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In a double-well potential, a Bose-Einstein condensate exhibits Josephson oscillations or self-trapping,
depending on its initial preparation and on the ratio of interparticle interaction to interwell tunneling. Here, we
elucidate the role of the exchange symmetry for the dynamics with a mixture of two distinguishable species with
identical physical properties, that is, which are governed by an isospecific interaction and external potential. In
the mean-field limit, the spatial population imbalance of the mixture can be described by the dynamics of a single
species in an effective potential with modified properties or, equivalently, with an effective total particle number.
The oscillation behavior can be tuned by populating the second species while maintaining the spatial population
imbalance and all other parameters constant. In the corresponding many-body approach, the single-species
description approximates the full counting statistics well also outside the realm of spin-coherent states. The
method is extended to general Bose-Hubbard systems and to their classical mean-field limits, which suggests an
effective single-species description of multicomponent Bose gases with weakly an-isospecific interactions.
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I. INTRODUCTION

Multicomponent Bose gases [1] exhibit a panoply of
different quantum phases [2–4], which reflect the hierarchy
of inter- to intraspecies interaction parameters that compete
with a possibly species-dependent [5] external potential. The
an-isospecificity, that is, the distinct physical properties of the
different species, is the main cause for the great increase of
complexity that mixtures feature with respect to single-species
Bose gases.

A minimalist exemplary system that contains many of
the building blocks for quantum many-body dynamics is
the bosonic Josephson junction [6,7], that is, a Bose-
Einstein condensate (BEC) in a double-well potential. Despite
its simplicity, it features qualitatively different dynamical
regimes—self-trapping and Josephson oscillations—already
in the single-component case [6,8–11], which has been
realized experimentally with coupled spatial modes [12,13]
and hyperfine states [14]. When a bi-component BEC is
loaded into the double-well [15–20], new features emerge.
For example, chaos [15,21], phase separation transitions [22]
as well as ferromagnetic behavior [23] can arise, relying on
the distinct inter- and intraspecies interactions in the system.

If, on the other hand, all intra- and interspecies interactions
are equal and all external potentials are species independent,
adding a second species to an initially homo-specific system
(or, equivalently, populating a second internal state) does, at
first sight, not appear to change the system dynamics: The new
species does not feature any distinct property in comparison
to the present one. However, the mere assignment of a particle
label—although invisible for the Hamiltonian—breaks the
exchange symmetry of the quantum state of the system, with
important consequences.

Photons, for instance, do not interact, but indistinguishable
photons can interfere collectively. This leads to dramatic
differences between the counting statistics of photons that can
be distinguished by their polarization or frequency (and thus
do not interfere collectively) and identical photons [24–27].
The latter are governed by many-particle interference, such

that, for example, events with many particles in one mode are
privileged [28,29].

For the bosonic Josephson junction, the question arises
how the combination of interparticle interaction and a broken
(or immaculate) exchange symmetry affects the dynamics.
This investigation is the purpose of the present article: We
compare a bi-species condensate with two species of identical
properties, for which we provide an experimental protocol,
to a single-species condensate. This reveals the consequences
of broken exchange symmetry in a paradigmatic interacting
many-particle system. We show that the population of a
second species can significantly affect the system dynamics:
The tunneling behavior (self-trapping or oscillatory) can be
switched by the manipulation of the species populations.
This paves the road to the control of many-particle tunneling
dynamics by merely populating different internal states. In
the mean-field limit, the dynamics can be understood from
the broken phase coherence between the wells, and an exact
single-species description is formulated. In the fully second-
quantized formulation, the bi-species Fock-state counting
statistics is efficiently approximated by the single-species
model. We also investigate the relaxation of isospecificity (i.e.,
species with slightly different parameters), and show that the
single-species description still captures the essential dynamics
within a wide range of parameters. The generalization to larger
systems therefore suggests an efficient description of weakly
an-isospecific multicomponent Bose gases by a single species.

We first review the main properties of the single-
species bosonic Josephson junction—in the discrete two-mode
approach—in Sec. II. The physical consequences of the
addition of a second species can be absorbed by an effective
particle number or by an effective tunneling coupling, as shown
in Sec. III. A complementary quantum calculation in the two-
mode Bose-Hubbard model is performed for spin-coherent and
for Fock states in Sec. IV, which confirms the validity of the
approach beyond the mean-field limit. The generalization of
the results to a general Bose-Hubbard Hamiltonian and to its
mean-field limit is presented in Sec. V, before we conclude in
Sec. VI.
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II. SINGLE-SPECIES GROSS-PITAEVSKII EQUATION
AND NONLINEAR SCALING

In order to obtain analytic insight into the problem, we
follow a two-mode treatment of the double-well potential,
which is well justified for very low temperatures and small
condensate depletion [30], and which was quantitatively
verified experimentally in Ref. [13]. The dynamics of the
macroscopic wave function that describes a (single-species)
condensate in the symmetric double-well potential is then
governed by the discrete Gross-Pitaevskii equation [9,10] (we
set h̄ = 1),

i
∂

∂t
ψj = U |ψj |2ψj − �

2
ψ3−j , (1)

where j = 1,2; ψ1 (ψ2) is the amplitude of the wave function
in the left (right) well, such that |ψj |2 is the expectation
value of the number of particles in the j th well, and Nψ =
|ψ1|2 + |ψ2|2 is the conserved total number of particles. The
tunneling coupling � and the interaction U can be inferred
from the overlap integrals of the exact localized wave functions
of the double-well potential [10]. The relevant parameter for
the dynamics is the dimensionless quotient NψU/�, and we
will measure all frequencies in units of �. Since the scaling of
� will also be discussed, we keep � as an explicit parameter.
Equation (1) represents a self-trapping equation [31,32],
which has been studied extensively [6,10,11,15,30,33–35].
We review here the essential properties that will be useful
for our analysis of the two-component case; in particular,
we discuss a nonlinear scaling property for the population
imbalance between the wells.

A. Bloch-sphere description

The dynamics of the system can be re-formulated as the
motion of a vector �vψ on a Bloch sphere of radius Nψ [15],

where

�vψ =

⎛⎜⎝ xψ

yψ

zψ

⎞⎟⎠ =

⎛⎜⎝ 2Re(ψ�
1ψ2)

2Im(ψ�
1ψ2)

|ψ1|2 − |ψ2|2

⎞⎟⎠ , (2)

that is, the zψ component of �vψ is related to the population
imbalance between the wells, while the relative phase between
the left and right component of the condensate,

θψ = arg(ψ�
1ψ2), (3)

is encoded in

xψ =
√

N2
ψ − z2

ψ cos θψ, yψ =
√

N2
ψ − z2

ψ sin θψ . (4)

The equation of motion Eq. (1) assumes the form of an optical
Bloch equation with nonlinear terms [20],

d

dt
�v =

⎛⎜⎝ −Uyψzψ

�zψ + Uzψxψ

−�yψ

⎞⎟⎠ , (5)

and the conserved energy reads

H = U

4
z2
ψ − �

2
xψ. (6)

