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Anisotropic quantum quench in the presence of frustration or background gauge fields:
A probe of bulk currents and topological chiral edge modes
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Bosons and fermions, in the presence of frustration or background gauge fields, can form many-body ground
states that support equilibrium charge or spin currents. Motivated by the experimental creation of frustration or
synthetic gauge fields in ultracold atomic systems, we propose a general scheme by which making a sudden
anisotropic quench of the atom tunneling across the lattice and tracking the ensuing density modulations provides
a powerful and gauge-invariant route to probing diverse equilibrium current patterns. Using illustrative examples
of trapped superfluid Bose and normal Fermi systems in the presence of artificial magnetic fluxes on square
lattices, and frustrated bosons in a triangular lattice, we show that this scheme to probe equilibrium bulk current
order works independent of particle statistics. We also show that such quenches can detect chiral edge modes in
gapped topological states, such as quantum Hall or quantum spin Hall insulators.
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I. INTRODUCTION

The physics of fermions or bosons moving in background
gauge fields is of great interest in various condensed mat-
ter systems such as quantum Hall liquids [1], topological
insulators [2], quantum spin liquids [3], and the cuprate
superconductors [4]. Such Abelian or non-Abelian gauge
fields, imposed externally or generated by strong correlation
effects, can result in equilibrium charge or spin currents of
electrons. For instance, a type-II superconductor in a magnetic
field forms an Abrikosov vortex lattice that supports a periodic
bulk current pattern formed by Cooper pairs swirling around
each vortex [5]. A uniform magnetic field for lattice electrons
can lead to topologically nontrivial states with a quantized
Hall conductance and chiral edge currents [6]. Such electronic
charge currents in a solid produce their own characteristic
magnetic fields, and can thus be probed by using magnetic
microscopy or neutron scattering. These tools have been used
to study vortices in type-II superconductors [7], to search
for complex current patterns in the high temperature cuprate
superconductors [8], or to look for edge currents in purported
chiral superconductors such as SrRu2O4 [9]. Electronic spin
currents in solids, by contrast, are harder to measure. A direct
observation of the spin Hall effect in semiconductors involves
driving a charge transport current and optically detecting
the spin accumulation at the transverse edges of the sample
[10]. Observing equilibrium spin currents is a more difficult
challenge; only recently have experiments shown that the
quantum spin Hall edge modes in two-dimensional HgTe
quantum wells carry spin polarization [11].

Over the past few years, experiments in the field of ultracold
atomic gases have also begun to study the effects of “artificial”
orbital magnetic fields [12–14] and spin-orbit coupling [15]
in the hope of creating new states of atomic matter. These
experiments can potentially realize various topological phase
transitions and a wide variety of states with equilibrium
mass currents [16,17]. Such mass currents also arise in

the presence of “lattice shaking” [18,19], the combination
of Raman lasers and radio frequency fields [20], or from
populating higher optical lattice bands with bosons [21,22],
both of which lead to kinetic frustration and possible spon-
taneous time-reversal-symmetry-broken superfluids [23,24].
Two-component bosons, in the presence of spin-orbit coupling
and strong correlations, have recently been proposed to support
Mott insulator states with complex magnetic textures, such as
vortex crystals and skyrmion lattices [25–27]. Upon decreasing
the Hubbard repulsion, such Mott insulators transition into
superfluids, which retain the magnetic textures, with the
magnetic order imprinting nontrivial Berry phases on the
bosons and leading to intricate superfluid current patterns [25].
Spinless fermions with longer-range repulsive interactions and
frustrated hopping on the triangular lattice have also been
recently proposed to realize states with spontaneously broken
time-reversal symmetry and loop currents [28].

But, how can we experimentally deduce the equilibrium
mass current patterns for such neutral atomic gases? This
is rapidly becoming an important issue since cold atomic
gases are poised to create a number of interesting condensed
matter states using such gauge fields. Experiments on bosonic
atoms use peaks in the boson momentum distribution to infer
the location of the boson dispersion minima induced by the
presence of synthetic magnetic fluxes [13]; it would thus be
extremely valuable to have a complementary technique that
directly probes gauge-invariant equilibrium mass currents in-
duced by such background synthetic gauge fields or frustration.

In this paper, we argue that the study of density dynamics
triggered by specific quantum quenches provides a powerful
route to probing atom mass currents, and we present an
extended discussion of this idea going well beyond our
previous work [29]. Our proposal to measure equilibrium
atom currents induced by the presence of a gauge field
relies on measurements of the atom density, and is inspired
by the significant experimental progress in measuring even
lattice-scale density modulations. Many such density-mapping
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tools have been experimentally demonstrated in recent years,
such as noise correlations [30,31], Bragg scattering [32], which
is analogous to x-ray scattering used to deduce the crystal
structure of solids, and in situ microscopy [33], which is similar
to scanning tunneling microscopy at a crystal surface in the
sense that both probe real-space lattice-scale physics.

One key idea we use is to make a specific quantum quench
of the Hamiltonian that violates the steady-state divergence-
free condition on equilibrium currents [29]. This causes an
imbalance between currents entering and leaving different sites
of the lattice. As dictated by the continuity equation, this leads
to characteristic density buildup or depletion with a specific
pattern across the lattice, which reflects the initial currents in
equilibrium. A “quasilocal” current probe of this type has been
used in a recent experimental study of nonequilibrium dynam-
ics in a one-dimensional (1D) Bose gas [34]. In other cases,
one can design suitable quenches that lead to spontaneous
macroscopic dipolar density oscillations, corresponding to
center-of-mass oscillations of the atom cloud in the harmonic
trap. In either case, imaging the subsequent density variation
across the lattice yields real-space information about the initial
currents. Thus, just as the usual time-of-flight images probe
momentum information by studying real-space atom positions
after a time delay following release from a trap, our proposed
scheme yields atom current information by converting them
into density images after a time delay. Such quenches along
with the underlying current patterns are schematically depicted
in Fig. 1 for some of the examples explored in this paper.

Our proposed scheme has the additional advantage of being
independent of particle statistics, and is applicable to both
bosons and fermions, as we illustrate here for both Bose
superfluids and degenerate Fermi gases. Moreover, it can also
be used to probe both bulk currents and edge currents in the
system. In addition to the systems explored here, we also
expect that such quenches could also probe the current pattern
in the recently studied chiral Bose Mott insulator [35,36],
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FIG. 1. Illustration of the investigated scenarios: (a) Unidirec-
tional quenches of the tunnel coupling in a square lattice with
staggered (checkerboard) magnetic flux, (b) unidirectional quenches
in a square lattice with a striped flux pattern, and (c) bidirectional
quenches in a triangular lattice with frustrated hopping. Strong and
weak tunnel couplings are illustrated by thick and thin lines and the
magnetic unit cell is highlighted. The quench dynamics for all three
cases was investigated considering a Bose superfluid; case (a) was
additionally studied for noninteracting fermions.

and, more generally, the dynamics can also be used to study
spin currents of atomic matter, since one can experimentally
probe the spin-resolved density in the lattice as demonstrated
in recent experiments [37].

Finally, quantum quenches have long been of great interest
in the context of such diverse and important issues as the
approach to equilibrium in closed quantum systems, defect
production induced by tuning the Hamiltonian across various
quantum phase transitions, and extensions of scaling and
renormalization-group ideas to dynamics across quantum
phase transitions such as in the context of the Kibble-Zurek
problem [38–45]. Our work, thus, additionally serves to bring
together these two threads of research—synthetic gauge fields
and quantum quenches—by suggesting that studying quantum
quenches and quench-induced dynamics in the presence of
gauge fields would be a useful direction to pursue given the
recent experimental and theoretical advances in these areas.
Indeed, there have even been theoretical proposals to produce
dynamical gauge fields in ultracold atomic systems [46,47],
and a recent suggestion that one could use quenches in
Bose-Fermi mixtures to simulate “string-breaking” dynamics
in a model of fermions coupled to such dynamical gauge
fields [48].

