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Nonequilibrium quantum phase transitions in the Ising model
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We establish a set of nonequilibrium quantum phase transitions in the Ising model driven under monochromatic
nonadiabatic modulation of the transverse field. We show that besides the Ising-like critical behavior, the system
exhibits an anisotropic transition which is absent in equilibrium. The nonequilibrium quantum phases correspond
to states which are synchronized with the external control in the long-time dynamics.
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I. INTRODUCTION

One of the more intriguing hallmarks of many-body
systems is that at zero temperature quantum fluctuations can
drive the system to a drastic change of state, commonly known
as a quantum phase transition (QPT). A paradigmatic model
for QPTs is the one-dimensional Ising model [1]. Recently,
experimental realizations of one-dimensional spin chains have
been suggested, where a quantum simulation of the system
close to the phase transition is possible, and a wide freedom on
the control of the parameters is achieved [2–7]. The quantum
control of many-body systems by a driving field has attracted
considerable interest, both theoretical and experimental, with
workers from very different communities beginning to look
at driven models [8–17]. The possibility of manipulating the
quantum state of a system by means of a classical external
control allows one to explore novel states of matter and
effective interactions which are absent in equilibrium [16–19].
In the presence of an external control, quantum resonances
and symmetries play an important role [20–23]. In particular,
as a consequence of a generalized parity in the extended
Hilbert space [20], under the effect of periodic driving the
tunneling can be slowed down or totally suppressed in a perfect
coherent way, a phenomenon commonly referred to as coherent
destruction of tunneling (CDT) [24,25]. Rather recently, the
extension of this concept to many-body systems has been
addressed in the context of the Mott-insulator–superfluid
transition in ultracold systems both theoretically [13] as well as
experimentally [15], and in a two-mode Bose-Hubbard model
with time-dependent self-interaction strength [11].

The dynamics of one-dimensional spin chains has been ad-
dressed extensively when the system is driven slowly through
the critical point [26–28], where there is a diverging relaxation
time and correlation length, and the dynamics cannot be
adiabatic in the thermodynamic limit. As a consequence of this,
the final state of the system consists of ordered domains whose
finite size depend upon the velocity of the parameter variation
[29]. A nontrivial oscillation of the magnetization [30] and
the connection between symmetry and CDT [31] has been
investigated in a finite size periodically driven Ising model.
Furthermore, under the effect of a nonadiabatic external con-
trol of the transverse field, the Ising chain exhibits dynamical
freezing of the response [32,33], and synchronization with the
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external driving in the asymptotic dynamics as a consequence
of destructive interference in time [34].

Our aim in this paper is to describe the nonequilibrium
behavior of a one-dimensional Ising model under the effect
of a nonadiabatic monochromatic transverse field from the
perspective of quantum criticality. In particular, we describe
the dynamics by means of an effective Hamiltonian which
simulates the dynamics of an undriven system. We show that in
the asymptotic dynamics the nonequilibrium quantum phases
correspond to states of the system which are synchronized with
the driving. In contrast to previous works [32–34], however,
we describe the role of many-body CDT in the critical behavior
by investigating signatures of criticality both in the laboratory
frame as well as in the rotating frame.

The paper is organized as follows: In Sec. II we discuss
the equations of motion and describe quantum resonances by
considering the excitation spectrum of the undriven system. In
Sec. III we describe the physics of the system by means of the
rotating wave approximation (RWA) and discuss signatures
of criticality based on the description of the quasienergy
dispersion and CDT. In Sec. IV we describe the quantum
dynamics in the laboratory frame by considering the quantum
evolution of the system when it is initialized in a paramagnetic
ground state. Furthermore, we study signatures of criticality
by considering cycle-averaged expectation values of physical
observables. Finally, a discussion of the results is presented in
Sec. V.