Depending on the ratio NψU/�, the phase space of the
system assumes a distinct structure [10]. The three topolog-
ically distinct cases are shown in Fig. 1. For NψU/� < 1
(left panel), in the Rabi regime, all solutions are oscillatory
with 〈zψ 〉t = 0. There are two elliptic fix points with zψ = 0
and xψ = ±Nψ , that is, the average value of the phase θψ is
either 0 or π . In the parameter range 1 < NψU/� < 2 (middle
panel), the fix point (xψ,yψ,zψ ) = (Nψ,0,0) remains stable,
while (xψ,yψ,zψ ) = (−Nψ,0,0) becomes unstable. Two new
fix points emerge, which are related to trapped π -mode
oscillations with 〈zψ 〉t �= 0 and 〈θψ 〉t = π . For NψU/� > 2
(right panel), trapped phase-running modes emerge, for which
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FIG. 1. (Color online) Phase space of the bosonic Josephson junction in the zψ–θψ plane, for different values of NψU/�. For convenience,
we show the range −π/2 < θψ < 3/2π . Thick solid lines denote the separatrices between the regions of qualitatively distinct behavior, dotted
lines show exemplary trajectories, and fix points are denoted by red crosses. The fix point at (zψ,θψ ) = (0,π ) (NψU/� < 1) becomes unstable for
NψU/� > 1. In this regime, two localized fixed points with zψ �= 0 emerge. Solutions in the blue areas are characterized by 〈zψ 〉 = 〈θψ 〉 = 0,
solutions in the white areas lead to 〈zψ 〉 = 0,〈θψ 〉 = π . Self-trapped solutions are either π modes (orange area, 〈zψ 〉 �= 0,〈θψ 〉 = π ), or
phase-running modes (green area, 〈zψ 〉 �= 0, unbounded phase θψ ).
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the phase is unbounded. When the interaction is increased
further, these phase-running modes dominate the picture more
and more, whereas the oscillation region shrinks; the Fock
regime is attained.

B. Second-order differential equation

The overall behavior of the system is governed by the
phase-space structures shown in Fig. 1. In general, the self-
trapping or oscillatory behavior of a solution depends on the
initial preparation of the system and on the ratio NψU/�.
If one focuses on the population imbalance zψ only, a scaling
symmetry relates solutions with different initial conditions and
different values of U and � to each other. For this purpose, we
re-formulate the dynamics of zψ by taking the time-derivative
of Eq. (5) [15],

z̈ψ = −zψ (�2 − 2UH ) − U 2
z3
ψ

2
, (7)

where H is the value of the conserved energy, Eq. (6). In terms
of the initial preparation of zψ and żψ , Eq. (7) reads

z̈ψ = −zψ

(
U 2

2

[
z2
ψ − zψ (0)2

] + �[� + Uxψ (0)]

)
, (8)

where xψ (0) can be expressed through zψ (0) and żψ (0), except
for its sign:

xψ (0) = ±
√

N2
ψ − zψ (0)2 − żψ (0)2

�2
. (9)

Since the transformation U → −U is equivalent to xψ →
−xψ [10], we choose here the convention xψ (0) > 0 (positive
square root) without loss of generality. This implies that the
initial phase θψ lies between −π/2 and π/2; see Eq. (4). Any
self-trapping then comes along with a phase-running mode.

C. Nonlinear scaling of population imbalance

From the second-order differential equation of motion
Eq. (8) a scaling symmetry for the solutions can be derived
by merely redefining the unit of time,

zψ (Nψ,zψ (0),żψ (0),U,�,t)=zψ

(
Nψ,zψ (0),

żψ (0)

α
,
U

α
,
�

α
,αt

)
,

(10)

for any positive scaling parameter α. In addition, the particle
number Nψ can be scaled,

zψ (Nψ,zψ (0),żψ (0),U,�,t)

= 1

γ
zψ

(
γNψ,γ zψ (0),γ żψ (0),

U

γ
,�,t

)
, (11)

when the interaction strength U is scaled reciprocally with Nψ .
Solutions on Bloch spheres of different radii are thus related
to each other.

For vanishing interaction, U = 0, Eq. (8) becomes a linear
differential equation, and

zψ (Nψ,zψ (0),0,U = 0,�,t)

= 1

β
zψ (Nψ,βzψ (0),0,U = 0,�,t), (12)

where 0 < β < Nψ/zψ (0) is a real parameter that scales the
initial population imbalance, keeping the Bloch-sphere radius
constant. Rabi oscillations of different amplitude are related to
each other, and the scaling Eq. (12) reflects the trivial topology
of the phase space for U = 0, where all solutions zψ (t) are
sinusoidal.

In general, a finite nonlinearity U �= 0 breaks the linear
scaling property Eq. (12): Different initial conditions for the
population imbalance zψ (0) lead to qualitatively different
solutions, as already apparent from the phase-space structure
for NψU/� > 1 in Fig. 1. Equation (8), however, allows one
to relate solutions with different initial population imbalance
to each other. More precisely, for vanishing initial derivative,
ż(0) = 0, a solution with zψ (0) = z0 can be related to a scaled
solution with zψ (0) = ζ0, such that

zψ (Nψ,z0,0,U,�,t) = z0

ζ0
zψ (Nψ,ζ0,0,Ũ ,�̃,t), (13)

when the interaction U and the tunneling coupling � are scaled
according to

Ũ = U

∣∣∣∣z0

ζ0

∣∣∣∣ , (14a)

�̃ =
√

�
(
� + U

√
N2

ψ − z2
0

) + U 2z2
0

4ζ 2
0

(
N2

ψ − ζ 2
0

)
− U

2

∣∣∣∣z0

ζ0

∣∣∣∣√N2
ψ − ζ 2

0 , (14b)

remember that we assume θψ (0) = 0, or, equivalently, xψ (0) >

0,yψ (0) = 0. A change of the initial population imbalance
zψ (0) from z0 to ζ0 can thus be compensated by choosing a
scaled interaction Ũ and tunneling �̃. The relative phases of
the two solutions, θψ , or, equivalently, the motion of xψ and yψ

are, however, not linearly related to each other. Therefore, this
scaling property is not apparent from the phase-space picture,
since it relates solutions with possibly different topology to
each other, and U/� �= Ũ/�̃, in general. Note that �̃ may
become complex.

The scaling of the interaction U , explicit in Eq. (14a), can
be understood rather intuitively: When we relate a solution
with, say, zψ (0) = z0 = Nψ (all particles in the left well) to a
solution with zψ (0) = ζ0 < Nψ , the effect of the interaction U

will be weaker for the system with smaller initial imbalance ζ0.
To retrieve the original behavior of the solution with z(0) =
Nψ , this effect has to be counterbalanced by the upscaling
of U .

The scaling of the frequency � is more intricate. In the
first place, �̃ �= � only when interaction is present. Assuming
ζ0 < z0, such smaller initial population imbalance leads to the
same effect as a larger (smaller) tunneling �̃ > � (�̃ < �),
for repulsive (attractive) interaction U > 0 (U < 0).