A brief version of some of the results in this paper is
contained in Ref. [29]. Here, we outline a general scheme
to extract currents, expand on the various analytical results for
noninteracting cases and for interacting Bose systems, give
further details on quenches for quantum Hall states, study a
triangular-lattice frustrated superfluid, and explore the effect
of random phase fluctuations imprinted on the initial state prior
to the quench in order to show that weak thermal fluctuations
in a Bose superfluid do not affect our central conclusions.

II. GENERAL SCHEME AND MODELS

Consider a general d-dimensional lattice system that carries
local currents j(r) in equilibrium. In order to uncover a specific
component of the current, say jx = j · x̂, let us make a quench
of the Hamiltonian at time t = 0 that instantaneously turns off
the hopping along all transverse directions. The currents j(r)
remain unchanged at the instant of the quench; the quench
itself induces no extra currents. However, at all subsequent
times, the density and current will evolve in an effectively
one-dimensional system along the x direction. The continuity
equation following the quench takes the form

−∂n(r,t)
∂t

= jx(r + x̂/2) − jx(r − x̂/2), (1)

where the right-hand side denotes the lattice divergence of the
current.

A. Short-time analysis

If we focus on short times after the quench, the change in
density δn(r,t) will be dictated by the initial equilibrium cur-
rents in the unquenched direction, independent of the details
of the Hamiltonian or the statistics of the particles making up
the fluid. Therefore, at short time ε after the quench and in
Fourier space, we can set �n(q,ε) ≈ −2iε sin(qx/2)jx(q,0),
with jx(q,0) being the Fourier transform of the prequench
equilibrium current. For this short-time analysis to be valid,
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we must choose 1/ε to be comparable to the tunneling rate,
but much shorter than the frequency of the subsequent density
oscillations discussed below.

For qx �= 0, we can invert this relation to obtain

jx(q,0) ≈ − 1

2iε sin(qx/2)
δn(q,ε). (2)

Thus, a measurement of the excess density δn which builds
up shortly after the quench and decomposing it into its spatial
Fourier components corresponds to a determination of all the
nonzero Fourier components of jx .

To determine the Fourier components of the density, one
could resort to tools such as Bragg scattering [32], noise
correlation measurements [30,31,49], or superlattice-aided
band-mapping techniques [50]. Assuming simple current
patterns, only a few Fourier components will be nonzero. For
low filling <1, in situ imaging after freezing out all atom
hopping provides the most direct measurement [33,51]. For
larger filling, however, additional effort has to be made to
overcome the parity mapping inherent to this method.

For qx = 0, the above inversion fails. This component,
however, corresponds to a uniform current offset and can be
detected in the presence of an external trapping potential by
monitoring the change in the center-of-mass position after
short times ε.

Aside from the short-time dynamics following a complete
quench, it is also useful to study the long-time dynamics and
the dynamics following a weak quench; both these issues are
amenable to analysis and experiments, and are interesting in
their own right. At the very least, such an analysis of the
dynamics allows us to address the issue of how long the system
needs to evolve before the measurement to ensure there is
an experimentally measurable density accumulation. In order
to make progress on this front, we focus on specific model
Hamiltonians.

B. Models

We are interested in applying the general scheme outlined
above to uncover the underlying current patterns of interesting
and experimentally relevant examples of many-body states of
bosons and fermions. We therefore focus on the following
models of Bose superfluids: (i) bosons on a square lattice in
a staggered, checkerboardlike magnetic flux pattern as shown
in Fig. 1(a), (ii) bosons on a square lattice with a striped
magnetic flux pattern as realized in Ref. [13] [Fig. 1(b)], and
(iii) a triangular-lattice model of frustrated bosons moving in
a staggered flux pattern as realized in Ref. [18] [Fig. 1(c)].
In addition, we study two models of noninteracting fermions:
(iv) noninteracting fermions on a square lattice in a staggered
magnetic flux [Fig. 1(a)], and (v) the Hofstadter model of
fermions with a uniform flux on a square lattice, which results
in an integer quantum Hall phase. As depicted in Fig. 1, we
study sudden quenches where we turn off (or weaken) the
hopping along all directions except one. For the cases (i),
(ii), and (iv), the quench we study corresponds to turning
off or weakening the hopping along one direction, leading
to sublattice-density oscillations. In case (iii), the quench
turns off the hopping along two of the three bond directions,
resulting in macroscopic dipole oscillations of the atom cloud

in a trap. For the quantum Hall case (v), a unidirectional quench
is shown to lead to quadrupole oscillations dominated by chiral
edge currents.

In order to model the density dynamics of these systems,
we resort to two approaches. For bosons, we study examples
with repulsive contact interactions modeled by a Hubbard
Hamiltonian of the schematic form

HBH = −
∑
r,r′

Jr,r′b
†
rbr′ +

∑
r

Vr b†rbr + U

2

∑
r

b†rb
†
rbrbr.

(3)

Here, the complex hopping amplitudes (transfer integrals) Jr,r′
encode the artificial fluxes, U is the on-site Hubbard repulsion,
and Vr = V0(x2 + y2) is a harmonic trap potential. We analyze
these boson models using a Gross-Pitaevskii (GP) approach,
which replaces br by a “condensate wave function” �r . This
leads to an equilibrium energy functional

EGP = −
∑
r,r′

Jr,r′�∗
r �r′ +

∑
r

Vr|�r|2 + U

2

∑
r

|�r |4, (4)

which must be minimized to obtain the initial equilibrium
superfluid ground state. Starting from this ground state of the
prequench Hamiltonian, we suddenly decrease the tunneling
amplitudes from their initial values (J i

x,J
i
y) to their final values

(J f
x ,J

f
y ) at time t = 0 and study the subsequent time evolution

of this state. The quench-induced dynamics is then obtained
by solving the time-dependent GP equation

ih̄
∂�r(t)

∂t
= −

∑
r′

J
f

r,r′�r′(t) + [U |�r(t)|2 + Vr]�r(t). (5)

Henceforth, we set h̄ = 1. While we present an analytical dis-
cussion of the quench-induced dynamics in uniform systems,
we also present numerical solutions for Bose superfluids in a
harmonic trap. Specifically, the equilibrium state is obtained
by numerically minimizing the GP energy functional, while
the postquench dynamics is obtained by numerically solving
the time-dependent GP equation. Details of the numerical
procedures are contained in Appendixes A and B.

For fermions, we restrict ourselves to noninteracting (spin-
less) examples for which we can diagonalize the Hamiltonian
either analytically or numerically for large systems. These
fermion Hamiltonians schematically take the form

H = −
∑
r,r′

Jr,r′f
†
r fr′ +

∑
r

Vr f †
r fr . (6)

We again imagine quenching the fermion hopping at time
t = 0, with the time evolution being governed by the time-
dependent Schrödinger equation. Knowing all the prequench
and postquench eigenstates and eigenvalues is then sufficient
to reconstruct the dynamics of various observables after the
quench.