II. QUANTUM RESONANCES IN THE ISING MODEL

The periodically driven transverse Ising model describes
the dynamics of N interacting two-level systems in a time-
dependent transverse local field [32–34]

Ĥ (t) = −g(t)
N∑

i=1

σx
i − J

N∑
i=1

σ z
i σ z

i+1, (1)

where σα
i are Pauli matrices at the ith site and we assume

periodic boundary conditions σα
1 = σα

N+1 for α ∈ {x,y,z}. In
the following we shall consider J > 0, and a monochromatic
modulation of the transverse field with a static contribution
g(t) = g0 + g1 cos �t . Associated with the Hamiltonian equa-
tion (1) is a conserved parity �̂, such that [Ĥ (t),�̂] = 0, which
is given by

�̂ =
N⊗

i=1

σx
i . (2)
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In the thermodynamic limit N → ∞, the undriven Ising
model (g1 = 0) exhibits a second-order QPT at gc

0 = J from
a symmetric paramagnetic phase (g0 > J ) to a symmetry-
broken ferromagnetic phase (g0 < J ) [1]. Our aim in this
paper is to study the new aspects of criticality under the effect
of driving.

In this section we provide the basics on the formalism used
to describe the time-dependent Ising model. In particular, we
find a resonance condition related to m-photon processes under
the effect of driving.

A. The dynamic Bogoliubov–de Gennes equations

In this paper we consider the restriction of the Hamiltonian
equation (1) to the subspace with even (+) number of fermionic
quasiparticles (see Appendix A). After a Jordan-Wigner
transformation and a discrete Fourier transform of Hamiltonian
equation (1) we obtain

Ĥ (t) =
∑
k>0

{2[g(t) − J cos k](c†kck + c
†
−kc−k) − 2g(t)}

+
∑
k>0

2J sin k(c†kc
†
−k + c−kck) =

∑
k>0

Ĥk(t), (3)

where c
†
k and ck are fermionic operators [1]. For finite size

N of the spin chain, the quasimomentum is restricted to k ∈
{± π

N
, ± 3π

N
, . . . , ± (N−1)π

N
}. In the following, we focus on the

thermodynamic limit N → ∞, where we have −π � k � π .
Even if we prepare the system initially in a ground state of

the undriven model, under the effect of nonadiabatic external
driving, the system will experience transitions to excited states.
Rather recently, a formalism has been developed to deal with
this kind of dynamical situation [14,26–28]. The idea is based
on the fact that Hamiltonian equation (3) conserves momentum
and parity. As a consequence, we can use the BCS ansatz for
the evolution of the quantum state of the system

|ψ,t〉 =
⊗
k>0

[uk(t)|1−k,1k〉 + vk(t)|0−k,0k〉], (4)

which implies that for a given quasimomentum k, the
quantum evolution is restricted to the Nambu subspace
{|1−k,1k〉,|0−k,0k〉}, consisting of doubly occupied |1−k,1k〉
and unoccupied |0−k,0k〉 states of ±k fermions [27,28,35].

The matrix representation of the operator Ĥk(t) in the
Nambu subspace is given by

Hk(t) =
(

μ(t) − 2ωk 	k

	k −μ(t)

)
, (5)

where Hk(t) is the Bogoliubov–de Gennes (BdG) Hamiltonian,
ωk = 2J cos k, 	k = 2J sin k, and μ(t) = 2g(t). By defin-
ing the spinor 


†
k (t) = (u∗

k(t),v∗
k (t)), and considering the BCS

ansatz equation (4), it is possible to show that the coefficients
uk(t) and vk(t) should satisfy the differential equation

i
d

dt

k(t) = Hk(t)
k(t), (6)

which constitutes the dynamical version of the Bogoliubov–de
Gennes equation [26]. At this point we have translated the
many-body problem into the solution of the time-dependent
Schrödinger equation for an effective two-level system. Under

periodic driving, the Floquet theorem states that the solution
of Eq. (6) can be written as


k(t) = A+e−iε
(+)
k t�

(+)
k (t) + A−e−iε

(−)
k t�

(−)
k (t), (7)

where �
(±)
k (t) denote the Floquet modes corresponding to

the quasienergies −�/2 � ε
(±)
k � �/2. Furthermore, in the

extended Hilbert spaceR ⊗ T , whereR is the Hilbert space of
square integrable functions and T is the space of time-periodic
functions, the Floquet states satisfy the eigenvalue problem