The scaling property is illustrated in Fig. 2: In (a),
for a constant interaction NψU/� = 4.1, the solution for
zψ (0)/Nψ = 1 is self-trapped, whereas for zψ (0)/Nψ = 1/2,
it oscillates. The scaled parameters Ũ , �̃ allow us to recover
the self-trapped behavior at a scaled population imbalance. In
particular, the scaling properties allow us to understand why
a small repulsive interaction leads to slower oscillations for
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FIG. 2. (Color online) Population imbalance scaling. (a) For
NU/� = 4.1, the initial preparation zψ (0)/Nψ = 1 leads to self-
trapping (black solid line), while for zψ (0)/Nψ = 0.5, oscillations
emerge (blue dotted line). According to the scaling property Eq. (14),
the parameters NψŨ/� = 8.2, �̃ = 0.13813, zψ (0)/Nψ = 0.5 re-
cover the qualitative behavior of the solution zψ (0)/Nψ = 1 (red
dashed line). (b) For zψ (0)/Nψ = 1, increasing the interaction from
NψU/� = 0 (solid blue) to NψU/� = 1 (dotted blue) leads to a
decrease of the observed frequency, whereas for zψ (0)/Nψ = 0.5,
the opposite behavior is observed, which can be understood via the
scaling property.

zψ (0) = 1, while it leads to faster oscillations when z(0) < 1,
as shown in Fig. 2(b).

III. BI-SPECIES DIMER

Having established the behavior of a single-component
BEC in the double-well, we now add a second component
with very similar physical properties. The dynamics of the
second species, which we will refer to as φ, is governed by the
same physical parameters as the first species ψ ; the tunneling
rates are equal, � := �ψ = �φ , and the intra- and interspecies
interaction strengths fulfill

Uψ,φ = rUψ,ψ = rUφ,φ = rU. (15)

We will assume r = 1, that is, perfect isospecificity, unless
indicated explicitly. A realistic physical implementation of
the model consists in the second species being realized by
a different hyperfine state. Thus, one can convert particles
between the species at will by applying suitable Rabi pulses
on one or both wells. We are interested in the dynamics of
the spatial population imbalance when the second species φ is
populated at the expense of ψ (i.e., for a constant total particle
number N = Nψ + Nφ and constant initial spatial population
imbalance ztot = zψ + zφ).

A. Equations of motion and conserved quantities

In analogy to Eq. (1), the coupled discrete Gross-Pitaevskii-
equations for the bi-species system read

i
∂

∂t
ψj = U (|ψj |2 + r|φj |2)ψj − �

2
ψ3−j , (16a)

i
∂

∂t
φk = U (r|ψk|2 + |φk|2)φk − �

2
φ3−k, (16b)

where k,j = 1,2 and we assume r = 1. The coupling between
the two species occurs via the nonlinear interaction term
containing U . In the following, the total particle number of
each species is conserved,

|ψ1(t)|2 + |ψ2(t)|2 = Nψ, |φ1(t)|2 + |φ2(t)|2 = Nφ, (17)

for all times. The two Bloch vectors �vψ and �vφ that describe the
two species, defined analogously to Eq. (2), evolve on spheres
of radius Nψ and Nφ , respectively. The coupled equations of
motion Eq. (16) can be reformulated for the Bloch vectors �vψ

and �vφ to give

d

dt
�vβ =

⎛⎜⎝ −Uyβ (zψ + zφ)

�zβ + Uxβ(zψ + zφ)

−�yβ

⎞⎟⎠ , (18)

where β = ψ,φ, while the total energy,

Htot=U

4
(zψ + zφ)2 − �

2
(xψ + xφ) = U

4
z2

tot − �

2
xtot, (19)

is conserved. Since the total Hamiltonian of the system de-
pends only on the spatial population imbalance, ztot, and on the
sum of the x components of the Bloch vectors, xtot, it assumes
the same form as for a single species; see Eq. (6). Conse-
quently, the equations of motion for the total Bloch vector �vtot,

(�vtot = [�vψ + �vφ]), (20)

possess the same form as for the Bloch vector of a single
species; Eq. (5) [15]. The length of �vtot is a constant of motion,
which is a consequence of the isospecificity of the dynamics,
that is, of Uψ,ψ = Uφ,ψ = Uφ,φ and �φ = �ψ . Note that
while the dynamics of the total population imbalance is
integrable, this is not necessarily the case for the dynamics
of the individual species, that is, the difference between the
imbalances of the two species, �vrel = �vψ − �vφ , eludes a closed
solution [21]. When the interactions are not isospecific (r �= 1,
Uψ,φ �= Uφ,φ), |�vtot| is not conserved anymore. Similarly to
the triple-well system [36–38], chaos can then emerge in the
two-species double-well system [15,21].

The dynamics of the mixture can be computed in two
different ways. We can either integrate the equations of motion
of the individual species, Eq. (18), or we can express the
dynamics in terms of a single effective species, as suggested
by the total Hamiltonian Eq. (19). In order to illustrate the
underlying physical mechanism, we will start with the former
and return to the latter in the following sections.

B. Dynamical effects of a second species

The integration of the equations of motion, Eq. (18), allows
us to directly compare situations with one and two species.
The dynamics of the spatial population imbalance ztot(t) of a
single-species and a fully isospecific bi-species BEC is shown
in Figs. 3(a) and 3(b), and the behavior of weakly an-isospecific
mixtures can be observed in Figs. 3(c) and 3(d); we will discuss
the relaxation from isospecificity in Sec. III E below. The
initial spatial population imbalance is set to ztot(0)/N = 0.8,
while we vary the population of the second species and the
interaction U (see also the sketches above the graphs). We keep
the total population N constant and an initially vanishing phase
between the wells, for both species; see also Fig. 4. We assume
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FIG. 3. (Color online) Total population imbalance dynamics for (a) one species, (b) two perfectly isospecific species, (c)and (d) two slightly
an-isospecific species with a ratio of the inter-to-intraspecies interaction strength r = 1.1 (c), and r = 0.95 (d), that is Uψ,φ = rU ; see Eq. (15).
The initial imbalance is ztot(0)/N = 0.8 always, and only the population of the right well is modified. In (a), the second species is absent, in
(b)–(d), the population in the right well fully appertains to the second species [see sketches above (a)–(d)]. The panels (e1)–(e4) on the right
show examples for the four situations and selected values of NU/� [dot-dashed red (a); dashed blue (b); dotted black (c); solid green (d)].

that the two species correspond to different ground states of the
same atoms and that a Rabi pulse is applied on the right well,
which transfers population from the first to the second species.
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FIG. 4. (Color online) Coupling of the Bloch vectors that describe
the two species. (Left panel) �vφ (blue) and �vψ (red) couple to a total
Bloch vector �vtot (black, dotted), as compared to a single-species
Bloch vector �v1 (black, solid) of length |vψ | + |vφ | = Nψ + Nφ = N ,
with identical z component z0. The length of �vtot (dashed green Bloch
sphere) is reduced in comparison to the single-species case (thin
solid black Bloch sphere). (Right panel) Depending on the relative
orientation of �vψ and �vφ , the resulting effective vector length |�vtot|
varies. The configurations (a) and (b) correspond to the respective
physical situations shown in Fig. 3: Only one species is present in
(a); for (b) |�vφ |/N = 0.1 and �vψ and �vφ are antiparallel, while in the
intermediate case (c), |�vφ |/N = 0.05 (not shown in Fig. 3).