III. BOSE SUPERFLUID IN A STAGGERED MAGNETIC
FLUX BACKGROUND

We begin by studying a weakly interacting superfluid
of bosons on a 2D square lattice, described by the Bose-
Hubbard model Eq. (3). We take Jr,r′ = J ∗

r′,r �= 0 only for
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nearest neighbors, and choose Jr,r+x̂ = Jx real and Jr,r+ŷ =
Jy exp[i(−1)x+yφ/2]. This yields staggered magnetic fluxes
±φ that pierce the elementary square plaquettes in a checker-
board pattern [see Fig. 1(a)]; a route to realizing such a flux
pattern has been proposed previously [52].

A. Equilibrium state in the absence of a trap

For weak interaction, U � Jx,Jy , we solve for the equilib-
rium ground state by minimizing the GP energy functional
Eq. (4) [53]. In the absence of a trap (Vr = 0) we first
diagonalize the kinetic energy in the Hamiltonian (3). In
momentum space, the kinetic energy takes the form

H =
∑

k∈RBZ

(�†
k�

†
k+Q)(εkτ

z + γkτ
y)

(
�k

�k+Q

)
, (7)

where τ y,z are Pauli matrices, Q = (π,π ), and RBZ denotes the
reduced Brillouin zone due to the unit-cell doubling resulting
from the flux. Here, we have defined

εk = −2Jx cos kx − 2Jy cos(φ/2) cos ky, (8)

γk = −2Jy sin(φ/2) cos ky. (9)

Let us restrict ourselves to flux values 0 < φ < π . We find

that the minimum eigenvalue λk = −
√

ε2
k + γ 2

k then occurs at
k = (0,0). For Jx = Jy = J in equilibrium, this is given by

λ0 = −4J cos
φ

4
. (10)

The GP wave function in the absence of a trap is given by
the wave function corresponding to this minimum eigenvalue,
�r = √

n0(u0 + iv0ηr), where

u0 = 1√
2

(
1 + ε0

λ0

)1/2

, (11)

v0 = 1√
2

(
1 − ε0

λ0

)1/2

, (12)

and ηr ≡ (−1)x+y . In this initial equilibrium state, the density
|�r|2 = n0 is uniform and there is an alternating checkerboard
pattern of circulating currents on the elementary square
plaquettes. The magnitude of this staggered current is given
by 4Ju0v0n0 on each bond.

Since the density in this state is uniform, this wave function
continues to be the ground state of the full GP equation in
the absence of a trap. In later sections where we present a
numerical solution to the GP equation in the presence of a
trap, the currents and densities are nonuniform.

B. Exact analysis of a quench for noninteracting bosons with no
trapping potential

For noninteracting bosons, it is simple to analyze the quench
dynamics in the absence of a trap, since we explicitly know the
energies and eigenstates before and after the quench. Specif-
ically, let the equilibrium time-independent wave functions
in the prequench and postquench Hamiltonians be given by√

n0(u0 + iv0ηr) and
√

n0(ũ0 + iṽ0ηr), respectively, where
the coefficients of the uniform and staggered components are
determined from Eqs. (11) and (12). We can then write the

postquench time-dependent wave function in the form

�(r,t) = √
n0[α(ũ0 + iṽ0ηr)e−iλ̃0t + β(ṽ0 − iũ0ηr)eiλ̃0t ],

(13)

where λ̃0 is the lowest-energy eigenvalue of the postquench
Hamiltonian, and

α = (u0ũ0 + v0ṽ0), (14)

β = (u0ṽ0 − v0ũ0). (15)

This leads to a time-dependent density

n(r,t) = |�2(r,t)| (16a)

= n0[1 − 2αβηr sin(2|λ̃0|t)], (16b)

which exhibits staggered modulations on top of the uniform
background average with a frequency 2|λ̃0| and an amplitude,
which depends on the degree of the quench. For a weak quench,
where ũ0,ṽ0 are close to u0,v0, the amplitude is small; however,
the amplitude can be significant for a strong quench.

C. Approximate analysis for interacting bosons in the
absence of a trap

Let us now consider the effect of interactions on a weak
quench in the absence of a trap, where Jx suddenly decreases
from J to J + δJ < J at time t = 0 while keeping Jy = J

constant. (Note that since we start from the isotropic case,
and since we are studying currents and densities, which are
both gauge-invariant quantities, we would get exactly the same
results for a quench along the y direction.) Because the quench
conserves crystal momentum in the reduced Brillouin zone, we
can write the postquench wave function in the form �(r,t) =
A(t) + B(t)ηr, where A(t) and B(t) denote time-dependent
complex coefficients of the uniform and staggered components
of the wave function in real space. The full time-dependent GP
equation (GPE) then reduces to a pair of nonlinear ordinary
differential equations for A(t) and B(t), given by

i
dA

dt
= ε̃0A − iγ0B + U (A|A|2 + 2A|B|2 + B2A∗), (17)

i
dB

dt
= iγ0A − ε̃0B + U (B|B|2 + 2B|A|2 + A2B∗), (18)

where γ0 = −2J sin(φ/2) and ε̃0 = −2(J + δJ ) −
2J cos(φ/2). It is easy to check that the total density
does not change, since (d/dt)(|A|2 + |B|2) = 0. However,
as discussed in detail in Appendix C, the staggered
differential density �nAB(t) = 2(A∗B + B∗A) can be shown
to approximately obey the simple harmonic equation

d2�nAB

dt2
≈ −�2�nAB, (19)

where �2 = 4[λ̃2
0 + Un0(ε̃0ε0 + γ̃0γ0)/|λ0|]. Using the initial

condition on the equilibrium currents, the solution to this can
be written in the intuitive form

�nAB(t) = 4

(
δJ

J

) I
�

sin(�t), (20)
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where I is the initial current on each bond, given by

I = 4J 2n0 sin(φ/2)

|λ0| , (21)

δJ/J represents the fractional change in the hopping along
the x direction (which is also the instantaneous fractional
change in the current along the x direction induced by the
quench), and the factor of 4 in front arises from two x bonds
having been weakened by the quench. These sublattice-density
oscillations thus directly reflect the presence of staggered
currents in the initial state; the amplitude of these oscillations
depends linearly on δJ for a weak quench, while the frequency
increases with increasing interaction strength. Knowing J and
δJ , a measurement of �nAB(t) and its oscillation frequency
� would thus provide quantitative information about the
initial equilibrium current I, which can be compared with
the theoretically expected value quoted above.

In case experimental imperfections are too strong to observe
oscillations with a well-resolved frequency, the initial buildup
of the density pattern might be used to extract I. While this
approach is unaffected by, e.g., spatial variations of �, it
rests on the ability to detect small changes in the sublattice
populations.

D. Numerical study of quench dynamics in the
presence of a trap

Having understood the underlying quench dynamics of the
staggered flux state in the bulk, we now reintroduce a harmonic
trap potential. The equilibrium state is solved self-consistently
and leads to a superfluid ground state with staggered loop
currents as shown in Fig. 2(a) for a system with linear length
L = 22, V0 = 0.07J , U = 0.2J , and an average filling factor
of n0 = 4. The smooth density profile of the ground state
reflects the trap potential, but it does not reveal the currents
induced by the gauge field.

Starting with the equilibrium ground state, we perform a
quench along the the x direction and study the subsequent
density dynamics. As directly seen in Figs. 2(c) and 2(d), the
condensate develops striking checkerboard oscillations at t >

0 that reflect the underlying current order. These oscillations
can be monitored by the contrast of the spatial sublattice-
density modulations CAB = [NA(t) − NB(t)]/N shown in
Fig. 2(b) (with N being the total number of bosons). Informa-
tion about the direction of circulation on a plaquette is easily
discerned from the density pattern established after a short time
period; since the quench is in Jx , the initial buildup of density is
on sites that have currents flowing into them along the strong
J bonds oriented along the y direction. After a short time
has passed, the density buildup reaches a maximum and the
flow is reversed, resulting in “plasma oscillations” between the
two checkerboard patterns. The frequency of these oscillations

scales as 2
√

λ̃2
0 + Un0(ε̃0ε0 + γ̃0γ0)/|λ0| as shown earlier; it

thus varies slowly with position due to the inhomogeneity of
the density in the trap.