Hk�
(λ)
k (t) = ε

(λ)
k �

(λ)
k (t), (8)

where λ ∈ {+,−}, Hk = Hk(t) − iÎk
∂
∂t

is the Floquet–

Bogoliubov–de Gennes (FBdG) Hamiltonian, ε
(λ)
k are the

quasienergies, and the Floquet modes �
(λ)
k (t + T ) = �

(λ)
k (t)

have the same period T = 2π/� as the external driving
[20–23].

B. Resonance conditions

In the thermodynamic limit, the Ising model is characterized
by an infinite set of collective excitations. Under the effect of an
external driving, the possibility of multiphotonic resonances
arises [20,22,23]. To study such quantum resonances, let us
consider the system in the absence of driving g1 = 0. In this
case, the Floquet modes and the quasienergies become the
stationary states φ±

k and the excitation spectrum ε
(±)
k = −ωk ±

εk of the undriven system, respectively [22,23]. Therefore, the
solution of Eq. (6) can be written in the form of Eq. (7) as
follows:

ψk(t) = a+e−iε
(+)
k tφ

(+)
k + a−e−iε

(−)
k tφ

(−)
k . (9)

The energy gap is given by 	Ek = ε
(+)
k − ε

(−)
k = 2εk , where

εk = 2
√

(g0 − J cos k)2 + (J sin k)2. (10)

In the semiclassical theory of light-matter interaction, we
can interpret a Floquet state as a light-matter quantum state
containing a definite, though very large, number of photons
[20]. Multiple transitions between quantum states of the spin
chain that are not directly coupled by the interaction can occur
by means of intermediate states with a different number of
photons present [20–22]. In particular, m-photon transitions
occur when the condition

	Ek = m�, (11)

with integer m satisfied. For a parametric oscillator with
fundamental frequency εk , Eq. (11) is the usual resonance
condition [36]. In Floquet theory, Eq. (11) implies the existence
of a crossing between the single-particle energy levels εk and
−εk when the energy spectrum is folded into the Brillouin
zone [20]. Such a crossing occurs at the wave vector

k0 = ± arccos

(
g2

0 + J 2 − (
m�

4

)2

2g0J

)
, (12)

where the resonance condition is fulfilled, as depicted in
Fig. 1(a). Figure 1(a) depicts the energy dispersion relation
of the undriven system, and the continuous lines in Fig. 1(b),
the corresponding folding of the energy spectrum into the first
Brillouin zone −�/2 � εk � �/2. In this paper we focus on
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FIG. 1. (Color online) (a) Typical gapped energy spectrum ±εk

of the undriven system corresponding to the paramagnetic phase
g0 � J . In this case, the energy dispersion is slightly curved because
the curvature is proportional to the spin-spin interaction strength J .
(b) The continuous lines depict the spectrum ±εk when it is folded
into the first Brillouin zone; the crossing at k = ±k0 is related to a
two-photon resonance. The dashed lines represent the quasienergy
spectrum ±εk,m for a driving amplitude g1/� = 1. The parameters
are m = 2, J/� = 0.01, and g0/� = 0.505.

the weak spin-spin coupling limit g0,� � J . In this limit the
multiphoton resonance condition reads

g0 = m�

4
. (13)

Such resonance condition will be used in the next section
to perform a description of the system based on an effective
time-independent Hamiltonian which is valid for parameters
close to a multiphotonic resonance.

III. PHYSICS IN THE ROTATING FRAME

The dynamical BdG equations allow us to investi-
gate the full quantum evolution of the driven system. As
we are interested in the asymptotic quantum dynamics and the
description of critical signatures, it is convenient to describe
the dynamics of the system in a rotating frame. In the weak
spin-spin interaction limit, it is possible to neglect the fast
oscillations in the rotating frame, and a description of the
system based on the description for time-independent systems
is possible via an approximate effective Hamiltonian.