In Fig. 3(a), no Rabi pulse is applied and only one species is
present in the system, Nφ/N = 0. In (b), a π pulse transfers
all the right-well population to the second species, Nφ/N =
0.1. For intermediate values of NU/� (1 � |NU/�| � 6),
populating the second species changes the dynamics of the
spatial population imbalance ztot(t) strongly, the location of
the oscillation regime on the NU/� axis is shifted to smaller
values for increasing population of the second species. Given a
fixed interaction parameter NU/�, the behavior can therefore
qualitatively differ for the different populations: In panel (e1),
for NU/� = 4, the single-species BEC is clearly in the
oscillation regime, while for Nφ/N = 0.1, no Josephson-like
oscillations are observed anymore, the system is self-trapped.
For NU/� = −2, the opposite behavior is observed: While
for Nφ/N = 0.1, the system oscillates, it is self-trapped for
the other scenario.

We can understand the impact of the second species from
the structure of the Hamiltonian Eq. (19): Let us first con-
sider repulsive interactions (i.e., U > 0). Since we assumed
xtot(0) > 0, the phase-coherence part of the Hamiltonian,
−�xtot(0)/2, is initially negative, which favors oscillations.
The total energy, Htot = Uztot(0)2/4 − �xtot(0)/2, is reduced
– for |Htot| < �/2, the system is in the oscillation regime, since
ztot = 0 can then be attained energetically. In other words,
initial coherence between the two wells with xtot(0) > 0 favors
oscillations. Populating the second species in one well partially
destroys the coherence, which increases the total energy and
pushes the system towards self-trapping.
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Attractive interaction (U < 0) leads to the opposite effect:
The interaction term in the Hamiltonian is negative, and
the phase-coherence part −�xtot(0)/2 is beneficial for self-
trapping. Destroying the phase coherence by populating a
second species is beneficial for Josephson oscillations. In
general, the competition of interaction and phase coherence in
the Hamiltonian for the initial states in (a) breaks the symmetry
U → −U present in panel (b).

Summarizing, the behavior of the system can be changed
from self-trapping to Josephson oscillations by the population
of a second species, without changing ztot(0)/N , U or �. As
can be seen, the behavior of the two-species mixture and of
the single-species condensate are similar—although subject to
a shift on the NU/� axis.

C. Effective tunneling coupling

The effect of a second species on the mean-field dynamics
can be modeled by a single species system with an effective
tunneling coupling �̄. To derive this in analogy to Sec. II B,
we consider the dynamics of the spatial population imbalance
ztot. Similarly to Eq. (8), we find a second-order differential
equation with parameters that depend on the initial conditions:

z̈tot = −ztot

(
U 2

2

(
z2

tot − ztot(0)2) + � (� + Uxtot(0))

)
, (21)

where xtot(0) and ztot(0) are defined through Eq. (20). xψ (0) can
be related to zψ (0) and żψ (0) through Eq. (9), which is valid
analogously for xφ(0), zφ(0), and żφ(0). We assume in the
following żψ (0) = żφ(0) = 0 and xψ (0),xφ(0) � 0. By com-
parison to Eq. (8), we find that the spatial population imbalance
for the two-species condensate, ztot(t), exhibits the same time
dependence as the imbalance of a single-species BEC that is
prepared with the same initial imbalance, zψ (0) = ztot(0), but
which experiences an effective tunneling coupling �̄, where

�̄ =
[
�

(
� + U

(√
N2

ψ − zψ (0)2 +
√

N2
φ − zφ(0)2

))
+ U 2(N2 − ztot(0)2)

4

]1/2

− U

2

√
N2 − ztot(0)2, (22)

is found by solving the resulting quadratic equation. Formally,
ztot(t) satisfies

ztot(Nψ,Nφ,zψ (0),zφ(0),U,�,t)

= zψ (Nψ + Nφ,zψ (0) + zφ(0),U,�̄,t), (23)

where zψ (t) is the solution to Eq. (7). In other words, the
effect of breaking the phase coherence due to the addition of
a second species is equivalent to a change of the tunneling
coupling to �̄. Consistently with the findings discussed by
means of Fig. 3, Eq. (22) shows that �̄ � � for repulsive
interactions U > 0, while �̄ � � for attractive U < 0.

D. Effective particle number

The incorporation of the effect of the second species in the
modified tunneling coupling parameter �̄ in Eq. (22) relies on
the exact form of the two-mode differential equations, Eqs. (8)
and (21). A more general way to understand the dynamics of
ztot, which will also be applicable in larger systems, can be
found by considering the emerging total Bloch vector. In the

bi-species case, the length of the Bloch vector of either species
reflects the respective population, |�vψ | = Nψ, |�vφ| = Nφ. The
total number of particles in the bi-species case is the sum of the
lengths of the two Bloch vectors, |�vψ | + |�vφ| = Nψ + Nφ =
N , while the length of the total Bloch vector �vtot, defined in
Eq. (20), is, in general, smaller than N .

The dynamics of a bi-species condensate of a total particle
number N is thus described by the Bloch vector �vtot that evolves
on a sphere of radius Neff ,

Neff = |�vtot| =
√

|�vψ + �vφ|2 =
√

N2
ψ + N2

φ + 2�vφ �vψ, (24)

that is, the system behaves like a single-species system with a
reduced total population Neff = |�vtot|.

Formally, the spatial population imbalance in the bi-species
case fulfills,

ztot(Nψ,Nφ,zψ (0),zφ(0),�,U,t)

= zψ (Neff,zψ (0) + zφ(0),�,U,t), (25)

where Neff is given in Eq. (24), which should be compared with
Eq. (23), where we found an effective tunneling coupling �̄.
Applying the scaling of the Bloch-sphere radius, Eq. (11), and
of the initial population imbalance, Eq. (13), we can reconcile
the two perspectives [Eqs. (23) and (25)] with each other,

zψ (Neff,zψ (0) + zφ(0),�,U,t)

(11)= Neff

N
zψ

(
N,

N

Neff
(zψ (0) + zφ(0)),�,

Neff

N
U,t

)
(13)= zψ (N,(zψ (0) + zφ(0)),�̃,U,t), (26)

where �̃ is given by Eq. (14b). Inserting the parameters
confirms that the effective particle number Neff indeed leads to
an effective frequency �̃ with �̃ = �̄, consistent with Eq. (22).

The geometric coupling of the Bloch vectors allows us
to understand the effect of concerting or obstructing rela-
tive phases. When the relative phases of both species and
the relative population imbalances are equal, θφ(0) = θψ (0),
zψ (0)/Nψ = zφ(0)/Nφ , the dynamics of the two species are
concerted, and the collective motion corresponds to the one of a
single species with the same phase difference. Geometrically
speaking, the Bloch vectors �vψ and �vφ are parallel, and the
mixture behaves like a single species with N = Nψ + Nφ .
Likewise, zφ/Nφ = zψ/Nψ implies �̄ = � in Eq. (22).

When θφ(0) �= θψ (0) or zψ (0)/Nψ �= zφ(0)/Nφ the differ-
ent initial phases or imbalances work against each other, and
the motion of ψ is then not concerted with the motion of
φ. The dynamics can then be described by a single species
with smaller population. Geometrically speaking, depending
on their relative orientation, the length of the total Bloch vector
can be close to Nψ + Nφ , or be significantly smaller, as illus-
trated in Fig. 4. As an example, we return to the configurations
considered in Fig. 3, for which the coupling of the vectors is de-
picted in the right panel of Fig. 4. In both (b) and (c) the second
species is initially localized in the right well and, consequently,
zφ = −Nφ , the Bloch vector points down. As the population
of the second species is increased, �vψ is tilted towards the z

axis and the length of the total Bloch vector decreases.
In general, the dynamics of the system is invariant under

the simultaneous application of a Rabi pulse on both wells,
which geometrically corresponds to a splitting of the constant
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total Bloch vector �vψ + �vφ = �vtot into two new parts �v′
ψ and

�v′
φ , with �v′

ψ + �v′
φ = �vtot.