In order to compare the numerically computed dynamics
with the analytical results of the previous section, we compute
the local sublattice-density contrast C

(c)
AB = 〈nA(t) − nB(t)〉c,

over a region of 4 × 4 sites in the center of the trap. We
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FIG. 2. (Color online) Density pattern of 2D Bose superfluid in
a staggered flux gauge field following a quench. (a) Initial density
profile and (inset) current pattern of condensate ground state at half
filling. (b) Time dependence of the sublattice-density contrast CAB (t)
for a staggered flux of |φ| = π/2 and U = 0.2J for different cases:
(i) trap average of CAB (t) following a complete quench from J i

x = J

to J f
x = 0 (top, red), (ii) average of CAB (t) over a central 4 × 4

region (middle, green) following a quench from J i
x = J to J f

x = 0,
and (iii) trap average of CAB (t) following a partial quench from
J i

x = J to J f
x = 0.25 (bottom, blue). (c)–(f), Change in local density

δn (relative to original density), at different times following a quench
J i

x = J → J f
x = 0J with U = 0.2J . The marked region in (c) and

(d) indicates the central four-site plaquette.

find that C
(c)
AB(t) oscillates with a significant amplitude (up

to ∼25% contrast) and it can be fitted with the form in
Eq. (20). The value of the current extracted from such a fit is
∼14.8J , which is remarkably close to the value obtained from
the analytical expression 4nJ cos(φ/8) sin(φ/8)  14.9J (the
parameters are the central density n

(c)
0 = 19.4 and φ = π/2).

The extracted value of the oscillation frequency, � = 6.72J−1,
also agrees well with the analytic result of 6.68J−1 given by
Eq. (19). It should be noted that when the system is taken
altogether, the early-time dynamics would provide a better
fit to the average current, which is dominated by the central
region.

The sublattice-density difference when integrated over the
entire trap exhibits some degree of dephasing and damping
due to the density inhomogeneity; nevertheless, given our
finite system size, the sublattice-density oscillations persist
out to fairly long times tJ � 1, as seen in Fig. 2(b). At
these times, we find additional long-wavelength modula-
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tions superimposed on the checkerboard density pattern [see
Figs. 2(e) and 2(f)]. Prominent spherical density waves em-
anate periodically outward from the center, which we attribute
to the spatial variation of the plasma frequency resulting
from the radial variation of the density |�r|2 in the trap.
Furthermore, the cloud shape shows oscillatory distortions into
an ellipse due to the anisotropy of the final tunneling J

f
x < Jy .

E. Effect of random noise in the initial state

As a simple test of the robustness of the quench procedure
to condensate depletion, we compute the quench dynamics
of a state with imposed random phase fluctuations so as to
mimic thermal fluctuation effects. We first add a small random
and uncorrelated phase shift to each site, which is chosen
in the range (0,δθmax). This “random” state is evolved for
a long period of time according to the (unquenched) GP
equation to allow the system to equilibrate into a viable
“thermal state,” which now supports correlated phase and
density fluctuations. Starting from this thermal state, we next
perform the sudden quench by evolving this state according to
the quenched GP equation, as before, and analyze its dynamics.
We consider two cases, one with small fluctuations δθ (1)

max =
0.5 rad and one with moderate fluctuations δθ (2)

max = 1.0 rad.
To the extent that these fluctuations lead to states that mimic
typical states from a thermal ensemble, both realizations of
phase fluctuations result in superfluid states well below the
Berezinskii-Kosterlitz-Thouless transition; details are given in
Appendix D.

As shown in Fig. 3(a), the initial sublattice-density contrast
in a given state with noise, or averaged over several such
realizations, is similar to that of the clean system; however,
whereas the oscillations persist for a long time in the
ground state, the oscillations in such a thermal state becomes
incoherent after a few periods. Furthermore, even at short time
scales, we find that (i) the amplitudes are no longer equal to that
of the ground-state quench, and (ii) the oscillation frequency
is slightly shifted compared to its zero-temperature result.

A further impact of thermal fluctuations is found in the
broadening of the spectral peak in the structure factor shown
in Figs. 3(b)–3(d). [Note that the strong momentum peaks
about (0,0) have been removed for clarity.] The large single
spectral peak at (π,π ) in the clean system, shown in Fig. 3(b), is
replaced by a broader peak in the noisy systems shown in Figs.
3(c) and 3(d), where δθmax is equal to 0.5 rad and 1.0 rad in (c)
and (d), respectively. Despite the fluctuations and broadening,
the (π,π ) peak at early times can still easily be discerned
above the background. We observed that the real-space density
pattern also displays a discernible checkerboardlike tendency
even in the presence of moderate thermal noise.

IV. BOSE SUPERFLUID IN A STRIPE SYNTHETIC FLUX
BACKGROUND

We next consider the Bose-Hubbard model in the presence
of a striped magnetic flux pattern as realized in Ref. [13]
[see Fig. 1(b)]. We choose Jr,r+ŷ = Jy and Jr,r+x̂ =
Jx exp[i(−1)xφy], so that we enclose fluxes ±φ through
each plaquette that lies along a stripe in the y direction,
and solve for the equilibrium ground state by minimizing
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FIG. 3. (Color online) Dynamical density pattern of interacting
bosons on a 2D square lattice in a staggered flux gauge field following
a quench in the presence of noise. (a) Comparison of the time
dependence of the sublattice-density contrast CAB (t) for a staggered
flux of φ = π/2 following a quench of J i

x = J to J f
x = 0 without

noise (solid red) and with noise (dashed blue). Noise is incorporated
by including a random local phase fluctuation in the range (0,δθmax)
with δθmax = 0.5 at each site, and evolving the system according
the GPE for a long period of time before implementing the quench.
Normalized structure factor at tJ = 0.25 for a system (b) without
noise and (c),(d) with the presence of noise. Noise is incorporated by
adding a random phase, with fluctuation magnitude (c) δθ (1)

max = 0.5
and (d) δθ (2)

max = 1.0, locally to each site and allowing the system to
equilibrate. Note that the momentum peak close to (0,0) associated
with the average density distribution has been removed for clarity and
the axes in (b)–(d) are equal.

the GP energy functional for Jx = Jy = J , and for weak
interactions U = 0.2J , with L = 22, V0 = 0.07J , and an
average filling n0 = 4. We find a superfluid with vertically
striped loop currents depicted in Fig. 4(a), which resembles a
stripe pattern of “long vortices” that are highly elongated along
the y direction. Again, the smooth equilibrium density pattern
is reflective of the underlying trap potential but it reveals no
information about the underlying currents.

Upon quenching Jx , the superfluid generates a density
pattern that strikingly reflects the underlying equilibrium
striped currents. Each vertically elongated loop forms four
quadrants of alternating high and low density, giving rise to an
oscillatory quadrupole moment as can be seen in Figs. 4(b)–
4(d). Evidence for a striped density pattern can also be found in
the structure factor shown in Fig. 4(e). The small-momentum
modes about (0,0) that are attributed to the average density
are subtracted off for clarity, but we emphasize that it is not
necessary to know the original density distribution before the
quench for any of the analysis. The structure factor shows two
dominant spectral peaks in proximity to (π,0) but slightly
shifted by q = (0, ± q). This small momentum shift is a
reflection of the additional long-wavelength component that
originates from the antinodal line in the density pattern running
along the centers of the elongated quadruples at y = 0. Since
this q scales as 1/L, the two peaks will merge toward (π,0)
for larger system sizes.