A. The rotating wave approximation and the
effective Hamiltonian

Motivated by the m-photon resonance condition in the weak
spin-spin coupling limit, Eq. (13), we perform a description of
the system based on the rotating wave approximation [21]. Let
us perform a unitary transformation of Hamiltonian equation

(1) into a convenient rotating frame via the unitary operator

Û (m)(t) = exp

(
iαm(t)

N∑
i=1

σx
i

)
=

∏
k>0

Û
(m)
k (t)

=
∏
k>0

exp[−2iαm(t)(c†kck + c
†
−kc−k − 1)], (14)

where αm(t) = m(�/4)t + g1

�
sin �t . In the rotating frame

the dynamics is governed by the Hamiltonian Ĥ (m)(t) =
[Û (m)(t)]†ĤÛ (m)(t), where Ĥ = Ĥ (t) − i ∂

∂t
= ∑

k>0 Ĥk =∑
k>0[Ĥk(t) − iÎk

∂
∂t

] is the Floquet Hamiltonian. The explicit
form of this operator is given by

Ĥ (m)(t) = −δ(m)
N∑

i=1

σx
i − J

2
{1 + cos[4αm(t)]}

N∑
i=1

σ z
i σ z

i+1

− J

2
{1 − cos[4αm(t)]}

N∑
i=1

σ
y

i σ
y

i+1

+ J

2
sin[4αm(t)]

N∑
i=1

σ z
i σ

y

i+1

+ J

2
sin[4αm(t)]

N∑
i=1

σ
y

i σ z
i+1, (15)

where the detuning δ(m) = g0 − m(�/4) describes how far the
system is from resonance, and m is an integer that denotes
the order of the multiphotonic resonance [20]. By using the
identity

exp(iz sin �t) =
∞∑

l=−∞
Jl(z) exp(il�t), (16)

where Jl(z) is the lth-order Bessel function [37], the Hamil-
tonian equation (15) can be written in the form

Ĥ (m)(t) =
∞∑

n=−∞
ĥ(m)

n exp (in�t). (17)

In analogy with the standard RWA of quantum optics, we
obtain an approximate Hamiltonian to describe the mth reso-
nance by neglecting all the terms in Ĥ (m)(t) with oscillatory
time dependence: Ĥ (m)(t) ≈ ĥ

(m)
0 . This approximation is valid

as long as the condition

δ(m),JJm

(
4g1

�

)

 � (18)

holds [21].
Finally, we obtain the time-independent effective Hamilto-

nian

ĥ
(m)
0 = −δ(m)

N∑
i=1

σx
i −

N∑
i=1

(
J (m)

z σ z
i σ z

i+1 + J (m)
y σ

y

i σ
y

i+1

)
,

(19)

where the parameters J (m)
z = J

2 [1 + (−1)mJm( 4g1

�
)] and

J (m)
y = J

2 [1 − (−1)mJm( 4g1

�
)] denote effective anisotropies in

the rotating frame. Interestingly, the effective Hamiltonian
equation (19) corresponds to an exactly solvable model, i.e.,
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it is unitarily equivalent to the XY anisotropic spin chain in a
transverse field [38–40]. However, in our case, the anisotropies
depend upon both the order m of the resonance as well as the
driving amplitude g1. Therefore, the driving amplitude of the
local field now plays the role of a new parameter that influences
the criticality of the system.

B. Signatures of criticality in the rotating frame

Under the RWA, the Hamiltonian ĥ
(m)
0 and the Floquet

Hamiltonian Ĥ = Ĥ (t) − i ∂
∂t

are isospectral operators, which
implies that the eigenvalues of the effective Hamiltonian
correspond to the quasienergies. As we show in Appendix B—
similarly to the Ising model [1]—after a Jordan-Wigner trans-
formation, and a discrete Fourier transform, the Hamiltonian
equation (19) can be written as follows:

ĥ
(m)
0 =

∑
k>0

[(2δ(m) − ωk)(c†kck + c
†
−kc−k) − 2δ(m)]