In particular, one does not alter the system behavior when
applying a Rabi pulse if only one well is occupied initially such
that ztot(0) = ±N . No phase coherence is broken by the Rabi
pulse, since no phase relationship between condensate wave
functions in the left and right well is present in the first place.

E. Robustness against deviations from isospecificity

Since conventional optical traps operate with linearly
polarized light that is far detuned from atomic resonance
frequencies, atoms in different hyperfine states typically
experience the very same optical potential, which motivates the
species-independent tunneling rate �. However, the species
may be subject to slightly different inter- and intraspecies
scattering lengths [19,39,40], that is, r may differ from unity
[see Eq. (15)]. The question arises how deviations from the
ideal parameters impact on the system dynamics, since the
treatment above relies heavily on the conservation of |�vtot|.
Relaxing the assumption r = 1, the Hamiltonian becomes
explicitly dependent on �vrel = �vψ − �vφ ,

H = U

4

(
(1 + r)

2
z2

tot + (1 − r)

2
z2

rel

)
− �

2
xtot, (27)

and the dynamics of the total Bloch vector also depends on the
relative vector �vrel,

d �vtot

dt
=

⎛⎜⎝
U
2 ((r − 1)yrelzrel − (r + 1)ytotztot)

U
2 ((r + 1)xtotztot − (r − 1)xrelzrel) + �ztot

−�ytot

⎞⎟⎠ . (28)

The length of the total Bloch vector |�vtot| is therefore not
conserved anymore and the time derivative of its square reads

d

dt
|�vtot|2 = 2(1 − r)U (xψyφ − xφyψ )zrel. (29)

Thus, due to the different intra- and interspecies interaction
strengths, the relative Bloch vector �vrel perturbs the motion
of the total Bloch vector �vtot, which experiences an effective
particle number that varies in time, or, equivalently, a varying
interaction strength.

The influence of the relative Bloch vector on the dynamics
is naturally constrained by

|Nφ − Nψ | � |�vtot| � Nφ + Nψ = N, (30)

that is, in general, the greater the population difference between
the two species, the smaller is the influence of the deviation
from isospecificity.

On the other hand, although the amplitude of the perturba-
tion induced by the relative vector in Eq. (28) is constrained by
|(r − 1)UN/4|, a system prepared on the separatrix, that is, at
the fragile borderline between self-trapping and oscillating
regime (see Fig. 1), can still be affected qualitatively by
very small deviations around r = 1, which is apparent for
NU/� = 2.5 in Fig. 3(e2): While the singular nonoscillating
case is attained for r = 1, the system is self-trapped for
r = 0.95 and oscillates for r = 1.1. On the other hand, when
the trajectory is stable, and well away from the separatrix (i.e.,
deeply in the oscillating or in the self-trapping regime), the
change in the dynamics due to the an-isospecificity is very

small, as can be observed in Figs. 3(c) and 3(d) and in panels
(e1), (e3), and (e4), for U = 4, − 2, − 4.

Slightly differing inter- and intraspecies interaction
strengths can lead to chaos at the borderline between self-
trapping and oscillation regime [21]. The effect of exchange
symmetry breaking, however, dominates in the regular regime
and outweighs the influence of weak an-isospecificity.

F. Experimental implementation

An experiment that implements a controllable bi-species
system can be realized with current technology. A binary sys-
tem that naturally offers the parameters that we require is given
by the |ψ〉 := |F = 1,mF = 1〉 and |φ〉 := |F = 1,mF = −1〉
components of 87Rb. Since spin-changing collisions are weak
[41], we can assume that the population of either species is
conserved and that they can be simultaneously trapped in the
same potential [19]. Moreover, the intraspecies interactions are
identical, and the ratio of inter- to intraspecies interaction ful-
fills Uψ,φ/Uψ,ψ ≈ 1.0093 [19,41]. Depending on the potential
difference between the wells at the moment of the cooling, any
desired spatial population imbalance can be achieved [13]. An
imbalance of the population of the two species can then be
implemented selectively on one well by using the techniques
utilized in [42]. Here, a strongly focused laser beam shifts the
hyperfine transition in one well compared to the other. The
site-selective transfer is then realized using a microwave pulse
at the shifted frequency.

Using well-established experimental techniques, the total
population imbalance can be read off in a destructive way [13];
and when combined with a spin-dependent push-out [42], the
dynamics of the individual species can be observed.

In conclusion, the population of a second species changes
the balance between phase coherence and interaction energy.
The new initial state of the system may lie in a possibly
different phase space. For very small (NU 	 �) and very
large (NU 
 �) interactions, the qualitative behavior is not
changed dramatically, and exchange effects are small: For very
weak interactions (in the Rabi regime), each particle tunnels
individually, and no collective effects emerge, whereas for
very strong interactions, the interparticle interaction outweighs
the exchange effects. In typical experimental regimes that lie
between these extremes [13], however, the breaking of the
exchange symmetry can have a strong qualitative impact on
the system dynamics.

IV. MANY-BODY TREATMENT: SPIN-COHERENT STATES
AND BEYOND

The difference between single- and bi-species condensates
can be understood by the competition of phase coherence and
interaction energy. To assess whether the physical arguments
can be extended beyond situations that are well described by
mean-field theory, we proceed to an analysis using second
quantization.

A. Two-well Bose-Hubbard model

The Gross-Pitaevskii equation Eq. (16) is the classical limit
of the Heisenberg equations of motion retrieved from the
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Bose-Hubbard Hamiltonian,

HBH = U

2

2∑
j=1

(n̂j,ψ + n̂j,φ)(n̂j,ψ + n̂j,φ − 1)

− �

2
(â†

1,ψ â2,ψ + â
†
1,φ â2,φ + H.c.), (31)

where n̂k,α denotes the number operator, and â
†
j,α (âj,α)

creates (annihilates) a particle of species α(= ψ,φ) in site j .
Furthermore below, we shall present the results of a numerical
simulation of the dynamics induced by this two-species
Hamiltonian. In order to investigate the reduction to single-
species dynamics, it will be useful to introduce an angular
momentum representation, which can be done elegantly for
each species using the Schwinger-boson model:

Ĵz,α = n̂1,α − n̂2,α

2
, (32a)

Ĵx,α = â
†
1,αâ2,α + â

†
2,αâ1,α

2
, (32b)

Ĵy,α = i(â†
2,αâ1,α − â

†
1,αâ2,α)

2
, (32c)

where α = ψ,φ. The operators Ĵj,α fulfill the usual SU(2)
commutation relations, and the Hamiltonian Eq. (31) can be
rewritten as

HBH = U (Ĵz,ψ + Ĵz,φ)2 − �(Ĵx,ψ + Ĵx,φ), (33)

where a constant summand has been omitted here with respect
to Eq. (31). From Eq. (33), it is immediate that a coupled basis,
that is, the eigenstates of Ĵk = Ĵk,ψ + Ĵk,φ allows us to rewrite
the Hamiltonian in the Lipkin-Meshkov-Glick form [43–47],

HBH = UĴ 2
z − �Ĵx, (34)

equivalent to the one for a single species in the Bose-
Hubbard dimer, in direct analogy to Eq. (19)—note that
the z projection m is related to ztot via 2m = ztot, which
leads to different prefactors in the consistent Eqs. (34) and
(19). At this stage, the problem seems to reduce to finding
the appropriate single-species configuration, just like in the
mean-field representation. In the discrete case, however, the
quality of the single-species reduction depends heavily on
the initially chosen configuration, as we shall see.