Quenching Jy rather than Jx leads to similar early-time
density patterns; however, the oscillatory dynamics that occur
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FIG. 4. (Color online) Dynamical density pattern of interacting
bosons on a 2D square lattice in a stripelike magnetic flux pattern
following a quench. (a) Initial density profile and (inset) current
pattern of condensate ground state at half filling. (b)–(d) Change in
local density n at different times following a quench J i

x = J → J f
x =

0 with U = 0.2J . The circled region indicates the central elongated
vortex with a nonzero quadrupole moment. (e) Density structure
factor normalized to the peak maximum and with the momentum
peak at (0,0) associated with the average density removed for clarity.
(f) Aspect ratio of the cloud as a function of time for various fluxes.

are much faster. In addition, the density oscillations in this
case rapidly decohere when compared with the quench in Jx .
These observations hint that a very different mechanism is at
play for the two quenches.

To better understand the dynamics, it useful to consider the
infinite system without a trap. The initial density pattern can be
shown to be uniform with alternating stripe currents flowing up
and down along the bonds that lie along the y direction, which
has a magnitude of 2Jy sin(φ/2) for φ < π/4. In this limit,
neither quench (in Jx or Jy) leads to any density modulation
and no information pertaining to the current can be obtained
from such quenches. This situation occurs for any system with
constant current along a given bond direction. Despite this,
information about the current can still be inscribed onto the
density when the quench is performed in the presence of a
trap.

Consider again the stripe flux state in the presence of a
trap. Close to the center of the trap the current again alternates

direction and flows along the Jy bonds; however, there are
now strong edge currents in the vicinity of the cloud boundary
(in the above simulation, the edge currents die off as the
center of the trap is approached, but are still present due
to finite-size affects). When the Jx hopping is quenched,
the bosons now continue to flow in the direction of current
and, instead of leaking into the edge current, will flow up
the trap potential. This generates density oscillations along
the vertical chains whose frequency is determined by the
trap profile and the effective mass of the bosons. Since the
initial direction of the current flow alternates along each of
the vertical chains, the phase difference between the density
oscillations of neighboring chains is π , thereby producing the
stripe pattern. In contrast, a quench in Jy directly probes the
edge currents in the system and, although the density pattern
is again striped, the oscillation frequency is not determined by
the trap potential.

The least demanding experiment is a measurement of the
aspect ratio of the cloud,

√
Dx2 (t)/Dy2 (t), where Dx2 (y2)(t) =∑

r n(r,t)x2 (y2), as a function of time [see Fig. 4(f)]. Notice
that only the oscillation amplitude is discernibly affected by
the value of the magnitude of the flux per plaquette, while
the oscillation frequency is essentially governed by the trap
frequency and thus is practically independent of flux. The
variation of the amplitude reflects the differences in the initial
currents for different flux values.

V. TRIANGULAR-LATTICE FRUSTRATED BOSE
SUPERFLUID

A similar situation arises for a triangular lattice in the
presence of a staggered flux state [see Fig. 1(c)]. Consider the
initial state to be the ground state of a system with φ = π/2
flux per plaquette and further J1 = J2 = J3 = J , where J1,
J2, and J3 are the magnitudes of the tunnel couplings along
the (1,0), (1/2,

√
3/2), and (−1/2,

√
3/2) bond directions,

respectively, and U = 0.2J . As shown in the inset of Fig. 5(a),
the ground-state currents flow along the bond directions, as
they do for the infinite system without a trap. Hence, we again
rely on the combined effect of the quench with the trapping
potential to transcribe information about current flow onto the
density profile.

Since there are now three unique bond directions, it is
necessary to quench the hopping along two of the bond
directions simultaneously, which we choose to be J2 and J3.
Here, the dynamics is very similar to that of the Jx quench for
the stripe flux considered previously. Each chain decouples
and the initial current causes the density to oscillate in the trap
potential. This time, however, the direction of current flow is
the same along neighboring chains, resulting in a uniform
oscillation of the entire cloud along the unquenched bond
direction. (Note that unlike the checkerboard case, this current
pattern is at q = 0, so that the quench does not produce any
density modulations with nonzero Fourier components.)

This oscillation is best observed by monitoring the time
dependence of the dipole moment Dx = ∑

r n(r,t)x, as shown
in Fig. 5(b); a larger equilibrium current in the initial state
will lead to a larger amplitude for such center-of-mass
oscillations following a quench. Notice, however, that the
oscillation frequency is nearly independent of the magnitude
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FIG. 5. (Color online) Density dynamics for spinless 2D bosons
in a staggered flux gauge field on a triangular lattice after simulta-
neously quenching the J2 and J3 bonds. (a) Initial density pattern
and (inset) current pattern at half filling with flux |φ| = π/2. (b) The
dipole moment as a function of time for various parameters. Distances
are measured in units of the lattice constant. (c),(d) Density profile at
the indicated times showing the displacement of the cloud. The cross
hairs indicate the center of the trap.

of the quench. This substantiates the idea that the oscillation
frequency is set by the trap stiffness and is independent
of the initial current. Furthermore, the oscillation frequency
is independent of the interaction strength, as we confirm
numerically in Fig. 5(b), since it involves only center-of-mass
oscillations. One should keep in mind that the oscillation
frequency can shift if the initial flux per plaquette is changed.
This is expected because the bosons will initially condense
into a state with different crystal momentum and lattice effects
will change the effective mass of the condensate.

VI. SPINLESS FERMIONS IN A STAGGERED
MAGNETIC FLUX

Motivated by our study of quench-induced density dy-
namics for bosons, we next turn to noninteracting fermions
in a staggered flux background [54]. We study the Hamilto-
nian Hsf = −∑

r,r′ Jr,r′f
†
r fr′ , where Jr,r+x̂ = J and Jr,r+ŷ =

Jy exp[i(−1)x+yφ/2], leading to staggered checkerboard
fluxes ±φ [52]. To make analytical progress, we ignore the
harmonic trap in the discussion below. As we have seen
previously for bosons, and as discussed below, the trap does not
qualitatively affect our conclusions, and we can also directly
apply our results to the central region of the trapped gas. In
momentum space, the Hamiltonian takes the form

Hsf =
∑

k

′
�k�

†
k(cos θkτ

z + sin θkτ
y)�k, (22)

where Q ≡ (π,π ), �
†
k = (f †

k ,f
†
k+Q), and τ y,z are Pauli ma-

trices. The prime on the momentum sum implies that only
momenta in the reduced Brillouin zone are included. Here, we

have defined �k =
√

ε2
k + γ 2

k , cos θk = εk/�k, and sin θk =
γk/�k, with

εk = −2

(
J cos kx + Jy cos

φ

2
cos ky

)
, (23)

γk = −2Jy sin
φ

2
cos ky. (24)

This leads to mode energies ±�k in the initial state.
Imagine fermions initially filled into negative-energy states

−�k up to a Fermi energy EF , and then quenching Jx

from J i
x → J

f
x at time t = 0. Such a translationally invariant

quench ensures that different momentum pairs (k,k + Q)
stay decoupled from each other. Nevertheless, this quench
instantaneously changes εk → ε̃k and γk → γ̃k, so that we
modify (�k,θk) → (�̃k,θ̃k).