+
∑
k>0

(−1)m	kJm

(
4g1

�

)
(c†kc

†
−k + c−kck)

=
∑
k>0

ĥ
(m)
0,k . (20)

The matrix representation of ĥ
(m)
0,k in the Nambu subspace is

given by

h
(m)
0,k =

(
2δ(m) − 2ωk (−1)m	kJm

( 4g1

�

)
(−1)m	kJm

( 4g1

�

) −2δ(m)

)
. (21)

The Hamiltonian equation (20) can be diagonalized via a
Bogoliubov transformation

ĥ
(m)
0 =

∑
k>0

εk,m

(
γ
†
k γk − 1

2

)
, (22)

where

εk,m = 2

√
(δ(m) − J cos k)2 +

[
JJm

(
4g1

�

)
sin k

]2

. (23)

Furthermore, the quasienergies are defined (modulus �) by
the equation

ε
(±)
k,m = −ωk ± εk,m + m�

2
, (24)

as defined in Eq. (8). The quasienergy gap in the fermion
picture is given by 	Ek,m = ε

(+)
k,m − ε

(−)
k,m = 2εk,m. Therefore,

when the gap closes, modulus �—the effective Hamiltonian—
exhibits a behavior which resembles the dynamics of a critical
quantum system. The dashed lines in Fig. 1(b) depict the
quasienergy dispersion relation for g1 �= 0. We observe that
the driving lifts the degeneracy giving rise to an anticrossing.
Based on the well-known results for the time-independent XY

model that we summarize in Appendix B, we find that the
system described by the effective Hamiltonian equation (19)
exhibits an effective nonequilibrium Ising-like QPT along the
critical lines |δ(m)| = J , and a nonequilibrium anisotropic QPT
along the lines where Jm( 4g1

�
) = 0, as long as the condition

|δ(m)| < J holds. The gapless quasienergy excitation spectrum
for parameters along the critical lines is a direct consequence of

FIG. 2. (Color online) Nonequilibrium quantum phase transition
in the driven Ising chain in a time-dependent transverse field g(t) =
g0 + g1 cos �t . (a) depicts the quasienergy dispersion relations ±εk,m

for parameters in the ferromagnetic phases FMZ and FMY , and along
a critical line. (b) depicts the phase diagram of the nonequilibrium
phase transition around the m = 2 resonance as a function of the
driving amplitude g1 and the static local field g0. The white zones
represent the paramagnetic phase. Correspondingly, the blue (dark
gray) zones represent the ferromagnetic phase FMZ and the green
zones (light gray) the ferromagnetic phase FMY . (c) depicts the
effective asymmetries in the z direction J (m)

z [blue (dark gray) curve]
and y direction J (m)

y [green (light gray) curve] as a function of the
driving amplitude g1. For this plot, we have considered J/� = 0.01.

coherent destruction of tunneling [24,25], i.e., of the existence
of a generalized parity symmetry in the extended Hilbert space
R ⊗ T , where R is the Hilbert space of square integrable
functions and T is the space of time-periodic functions [23].

Figure 2(a) depicts the character of the quasienergy ex-
citation spectrum ±εk,m for parameters in the ferromagnetic
phase FMY , along the critical line, and in the ferromagnetic
phase FMZ, respectively. Figure 2(b) depicts the phase
diagram for the nonequilibrium QPT in the neighborhood
of the two-photon resonance. The white zones in the phase
diagram correspond to the effective paramagnetic phase and
are defined by the inequality J < |δ(m)| < |δ(m)

max|, for m = 2,
where δ(m)

max denotes the maximum detuning for which the RWA
is still valid. The anisotropic transition is characterized by two
ferromagnetic phases, i.e., for J (m)

z > J (m)
y the system is in a

ferromagnetically ordered phase along the z direction FMZ,
while it is the other way around in the FMY phase. In the
particular case δ(m) = 0, the effective Hamiltonian equation
(19) is unitarily equivalent to the XY model in the absence of a
transverse field. Therefore, in this special case the system only
exhibits the conventional anisotropic transitions between the
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ferromagnetically ordered FMZ and FMY phases. In Fig. 2(c)
we plot the effective asymmetries J (m)

z and J (m)
y as a function of

the driving amplitude g1 in the case of a two-photon resonance.