B. Bi-species spin-coherent states

In the mean-field approximation, binomial counting statis-
tics of the many-particle state is assumed [48], such that
the treatment of the last section is expected to be a good
approximation to the spatial population imbalance exhibited
by initial states that are spin coherent,

|
coh〉 = 1√
N !

⎡⎣ ∑
α=φ,ψ

(√
Nα + zα

2N
â
†
1,α

+ eiθα

√
Nα − zα

2N
â
†
2,α

)]N

|vac〉 , (35)

where the number of particles N is large and |vac〉 denotes
the zero-atom state. The expectation values of this state match
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FIG. 5. (Color online) Population imbalance: mean-field treat-
ment and many-body dynamics. The initial population imbalance is
ztot(0) = 0.9N , U/� = 1/60, N = 180. We compare a spin-coherent
many-particle state of the form Eq. (35), for (a) Nφ = 0, Nψ = N (all
particles are of the same species) and (b) Nφ/N = 0.05, Nψ/N =
0.95 (particles in the different wells are of different species) to the
classical calculation based on Eq. (18). Black solid lines denote the
classical calculation, red dashed lines the exact quantum bi-species
calculation. The single-species description based on the effective
tunneling constant � is shown in blue solid; the one based on the
effective total particle number Neff = 162 is shown as black dotted
line.

precisely the population imbalances zψ and zφ and the relative
phases θψ and θφ . Note that the relative phase between the
species is unobservable in our setting.

We compare the time evolution of the population imbalance
of a state of the above form Eq. (35) with the classical
description based on Eq. (18) in Fig. 5. The Hamiltonian
Eq. (34) is integrated in a numerically exact way, without
performing any further approximation. The initial spatial
imbalance is ztot(0)/N = 0.9, the number of particles is N =
180, and the interaction parameter fulfills U/� = 1/60. We
compare (a) the single-species situation to (b) the bi-species
scenario. For the latter, we assume that a Rabi π pulse on the
right well leaves all particles in the second internal state φ, such
that Nψ/N = 0.95 and Nφ/N = 0.05 (see inserted sketches).
The classical calculation (black solid line) exhibits oscillations
in (a) and self-trapping in (b) (note the changed scale for the
ordinate). The quantum many-body calculation features the
same qualitative behavior, but the oscillations decay due to
quantum fluctuations [35].

The single-species descriptions based on the effective
coupling �̄ given in Eq. (22) (blue solid line), or employing
the effective particle number Neff given in Eq. (24) (black
dotted line), reproduce the dynamics well, and also feature the
decay of oscillations. In particular, switching the population
of the right well to the second species by a π Rabi pulse
clearly switches the behavior of the system from Josephson
oscillations to self-trapping—just like in Fig. 3. The decay
of the oscillations for the description based on the effective
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particle number Neff = 162 (black dotted) is slower than for
the two-species scenario (red dashed) and for the description
via the effective tunneling coupling �̄ (blue solid), since all
Neff particles start in the left well, which reduces quantum
fluctuations.

C. Bi-species Fock states

Since relative phase and particle number difference are
conjugated variables, the phase relation between two wells
populated by the same species can also be broken by preparing
a Fock state with a well-specified number of particles in each
well. In the semiclassical picture, a Fock state corresponds
to a distribution on the Bloch sphere with well-specified
z component, but uncertain x and y component (i.e., to a
ring on the Bloch sphere, or a vertical line in Fig. 1). The
resulting distributions for single-species and bi-species Fock
states differ, and so does the dynamics, as we will see below.

1. Single-species description

We now derive an effective single-species description of
a bi-species Fock state, analogous to Sec. III D, and discuss
the requirements for its application. The Hamiltonian Eq. (34)
suggests to work in the basis of coupled angular momenta (i.e.,
in eigenstates of Ĵ 2,Ĵ 2

ψ,Ĵ 2
φ ,Ĵz),

|j,jψ,jφ,m〉 , (36)

where jψ = Nψ/2 and jφ = Nφ/2 are related to the number
of particles of either species, and m is the total spatial
particle number imbalance. The quantum number j as well
as the total particle number of either species, Nψ and Nφ ,
are constants of motion—these conserved quantities are the
analogous quantities to |�vtot|,|�vψ |, and |�vφ| in the classical
description.

An initial Fock state |
F〉 with a well-defined number of
particles of either species in each well is, in general, not an
eigenstate of Ĵ 2 of the form Eq. (36), but an eigenstate of the
uncoupled angular momentum operators Ĵ 2

ψ,Ĵz,ψ ,Ĵ 2
φ ,Ĵz,φ . It

can, however, be written as a superposition of total angular
momentum eigenstates given in Eq. (36),

|
F〉 = |jψ,mψ,jφ,mφ〉 =
jψ+jφ∑

j=|jψ−jφ |
cj |j,jψ,jφ,m〉 , (37)

where m = mψ + mφ and cj is the Clebsch-Gordan coeffi-
cient,

cj = 〈j,jψ,jφ,m|jψ,mψ,jφ,mφ〉. (38)

The single-species description with a fixed effective total
particle number corresponds to the approximation,

|
F〉 = |jψ,mψ,jφ,mφ〉 ≈ |jeff,jψ,jφ,mφ + mψ 〉 , (39)

where jeff is the expectation value of the total angular
momentum,

jeff(jeff + 1) = 〈
F| Ĵ 2 |
F〉
= jψ (jψ + 1) + jφ(jφ + 1) + 2mψmφ, (40)

which allows an interpretation as effective particle number,
Neff/2 = jeff . The classical limit of Eq. (40) is indeed Eq. (24),
which neglects linear terms with respect to Eq. (40).

The approximation Eq. (39) is reasonable only for states
|
F〉 that possess a well-defined total angular momentum, that
is, when

�(Ĵ 2)

〈Ĵ 2〉 	 1, (41)

such that the distribution of Clebsch-Gordan coefficients cj

that appears in Eq. (37) is narrow and peaked at jeff . The
variance of the expectation value of Ĵ 2 amounts to

�(Ĵ 2) =
√

2
(
jψ + j 2

ψ − m2
ψ

)(
jφ + j 2

φ − m2
φ

) − 2mφmψ,

that is, the uncertainty in the total angular momentum depends
on the projection mφ , mψ of the two angular momenta.
Therefore, depending on the physical situation, the relation
Eq. (39) is exact, approximate, or unsuitable in the limit of
many particles:

Only one well occupied. We then have mψ = jψ,mφ = jφ

and find the equality,

|jψ,mψ = jψ,jφ,mφ = jφ〉
= |j = jψ + jφ,jψ,jφ,m = mψ + mφ〉 . (42)

Since all particles are prepared in the same well, the above
state is fully exchange symmetric and behaves like a Fock
state of a single species.