This means that while the initial quasiparticle occupation
numbers are set by the initial dispersions and the chemical
potential, the subsequent dynamics is then determined by
the final Hamiltonian. Since the final Hamiltonian is also
translationally invariant, the various momentum states stay
decoupled after the quench, but undergo the analog of “spin
precession” in the two-level (k,k + Q) space.

To compute the density modulation between the two
sublattices at a subsequent time, �nAB(t) ≡ (nA − nB), we
write

�nAB(t) = 2

M

∑
r

(−1)x+y〈f †
r fr 〉t

= 2

M

∑
k

′
(〈f †

k fk+Q〉t + 〈f †
k+Qfk 〉t ), (25)

where M is the number of lattice sites. Carrying out the algebra,
details of which are given in Appendix E, we find

�nAB(t) = 2

M

∑
{k}occ

′
sin(θk − θ̃k) sin(2�̃kt), (26)

where the momentum sum runs only over initially occupied
states in the reduced Brillouin zone.

A numerical evaluation of the sum allows us to plot the
sublattice density oscillations, shown in Fig. 6 for J i

x = J ,
J

f
x = 0.0J , and J

f
x = 0.5J , a fermion density of n0 = 0.4
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FIG. 6. (Color online) Time dependence of the sublattice-density
difference �nAB (t) for noninteracting spinless fermions on a 2D
square lattice at a filling of n0 = 0.4, flux φ = π/2, following a
quench from (upper panel) J i

x = J → J f
x = 0J or (lower panel)

J i
x = J → J f

x = 0.5J .
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per site, and various staggered flux values. These oscillations
exhibit multiple frequencies due to the large number of
occupied fermion modes. However, over the entire range of
displayed fluxes and a wide range of densities n0 ∼ 0.3–
0.5 near half filling, we find that the dominant oscillation
frequency arises from initially occupied states near k = (0,π )
due to a van Hove singularity in the density of states. Picking
this single mode k = (0,π ) in the above momentum sum
leads to an estimated, nearly density-independent, dominant

oscillation frequency (2�̃∗) ≈ 4
√

J 2 + (J f
x )2 − 2JJ

f
x cos φ

2 .
Both the flux dependence of this oscillation frequency for
a partial quench, and its flux independence for a complete
quench with J

f
x = 0, are in quantitative agreement with the

numerical data in Fig. 6. The larger density of states near
k = (0,π ) also enhances the signal amplitude for fillings close
to n0 = 1/2. The weak density dependence of �nAB(t) over
a range of fillings indicates that trap-induced inhomogeneities
will not significantly affect these oscillations.

VII. TOPOLOGICAL STATES WITH EDGE CURRENTS

Finally, we turn to gapped yet topologically nontrivial
states such as quantum Hall insulators, Chern band insulators,
or quantum spin Hall insulators, all of which have bulk
gaps but support topologically protected edge currents. At
a fundamental level, Chern band insulators are no different
from integer quantum Hall states in the Hofstadter model,
as discussed in recent work [55]. Both systems involve fluxes
threading through plaquettes of the lattice with no net flux over
an appropriately defined unit cell; in the Hofstadter model, this
unit cell is the magnetic unit cell.

Proposals to obtain such fluxes in experiments on cold
atoms exist in the literature [34,56–58]. The simplest models
of 2D quantum spin Hall states or topological insulators,
such as the Kane-Mele model [59], may be viewed as two
independent copies of quantum Hall insulators or Chern band
insulators, with the two copies being labeled by a well-defined
spin quantum number (equivalently “hyperfine state” for an
atom) and experiencing opposite magnetic fluxes. Much of the
physics we discuss below, which involves studying the density
dynamics following a quantum quench, will then be applicable
to such quantum spin Hall states if one can experimentally
probe the density of each spin species.

While recent work has focused on extracting the nontrivial
band topology from time-of-flight measurements [60,61] or
spectroscopy of the edge modes [62,63], here we explore
density dynamics induced by the unidirectional quench for
lattice fermions in a uniform magnetic field. For concreteness
and reasons of simplicity, we consider fermions on a 2D
square lattice with a uniform magnetic flux φ = 2π/3 per
plaquette. Similar uniform flux configurations have recently
been established in cold-atom experiments by rotating the
optical lattice [64,65]. The resulting particle-hole-symmetric
Hofstadter spectrum [66] has three nonoverlapping bands,
with Chern numbers +1, − 2, + 1, so that “band insulators”
with some bands being completely filled support a nonzero
quantized Hall conductance, and chiral edge currents, yielding
lattice versions of integer quantum Hall (QH) states in the
continuum [6].
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FIG. 7. (Color online) Density dynamics for spinless fermions
in the lowest Hofstadter band with flux φ = 2π/3 per plaquette on
a square lattice following a quench from J i

x = J to J f
x = 0.0J . (a)

The scaled quadrupole moment Qxy(t)/L3 = (1/L3)
∑

r xyn(r,t) for
various system sizes versus the scaled time tJ/L. (b)–(f) Stripelike
density modulations [for L = 24, plotted as n(r,t) − n0] moving from
the y edges into the initially incompressible bulk at different indicated
times.

We begin by numerically diagonalizing the Hamiltonian
HQH = −∑

r,r′ Jr,r′f
†
r fr′ with Jr,r+x̂ = J eiφy and Jr,r+ŷ =

Jy , for φ = 2π/3, with open boundary conditions on an L × L

system, and fill up the lowest band (and some edge modes) to
get a fermion filling n0 = 1/3. We find that the ground-state
bulk density is uniform (see Fig. 7 for t = 0) and supports
edge currents confined to an “edge layer” of thickness ∼2–3
lattice sites where the density also slightly deviates from its
bulk value. We next track the density dynamics following a
quench from J i

x = J to J
f
x < J , which is easy to study once

we compute the initial and final spectrum and eigenstates. We
note that the gauge choice for the magnetic field (i.e., how
exactly to include the vector potential) is unimportant—we
could equally well have them along the x bonds.

Viewing the chiral edge currents as analogous to that arising
from a “vortex,” we expect the quench to lead to quadrupolar
density oscillations and current reversals, similar to what
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we found for the long vortex in the stripe flux superfluid.
Inspired by recent work on the superfluid Hall effect of atomic
bosons [67], we study the behavior of the quadrupole moment
Qxy(t) = ∑

r xyn(r,t). We find that Qxy(t) indeed displays
oscillatory sign reversals and, as seen in Fig. 7(a), the data for
various L collapse when plotted as Qxy(t)/L3 versus t/L. The
t/L scaling shows that the oscillations occur due to transport
across the system length L. A simple scaling argument for
an edge-current-induced oscillation shows that Qxy ∼ L3, as
we also see numerically. The numerical observations are thus
consistent with the quadrupolar oscillations being driven by
edge currents. For φ = −2π/3, Qxy(t) has the opposite sign.
Taken together, these observations provide strong evidence that
the initial state is a nontrivial insulator that is incompressible
in the bulk and supports chiral edge currents.

