is found to reproduce some
qualitative features of the system.

We find that the interaction energy required to create a
looped band is smaller on a double-well lattice, compared with
a Bravais lattice. Further, we find a stable state on the loop can
be realized within an experimental accessible parameter range.
This raises the possibility of directly exciting a BEC onto
the loop with Raman excitation and/or dynamic manipulation
of the lattice structure [5,26]. Time-of-flight spectroscopy of
the momentum distribution could be used to experimentally
confirm the unique loop structure.

In future work, a more careful treatment of the important
possibility of Mott correlations of the states on the loop will
be interesting to study. When the system is in the tight-binding
regime, the Gutzwiller method (which is more general than the
treatment provided in Sec. V) will be suitable for this purpose.
The effects of the nonlinear Bloch states on the dynamics of
BEC:s in double-well lattices will also be of interest.
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