IV. PHYSICS IN THE LABORATORY FRAME

A. Quantum evolution of an initial paramagnetic state

As we previously mentioned, the eigenvalues of the
effective Hamiltonian correspond to the quasienergies of
the system. However, the corresponding eigenstates do not
necessarily correspond to Floquet modes. In order to obtain the
Floquet modes, one should apply a unitary transformation back
into the laboratory frame. In so doing, the positive-quasienergy
Floquet mode around the m-photon resonance in the Nambu
subspace is given by

�
(+)
k,m(t) = ei(m�/2t)U

(m)
k (t)

(
cos(φk,m)

− sin(φk,m)

)

=
(

e−i[2αm(t)−(m�/2)t] cos(φk,m)

−ei[2αm(t)+(m�/2)t] sin(φk,m)

)
, (25)

and, correspondingly, the negative-quasienergy Floquet mode
is given by

�
(−)
k,m(t) = ei(m�/2t)U

(m)
k (t)

(
sin(φk,m)

cos(φk,m)

)

=
(

e−i[2αm(t)−(m�/2)t] sin(φk,m)

ei[2αm(t)+(m�/2)t] cos(φk,m)

)
, (26)

where

tan(2φk,m) = −(−1)m	kJm

( 4g1

�

)
2δ(m) − ωk

. (27)

Now, let us investigate the quantum evolution in the laboratory
frame around the m-photon resonance when the system is
initialized in a paramagnetic state of the undriven model with
all the spin polarized along the x axis

|ψm,0〉 =
⊗
k>0

|0−k,0k〉. (28)

Restricted to the Nambu subspace for a given 0 � k � π ,
such an initial state corresponds to the spinor 


†
k,m(0) =

(u∗
k,m(0),v∗

k,m(0)) = (0,1), whose quantum evolution is given
by


k,m(t) = U
(m)
k (t) exp

( − ih
(m)
0,k t

)

k,m(0)

= − sin(φk,m)
(+)
k,m(t) + cos(φk,m)
(−)

k,m(t), (29)

where 

(±)
k,m(t) = e−iε

(±)
k,mt�

(±)
k,m(t) denotes the Floquet states

restricted to the Nambu subspace.

B. The dynamics of the transverse magnetization

By using the exact quantum evolution of the initial
paramagnetic state, we are able to calculate the dynamics of
physical observables in the laboratory frame. The transverse
magnetization density Mx(t) gives us information about the
occurrence of a macroscopic polarization of the spins along
the x axis. Let us consider the expectation value Mx(t) =

1
N

〈ψm,t | ∑N
i=1 σx

i |ψm,t〉 close to the mth resonance,

Mx(t) = −
∫ π

0

dk

π



†
k,m(t)σ z(k)
k,m(t)

= 1 − 2
∫ π

0

dk

π
sin2(εk,mt) sin2(2φk,m), (30)

where

σ z(k) = 1

2

∂Hk

∂g0
=

(
1 0

0 −1

)
, (31)

and Hk is the FBdG Hamiltonian equation (8). Figure 3
depicts the dynamics of the magnetization density in the
thermodynamic limit calculated using RWA (black curve). In
particular, Fig. 3(a) shows the dynamics for parameters in the
nonequilibrium paramagnetic phase, Fig. 3(b) at the Ising-like
critical line δ(m) = J , and Fig. 3(c) for the ferromagnetic phase
FMZ. We observe that in the paramagnetic phase the system

FIG. 3. (Color online) (a) Time evolution of the dimensionless
magnetization density Mx(t) in the thermodynamic limit (black
curve) and exact numerical result for a finite system consisting
of N = 100 spins [green (light gray) curve] for 0 < t < 200T ,
where T = 2π/� is the period of the external driving. Time
evolution for parameters corresponding to (a) the nonequilibrium
paramagnetic phase (δ(m) > J ), for m = 2, where (g1/�,g0/�) =
(1,0.515), (b) the Ising-like critical line (δ(m) = J ), for m = 2, where
(g1/�,g0/�) = (1,0.510), and (c) time evolution for parameters
corresponding to the nonequilibrium ferromagnetic phase (FMZ)
(δ(m) < J ), for m = 2, where (g1/�,g0/�) = (1,0.505). The insets
show the detail of the magnetization curves. We have considered
J/� = 0.01.