In addition to this quadrupolar oscillation arising from edge
modes, we find that the density in the bulk is also no longer
constant following the quench. Instead, quenching Jx leads
to x-oriented stripe patterns of the density, which originate at
the edge and appear to propagate inward into the bulk. Such
a breakdown of the incompressible quantum Hall state in the
bulk can be understood physically by analogy to the physics
of continuum Landau levels. A uniform magnetic field in the
continuum can be modeled in the Landau gauge where we set
Ay = 0, Ax = By, corresponding to a magnetic field Bẑ. This
leads to the Hamiltonian

HLL = 1

2my

p2
y + 1

2mx

(px + qBy)2 + V (y), (27)

where q is the charge, and for simplicity, we assume a
confining potential V (y) only along the y direction and
periodic boundary conditions along the x direction. (In cold-
atom systems, where the gauge field is produced artificially,
only the product qB is physical and tunable.) In the absence of
the confining potential, the eigenstates of this Hamiltonian take
the form �n,k(x) = eikx�n(y − yk) where yk = −k/qB. Here
�n is the nth eigenstate of a harmonic oscillator with an energy
(n + 1/2)ωL, with ωL = qB/

√
mymx , and the particle in such

a state is localized to the vicinity of y = yk . If the confining
potential is varying slowly, with ∂V/∂y � ωL/�B where
�B = (my

mx
)1/4(1/

√
qB) is the magnetic length, the eigenstates

remain nearly unaffected by the confining potential (up to a
small shift of yk) while the energy gets a correction V (yk).
Imagine now quenching the dynamics in the x direction by
sending the effective mx → ∞ suddenly. This is analogous
to sending Jx → 0 on the lattice. The Hamiltonian after the
quench then takes the simple form

Ht>0 = 1

2my

p2
y + V (y), (28)

which describes a free particle in a potential. Clearly k remains
a good quantum number. This means that for each k, there are
particles initially localized at different points yk and described
by an initial wave function �n(y − yk), which at time t > 0
are free to roll down the valley of this potential and delocalize
(spread out). At time t = 0, the particle density is uniform,
so there are particles localized in the bulk starting at yk = 0
and going out all the way to the two edges at yk ∼ ±L/2.
For time t > 0, this state evolves in time, and the density of
the resulting state acquires modulations. This leads to stripe

modulations, with the net density depending on y but not
on x, with a time dependence governed by a combination of
the two effects above—particles rolling down the potential
and spreading of the initial harmonic oscillator wave packet.
This picture qualitatively accounts for the appearance of stripe
modulations of the density in the bulk in the quenched state.
It also suggests that the stripe modulation does not contribute
to the quadrupole moment dynamics which is purely an edge
current effect, consistent with the L3 scaling in our numerical
results.

It is natural to ask how the quench dynamics are modified
when the boundary conditions are no longer of hard wall type,
and the atoms are confined to a harmonic trap. In this case,
we continue to expect bulk stripelike density waves to emerge.
However, the density dynamics close to the edges that lie
parallel to the quenched hopping direction (i.e., the top and
bottom sections of the trap) is expected to change. Instead of
the density piling up at the boundary and reversing, the current
will continue to flow up the trap potential before eventually
reversing. Hence, the frequency of the Qxy oscillation will
be determined by the trap frequency and the effective mass
of the fermions, and should match that of the bulk stripe
density oscillations. Despite this, there will remain a definitive
signature of edge-state currents that can be found in the
enhanced amplitude of the density modulations along the top
and bottom edges. (These edge states can be thought of as
having a finite initial velocity perpendicular to the quenched
hopping direction.) This will lead to a shearing of the cloud
density and a finite Qxy , which is expected to be easily
discernible.

We expect Chern band insulators to exhibit similar
quadrupolar density oscillations arising from the currents
at the edge. For quantum spin Hall insulators, with a con-
served Sz magnetization, we can imagine doing a similar
quench experiment and measuring Q

↑
xy − Q

↓
xy , which would

exhibit oscillations with a similar scaling. Such spin-resolved
quadrupole measurements rely upon the recently demonstrated
experimental ability to measure spin-resolved densities [37].

VIII. SUMMARY

Atomic bosons and fermions in the presence of frustration
or background synthetic gauge fields carry mass currents
with diverse current patterns or even form gapped topological
phases with edge currents. We have shown that anisotropic
quantum quenches can yield a powerful probe of such
equilibrium current patterns of atoms in an optical lattice by
converting them into measurable real-space density oscilla-
tions. In order to avoid exciting particles into the high-energy
bands of the periodic optical potential, the quench must be
“adiabatic” on time scales comparable to the inverse interband
gap, while also being “sudden” on time scales governing
intraband dynamics. This requirement can be easily fulfilled
in experiments since the tunnel coupling between neighboring
wells is exponentially suppressed when the lattice depth is
increased, while the energy separation between bands grows
with the square root of the lattice depth [68]. Realizing our
proposal for an experimental probe of currents would open up
a new avenue to study exotic phases of ultracold atomic matter.
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APPENDIX A: NUMERICAL SOLUTION OF EQUILIBRIUM
GP EQUATION FOR TRAPPED BOSE SUPERFLUIDS

For Bose superfluids in the presence of a trap, the ground
state is determined numerically using a self-consistent mini-
mization of the initial energy functional in Eq. (4) recast in
terms of the local mean-field density,

HMF(nr) = −
∑
r,r′

Jr,r′�∗
r �r′ +

∑
r

Vr|�r|2

+U
∑

r

nr�
∗
r �r − U

2

∑
r

n2
r . (A1)

Here �r is the condensate wave function at lattice site
r ≡ (x,y) and nr = |�r|2 is the average particle density at
site r, The self-consistent solution of Eq. (A1) is one where
the density distribution computed using the eigenfunctions of
HMF equals the density distribution nr in the Hamiltonian.
In order to find the self-consistent solution of Eq. (A1)
corresponding to the initial prequench state, we follow a simple
iterative procedure. We start with a trial density distribution
n

(0)
r corresponding to a Thomas-Fermi profile and solve for

the single-particle ground-state eigenfunction of HMF(n(0)
r ).

The corresponding many-body condensate wave function is
simply given by the normalized single-particle solution with
a multiplicative factor of

√
M , explicitly, �

(0)
r = √

Mψ
(0)
r

(where M is the number of lattice sites). The condensate
density is then determined by ñ

(0)
r = |�(0)

r |2. This is used
to generate a new trial density distribution via the relation
n

(1)
r = (1 − α)̃n (1)

r + αn
(0)
r . Here, α is strategically chosen

from (0,1) to “throttle” the iterative process in order to help
maintain convergence and avoid runaway solutions. These
steps are repeated with the new trial density distributions
and iterated until the local density converges to within 10−6

average variation in the density at each site between successive
iterations.

APPENDIX B: NUMERICAL EVALUATION OF THE
GROSS-PITAEVSKI EQUATION

The time evolution of the initial Hamiltonian’s equilibrium
state after the quench is obtained by numerically integrat-
ing the respective time-dependent GP equation. Specifically,
Eq. (5) is discretized into small time steps Jdt that were
typically about ∼10−5. The time evolution of the initial state
is then determined using a fourth-order Runge-Kutta method.
In order to ensure convergence, this process is repeated many
times with increasingly fine discretization to confirm that there

are negligible differences between the solutions. As another
check, the total energy and particle number are computed
to confirm that they remain constant throughout the time
evolution. Eventually, every 1000 steps the density profile and
other observables are computed using the wave function at that
instant of time.