One species localized in one well. If all particles of one
species are localized in one well while the particles of the other
species remain distributed among the two wells (i.e., without
restrictions of generality mφ = jφ), the relative variance
Eq. (41) becomes small in the limit of large total particle
numbers—we assume that N is increased for a constant ratio
of species populations and constant population imbalances
(constant mψ/jψ , mφ/jφ , and jφ/jψ ). Then, Eq. (39) is
approximately valid. The scaling property Eq. (23), which
was shown to hold for spin-coherent states, is here, however,
not applicable anymore: In the derivation Eq. (22) of �̄,
we assumed a fixed value of θφ and θψ . Since the initial
phase relationship is uncertain—a Fock state is prepared—no
effective tunneling �̄ emerges.

General state. If both wells are occupied by particles
of either species, we have |mψ | < jψ and |mφ| < jφ . The
distribution of Clebsch-Gordan coefficients in Eq. (37) remains
broad for increased total particle number, and, in particular,
the distribution of the cj is not necessarily peaked at jeff . The
relative variance Eq. (41) does not vanish for large particle
numbers, and the approximation Eq. (39) is unsuitable.

We exemplify the validity of the approximation Eq. (39) for
a two-species Fock state in Fig. 6, for U/� = 0.021, N = 120.
Panels (a)–(c) show the probability for a certain number of
particles in the left well, and panel (d) compares the average
population imbalance obtained by the single- and two-species
numerical solution and by the approximation. In (a), the initial
state is

|
F,2〉 = |jψ = 30,mψ = 10,jφ = 30,mφ = −30〉 , (43)

which leads to a very distinct counting statistics when
compared to a single-species state with the same initial spatial
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FIG. 6. (Color online) Time evolution of Fock states for N = 120, U/� = 0.021. (a) and (b) Counting statistics for single- and bi-species
Fock state with initially 40 (80) particles in the left (right) well. Horizontal axis, time t ; vertical axis, number of particles in the left well.
The color code indicates the probability. (a) Bi-species Fock state Eq. (43) with Nψ ≡ 2jψ = 60,Nφ ≡ 2jφ = 60,mψ = 10,mφ = −jφ = −30,
mtot = −20. (b) Single-species state Eq. (44) with Nψ = 120,mψ = −20. (c) Single-species approximation Eq. (45) for the bi-species state
(a): Neff = 70,m = −20. (d) Average population imbalance, for the bi-species Fock state (black dotted), single-species Fock state (blue solid),
the single-species approximation (red dashed), and the weakly an-isospecific case r = 1.1 (brown dot-dashed).

population imbalance in (b),

|
F,1〉 = |jψ = 60,mψ = −20〉 . (44)

In particular, the probability to find almost all or almost no
particle in one mode is clearly enhanced for |
F,1〉 with respect
to |
F,2〉, well in accordance with our intuition for bosons.
The typical features of the counting statistics of |
F,2〉 are
well reproduced by the single-species approximation based on
Eq. (39),

|
F,1,appr.〉 = |jeff = 35,m = −20〉 , (45)

where the vertical axis of panel (c) is displaced for direct
comparison to (a) and (b). Not only is the suppression of
events with many particles in the left or right well and the
overall structures of the counting statistics reproduced, also
the characteristic oscillation of the center of mass agrees
very well, as can be observed in (d). The more fine-grained
interference pattern in (c) with respect to (a) can be understood
from the unique contribution of one term in the sum Eq. (37);
that is, for |
F,2〉 many-particle interference is averaged
out.

2. Semiclassical description

An intuitive argument for the validity of the single-species
approximation Eq. (39) for mφ = ±jφ can be obtained
in a semiclassical picture. A Fock state corresponds to a
Bloch vector with fixed z component, but uncertain x and
y component—the phase between the wells is maximally
uncertain, since the particle number in each well is fixed

[48–51]. A single-species Fock state is thus described by a
vector of constant length that lies on a cone around the z

axis. A bi-species Fock state corresponds then to two coupled
vectors, �vψ and �vφ , of fixed length and fixed z component,
but uncertain x and y components. The z component of
the coupled, total vector is well specified, ztot = zφ + zψ . In
general, however, the length of the total Bloch vector is not
fixed, since the relative orientation of �vψ and �vφ is uncertain.
The bi-species system behaves like a single-species system
with a total particle number that is not fixed, but which follows
a certain probability distribution, P (|�vtot|), which is precisely
the classical analogous [52] to the Clebsch-Gordan expansion
Eq. (37). This situation is also depicted in Fig. 7(a).

When one of the vectors, say �vφ , points to the z direc-
tion, it then exhibits vanishing uncertainty in the x and y

components—the cone on which it rotates shrinks to a point.
Consequently, �vtot also moves on a cone and has a constant,
well-defined length, as can be observed in Fig. 7(b).

3. Robustness against an-isospecificity

Again, the question arises how robust the dynamics are with
respect to weakly an-isospecific interactions, that is, when r �=
1 and thus Uψ,φ �= Uψ,ψ [see Eq. (15)]. Due to the Heisenberg
uncertainty relation, and due to z and θ being conjugate
variables, no quantum state can be prepared precisely on the
separatrix between self-trapping and oscillation regime. Thus,
the pathological case shown in Fig. 3(e2) has no analogy in
the quantum treatment.
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FIG. 7. (Color online) Coupling of Bloch vectors with specified
z component, but random phase. We show a cut through the Bloch
sphere, for y = 0. Since the relative phases between the wells are
unknown for either species, the length of the emerging vector �vtot

is also uncertain. In (a), �vψ and �vφ couple to a total vector �vtot

with a length ranging between the small and the large dashed-green
Bloch sphere, since only the z component, but not the x and y

component of the two species are fixed. The vector �vφ is fixed in the
representation for convenience. The effective total particle number
is not well defined, but follows a distribution that corresponds to the
classical limit of the Clebsch-Gordan coefficients. In (b), the x and
y components of the φ species vanishes, which also fixes the length
of �vtot. In the corresponding many-body situation, the approximation
Eq. (39) is valid for large particle numbers.

Since Fock states can be described semiclassically as
a distribution of classical solutions with fixed population
imbalance z and unknown phase θ , the overall behavior of
the system is seldom clearly in the self-trapping or in the
oscillation regime (consider a distribution shaped as a vertical
line in Fig. 1), and thus widely unaffected by small changes
in r . We show the average spatial imbalance for r = 1.1 in
Fig. 6(d); it remains close to the behavior of the system with
r = 1 (a).

Summarizing, just like for the mean-field treatment, the
impact of the exchange symmetry breaking can change the
system behavior qualitatively, while inter- to intraspecies
interaction ratios that deviate little from unity do not jeopardize
the general system behavior.

V. EFFECTIVE SINGLE-SPECIES DESCRIPTION OF
GENERAL MULTISPECIES BOSE-HUBBARD MODELS

In the two previous sections, we have shown that the total
particle density in a mixture can be expressed as the density
of an effective single species, either exactly—in the classical
treatment—or approximately—in the quantum many-body
treatment. On the one hand, this allows us to understand the
effect of a broken exchange symmetry, on the other hand,
especially in the many-body treatment, the relationship allows
one to save significant computational resources [53]. It is

therefore appealing to expand the discussion to more general
scenarios.

Whereas the nonlinear scaling of the initial population
imbalance, Eq. (13), is a peculiarity of the two-mode model,
we can generalize the argument of the effective particle number
to an arbitrary number of species and wells.