063627-5



V. M. BASTIDAS, C. EMARY, G. SCHALLER, AND T. BRANDES PHYSICAL REVIEW A 86, 063627 (2012)

exhibits a stationary state which corresponds to a polarized
state along the local field direction. In contrast, for parameters
corresponding to the critical line and the ferromagnetic phase
FMZ, the state is not totally polarized along this direction.
Furthermore, at the Ising-like critical line, the magnetization
density does not exhibit oscillations. The green curve (light
gray) in Fig. 3 depicts the result of exact numerical calculation
(see Appendix C) of the magnetization density for a finite size
system N = 100.

In this dynamical scenario the connection with criticality
is not obvious. Rather, signatures of quantum criticality in the
laboratory frame may appear in the asymptotic dynamics. Let
us consider now the time evolution of the expectation value of
a general observable

O(t) = 〈ψm,t |Ô|ψm,t〉 =
∫ π

0

dk

2π



†
k,m(t)Ok
k,m(t). (32)

In general, following the argument established in [34], it is
possible to show that O(t) = Oper(t) + Otr(t), where

Oper(t) =
∑

λ∈{+,−}

∫ π

0

dk

2π
|Aλ|2

[
�

(λ)
k,m(t)

]†Ok�
(λ)
k,m(t) (33)

is the periodic contribution to the expectation value, which
corresponds to synchronization with the external driving.
Here we consider A+ = − sin[φk,m] and A− = cos[φk,m].
Correspondingly,

Otr(t) =
∫ π

0

dk

π
Re{A∗

+A−e−2iεk,mt [�(+)
k,m(t)]†Ok�

(−)
k,m(t)}

(34)

denotes the transient component, which decays to zero in the
long-time limit as a consequence of destructive interference in
time [34]. Therefore, the system tends to synchronize with
the external control in the long-time limit. The particular
case δ(m) = 0 for m = 0 has been discussed in Ref. [32]
in the context of freezing of the response in a many-body
system. In this case, the system only exhibits the conventional
anisotropic transition, which is reflected in the behavior of
the magnetization dynamics. Furthermore, the anisotropic
critical lines J0(4g1/�) = 0 are related to the effect of
maximal freezing discussed in Ref. [32]. We conclude that
in the asymptotic dynamics, the Floquet modes determine the
quantum critical behavior, as we discuss in the next section.

C. Cycle-averaged expectation values in Floquet eigenstates

We now define cycle-averaged expectation values of phys-
ical observables. In the case of a time-dependent Hamiltonian
Ĥ (t), the energy is not conserved. Therefore, to describe
signatures of the quantum phase transition in the laboratory
frame we define the averaged energy H̄ (±)

m in the Floquet state
|
(±)

m (t)〉 = ⊗
k>0 |
(±)

k,m(t)〉 as

H̄ (±)
m ≡

∫ T

0

dt

T

∫ π

0

dk

2π

[



(±)
k,m(t)

]†
Hk(t)
(±)

k,m(t)

=
∫ T

0

dt

T

∫ π

0

dk

2π

(
ε

(±)
k,m +

[
�

(±)
k,m(t)

]†
i

∂

∂t
�

(±)
k,m(t)

)
.