APPENDIX C: SIMPLIFYING THE GP EQUATION FOR
QUENCHING OF THE CHECKERBOARD FLUX

SUPERFLUID

Setting the GP wave function to be A(t) + ηrB(t), we
can substitute this into the full time-dependent GP equation
to obtain equations of motion for the complex coefficients
A(t) and B(t). To obtain the equation for the staggered density
�nAB after the quench, it proves simpler to define the
following variables:

�nAB(t) = 2[A∗(t)B(t) + A(t)B∗(t)], (C1)

K(t) = |A(t)|2 − |B(t)|2, (C2)

J (t) = i[A∗(t)B(t) − A(t)B∗(t)]. (C3)

Here K is proportional to the bond kinetic energy and J is
proportional to the bond current. We then obtain the equations

d�nAB

dt
= 4γ̃0K + 4ε̃0J , (C4)

dK
dt

= −γ̃0�nAB − UJ�nAB, (C5)

dJ
dt

= −ε̃0�nAB + U�nABK, (C6)

where we have suppressed the time label for clarity. Going to
second order in time for �nAB yields

d2�nAB

dt
= −4λ̃2

0�nAB − 4U (J γ̃0 − Kε̃0)�nAB, (C7)

where λ̃2
0 = γ̃0

2 + ε̃0
2. To make progress, we resort to the

following approximation that is valid at early times where we
expect well-defined oscillations of �nAB(t). We replaceK and
J by their initial values obtained from A(0) and B(0), which
correspond to their equilibrium, prequench, values. Let us call
these K0 and J0. Then we find

d2�nAB

dt
≈ − [

4λ̃2
0 + 4U (J0γ̃0 − K0ε̃0)

]
�nAB. (C8)

This yields d2�nAB

dt
≈ −�2�nAB , where, using the explicit

values of K0 and J0, we obtain

�2 = 4

(
λ̃2

0 + Un0

|λ0| (ε̃0ε0 + γ̃0γ0)

)
. (C9)

Since we start at time t = 0 with a uniform superfluid having
no density modulations, the solution to this takes the form
�nAB(t) = r sin �t . To find r , we use the initial rate of change

(d�nAB/dt)t=0 = r� = 4(γ̃0K0 + ε̃0J0). (C10)

This can be simplified to r� = 4I(δJ/J ), where I is the
magnitude of the initial equilibrium current, which is the same
on all bonds, and δJ is the amount by which we quench the
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x-bond hopping, leading to the final result

�nAB(t) ≈ 4
I
�

δJ

J
sin(�t). (C11)

For a weak quench, δJ � J , while a strong quench entails
setting δJ = −J . The strength of the quench determines not
only the amplitude of the oscillations, but also their frequency
�. We find that this result fits very well the early oscillations
of �nAB obtained by a direct numerical solution of the GP
equations not only in the continuum but also in the central
region of the trap for weak as well as strong quenches. At later
times, the dephasing of the oscillations in the trap leads to a
decay of the �nAB arising from spatial variations of � via its
density dependence.

APPENDIX D: THERMAL NOISE

By imprinting random phase fluctuations on the initial state,
we increase the energy of the system. We expect that this
noise will lead to an excess energy density that will scale as
�E ∼ δθ2

max. To check this scaling, we computed the ratio of
the excess energy for two different values of δθmax, choosing
δθ (1)

max = 0.5 and δθ (2)
max = 1.0, and find

√
�E(2)/�E(1) = 1.9,

which matches closely the expected value of δθ (2)
max/δθ

(1)
max = 2.

If we time-evolve this initial state (without making a quench),
we expect this excess energy to lead to a typical state from a
thermal ensemble—detailed issues regarding thermalization
will be discussed elsewhere. To provide a crude estimate
of the effective temperature of this thermal state before the
quench, we assume that the dominant excitations in the system
induced by such random imprinted phase fluctuations are the
low-energy linear sound modes. For U � J , the low-energy
Bogoliubov sound mode in the presence of staggered flux
[52] may be approximated as h̄ωk ≈ ck, with the sound
speed c ≈ √

nU/m∗. Here, n is the density, and the inverse
effective mass is 1/m∗ = 2Ja2 cos(φ/4) (where a is the lattice
constant). Computing the excess energy density in the center of
the trap, we can estimate the temperature of the thermal state
as δE = [ζ (3)/πc2]T 3. For our parameters (∼20 atoms per
well, U = 0.2J and φ = π/2, and averaged over states with
different initial randomness), we find the temperatures in the
two cases to be T (1) ≈ 3.4J and T (2) ≈ 5.2J , which are both
significantly smaller than the Berezinskii-Kosterlitz-Thouless
transition temperature, which can be roughly estimated to
be TBKT ≈ πn/2m∗ ≈ 40J . This is consistent with our as-
sumption that only low-energy sound modes are excited in the
thermal state.

APPENDIX E: QUENCH-INDUCED DENSITY DYNAMICS
FOR THE STAGGERED FLUX STATE OF FERMIONS

We begin with the staggered flux Hamiltonian in momen-
tum space,

Hsf =
∑

k

′
�k�

†
k(cos θkτ

z + sin θkτ
y)�k, (E1)

where Q ≡ (π,π ), �
†
k = (f †

k ,f
†
k+Q), and τ y,z are Pauli ma-

trices. The prime on the momentum sum implies that only
momenta in the reduced Brillouin zone are included. Here, we

have defined �k =
√

ε2
k + γ 2

k , cos θk = εk/�k, and sin θk =
γk/�k, with

εk = −2

(
J cos kx + Jy cos

φ

2
cos ky

)
, (E2)

γk = −2Jy sin
φ

2
cos ky. (E3)

This leads to mode energies ±�k in the initial state. A
translationally invariant quench of the hopping (say Jx ) ensures
that different momentum pairs (k,k + Q) stay decoupled from
each other. Nevertheless, this quench instantaneously changes
εk → ε̃k and γk → γ̃k, so that we modify (�k,θk) → (�̃k,θ̃k).

Let us define the initial quasiparticle operators α1,2 and the
final quasiparticle operators β1,2 via(

sin(θk/2) cos(θk/2)

−i cos(θk/2) i sin(θk/2)

)(
αk,1

αk,2

)
=

(
fk

fk+Q

)
(E4)

and(
sin(θ̃k/2) cos(θ̃k/2)

−i cos(θ̃k/2) i sin(θ̃k/2)

)(
βk,1

βk,2

)
=

(
fk

fk+Q

)
. (E5)

Here, the quasiparticle αk,1 (αk,2) of the initial Hamiltonian
has energy −�k (+�k), while the quasiparticle of the final
Hamiltonian βk,1 (βk,2) has energy −�̃k (+�̃k). For simplicity,
let us assume that we are at a filling of less than one fermion
per two sites, so that only some of the α1 quasiparticles are
occupied initially, while none of the α2 quasiparticle states
are occupied (although this is easily generalizable to greater
fillings).

We can first transform this into the β basis to get the
dynamics via

f
†
k = sin(θ̃k/2)e−i�̃ktβ

†
k,1 + cos(θ̃k/2)ei�̃ktβ

†
k,2, (E6)

f
†
k+Q = i cos(θ̃k/2)e−i�̃ktβ

†
k,1 − i sin(θ̃k/2)ei�̃ktβ

†
k,2. (E7)

To compute the expectation values, we then need to trans-
form back to α1,2 quasiparticles, keeping in mind that the
ground state at t = 0 has no α2 quasiparticles. This means
that it suffices to set βk,1 = αk,1 cos(θk − θ̃k)/2 and βk,2 =
αk,1 sin(θk − θ̃k)/2.

To compute the density modulation between the two
sublattices at a subsequent time, �nAB(t) ≡ (nA − nB), we
write

�nAB(t) = 2

M

∑
r

(−1)x+y〈f †
r fr 〉t

= 2

M

∑
k

′
(〈f †

k fk+Q〉t + 〈f †
k+Qfk 〉t ), (E8)

where M is the number of lattice sites. Using Eqs. (E6) and
(E7), we find

�nAB(t) = 2

M

∑
{k}occ

′
sin(θk − θ̃k) sin(2�̃kt), (E9)

where the momentum sum runs only over initially occupied
states in the reduced Brillouin zone.
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[18] J. Struck, C. Ölschläger, R. Le Targat, P. Soltan-Panahi,
A. Eckardt, M. Lewenstein, P. Windpassinger, and K. Sengstock,
Science 333, 996 (2011).
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