A. Many-site Bose-Hubbard model

For this purpose, we consider a general L-site Bose-
Hubbard Hamiltonian that describes s distinct species,

ĤBH,gen = −1

2

L∑
j>k

�j,k

(
s∑

α=1

â
†
j,αâk,α + âj,αâ

†
k,α

)

+
L∑

l=1

εl

(
s∑

α=1

n̂l,α

)
+ U

2

L∑
j=1

(
s∑

α=1

n̂j,α

)2

, (46)

where εj is the on-site energy for the j th site, �j,k is the
tunneling coupling between site j and k, U is the interaction
strength. The creation operator â

†
j,α creates a particle of species

α on site j . The Hamiltonian Eq. (46) is isospecific, just like
Eq. (31).

In analogy to the Schwinger-Boson algebra, which allows
one to rewrite the two-site Hamiltonian in terms of the three
generators of SU(2) [see Eqs. (32) and (33)], we can rewrite
Eq. (46) in terms of the L2 − 1 generators of SU(L), for each
species α. This approach has been applied to the triple-well
case [54–56] and can be readily generalized to the present
L-site system with s species.

The L − 1 diagonal generators of SU(L) can be chosen as

Ẑ(k)
α =

∑k
p=1 n̂p,α − k · n̂k+1,α

k + 1
, (47)

where k ∈ {1, . . . ,L − 1}, while the L(L − 1) hopping opera-
tors read

X̂(l,m)
α = â

†
l,αâm,α + âl,αâ

†
m,α

2
, (48)

Ŷ (l,m)
α = i(â†

l,αâm,α − âl,αâ
†
m,α)

2
, (49)

where l > m. For L = 2, we simply retrieve Eq. (32).
For a given species α, the L operators n̂j,α can thus be

expressed by the L − 1 operators Z(k)
α and the total particle

number operator N̂α = ∑L
l=1 n̂l,α:

n̂j,α = N̂

L
− Ẑ(j−1)

α +
L−1∑
k=j

Ẑ(k)
α

k
, (50)

where we set Ẑ(0)
α = 0 for convenience.

The SU(L) commutation relations of the Ẑ(k)
α , X̂(l,m)

α , and
Ŷ (l,m)

α are immediately inherited by the coupled operators,

Ẑ(k) =
s∑

α=1

Ẑ(k)
α , X̂(l,m) =

s∑
α=1

X̂(l,m)
α ,

(51)

Ŷ (l,m) =
s∑

α=1

Ŷ (l,m)
α ,
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since—just like in the two-site case—operators related to
different species always commute.

The Hamiltonian Eq. (46) can then be expressed with these
coupled operators,

ĤBH,gen = −
L∑

j>k

�j,kX̂
(j,k)+

L−1∑
k=1

Ẑ(k)

⎛⎝ k∑
p=1

εp

k
−εk+1

⎞⎠ + N̂ ε̄

+ U

2

(
N̂2

L
+

L−1∑
k=1

(k + 1)

k
(Ẑ(k))2

)
, (52)

where N̂ is the total particle number, and ε̄ = (
∑L

k=1 ε)/L
the average onsite energy. The constant terms proportional
to N̂ and N̂2 can be neglected for the dynamics. Just like for
L = 2, the many-species Hamiltonian assumes the same form
as for a single species. Again, any multispecies state can be
expanded in single-species states: A many-particle state of Nα

particles is defined by L quantum numbers, that is, a general
Fock state with a well-defined number of particles in each
mode is described by

|
F,gen〉 = ⊗s
α=1 |Nα,mα,1,mα,2, . . . ,mα,L−1〉 , (53)

where mα,k is the quantum number corresponding to the Ẑ(k)
α

operator and Nα is the total particle number of the species α.
In analogy to Eq. (37), |
F,gen〉 can be expanded in a sum of
total particle number states,

|
F,gen〉 =
∑
Ntot

cNtot

× | Ntot,N1, . . . ,Ns,

s∑
α=1

mα,1, . . . ,

s∑
α=1

mα,L−1〉,

(54)

where the cNtot are the generalized Clebsch-Gordan coefficients
for SU(L) [57].

B. Classical limit

The Hamiltonian Eq. (52) allows us to retrieve the Heisen-
berg equations of motion for the s(L2 − 1) time-dependent op-
erators in the Heisenberg picture, exploiting the commutation
relations of the generators of SU(L). In the mean-field limit,
these equations become discrete Gross-Pitaevskii equations
for vectors �vα on s (L2 − 1)-dimensional Bloch spheres,
analogous to Eq. (18):

d

dt
�vα = M

⎛⎝ s∑
β=1

�vβ

⎞⎠ �vα, (55)

where M is a matrix of dimension (L2 − 1) × (L2 − 1). Since
M depends only on the total Bloch vector,

�vtot =
s∑

α=1

�vα, (56)

the latter fulfills

d

dt
�vtot = M (�vtot) �vtot. (57)

That is to say, the inclusion of a new species with the same
physical properties as the existing one leads, again, to a
total Bloch vector �vtot, whose length can be interpreted as
an effective particle number.

VI. CONCLUSIONS

Ultracold atoms in optical lattices do not only constitute
ideal model systems to study the effects of tunable interparticle
interaction (e.g., via Feshbach resonances [58]), but also to
investigate the consequences of a broken exchange symmetry
or distinguishability of particles via the population of
different hyperfine states. Thereby, the interplay of interaction
and exchange symmetry—the two pertinent ingredients of
quantum many-body dynamics—may be explored. We inves-
tigated a two-well system, in which the population of a second
internal state effectively breaks the phase relationship between
the macroscopic wave function in the two wells, and thus
influences the dynamics of the system. The bosonic Josephson
junction exhibits symmetries that allow us to understand the
dynamics either by an effective tunneling coupling, or by an
effective total particle number.

For double Fock states, for which no phase relation between
the wells exists, exchanging particles of one species by another
breaks the exchange symmetry of the total many-particle state.
The effective particle number is then, in general, not constant,
but follows a probability distribution, which affects the many-
particle interference capability of the system, and which can
be observed in the emerging counting statistics.

We showed that controlling a degree of freedom that is in-
visible for the Hamiltonian of a system can effectively steer and
influence the dynamics considerably by breaking or restoring
phase coherence. Here, the dynamics in the double well can be
switched between the oscillatory and the self-trapping regime,
which may be used as an effective interaction-controlling
parameter (e.g., when Feshbach resonances are inaccessible).
While we have confined ourselves to the comparison of
situations with constant species population, driving a system
via breaking and restoring its phase coherence may allow for
further control [59].

By relaxing the assumption of perfect isospecificity, we also
showed that the breaking of the exchange symmetry has a much
greater impact on the system dynamics than weakly differing
inter- and intraspecies interactions. Only in the fragile case
of orbits near the transition between dynamical regimes does
a small change in inter- to intraparticle interaction strength
jeopardize the single-species model. With the inclusion of
more species simulations become more and more demanding,
and a single-species approximation can potentially offer a
significant computational advantage. It remains to be studied
to which extent quantum phases of multicomponent bose gases
can be described by methods analogous to those exposed here.

ACKNOWLEDGMENTS

M.C.T. would like to thank Marina Melé-Messeguer for
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