(35)

By using the analytic expressions for the Floquet modes,
Eqs. (25) and (26), we obtain the expression

H̄ (±)
m = ±

∫ π

0

dk

2π

(
εk,m + m�

2
cos(2φk,m)

)
. (36)

On exact resonance δ(m) = 0, we obtain an analytical expres-
sion for the cycle-averaged energy

H̄ (±)
m = ±2J

π
E

{
1 −

[
Jm

(
4g1

�

)]2
}

, (37)

where E[z] is the complete elliptic integral of the second kind
(see Appendix B). This result confirms our prediction based
on the description of the system in the rotating frame (see
Fig. 2). The cycle-averaged energy exhibits singularities at
the zeros of the Bessel function, i.e., Jm( 4g1

�
) = 0. This is a

clear signature of a critical nonequilibrium behavior. Finally,
we calculate the cycle-averaged transverse magnetization in
the Floquet mode |
(±)

m (t)〉. By considering the extension of
the Hellmann-Feynman theorem for Floquet theory [22,23],
we can compute the cycle-averaged magnetization M̄ (±)

x in
terms of derivatives of the quasienergies as follows:

M̄ (±)
x = −

∫ T

0

dt

T

∫ π

0

dk

2π

[



(±)
k,m(t)

]† (
∂Hk

∂g0

)



(±)
k,m(t)

= −
∫ π

0

dk

2π

∂ε
(±)
k,m

∂g0
= ∓

∫ π

0

dk

π
cos(2φk,m). (38)

Figures 4 and 5 show the cycle-averaged expectation values of
observables. Similarly to the undriven case, the system exhibits
nonanalyticities in the second derivative of observables—as
can be seen in the corresponding insets—thus resembling a
continuous phase transition. Such nonanalyticities arise as a

FIG. 4. (Color online) Cycle-averaged energy H̄ (−)
m as a function

of the driving amplitude g1. (a) For parameters in nonequilibrium
paramagnetic phase (δ(m) > J ), for m = 2, where g0/� = 0.515. (b)
For parameters inside the ladder of ferromagnetic phases (δ(m) <

J ), for m = 2, where g0/� = 0.505. The insets depict the second
derivative of the cycle-averaged energy as a function of the driving
amplitude g1. We have considered J/� = 0.01.
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FIG. 5. (Color online) Cycle-averaged dimensionless magneti-
zation M̄ (−)

z as a function of the driving amplitude g1. (a) For
parameters in the nonequilibrium paramagnetic phase (δ(m) > J ), for
m = 2, where g0/� = 0.515. (b) For parameters inside the ladder of
ferromagnetic phases (δ(m) < J ), for m = 2, where g0/� = 0.505.
The insets depict the second derivative of the cycle-averaged magne-
tization as a function of the driving amplitude g1. The parameters are
m = 2 and J/� = 0.01.

consequence of CDT [24,25], and therefore, from the gapless
quasienergy spectrum.

V. CONCLUSIONS

We have investigated the nonequilibrium critical behavior
in a driven one-dimensional transverse Ising model. We find
that the fundamental signature of critical behavior is the
existence of a gapless quasienergy spectrum, which is a direct
consequence of CDT. The role of coherent destruction of
tunneling in nonequilibrium QPT has been explored either
theoretically or experimentally in the context of driven
superfluidity [13,15]. In this paper, we show that CDT induces
a critical behavior which resembles a second-order QPT. In
particular, the symmetry which is broken corresponds to a
generalized parity in an extended Hilbert space R ⊗ T , where
R is the Hilbert space of square integrable functions and T is
the space of time-periodic functions. In this nonadiabatic sce-
nario, the short time dynamics is governed by transient effects
that tend to zero in the asymptotic limit as a consequence
of destructive interference [34]. The long-time dynamic is
governed by the Floquet modes, therefore the nonequilibrium
quantum phases correspond to states which are synchronized
with the external control.

By means of a Kramers-Wannier self-duality transfor-
mation [41,42], it is possible to map Hamiltonian equation
(1) into a dual periodically driven Ising model with time-
dependent exchange interaction. Therefore, the study of the
nonequilibrium QPT in the Hamiltonian equation (1) allows
one to get a physical picture of the corresponding QPT in the
dual model.

A possible experimental implementation of our model
could be achieved based on a configuration of superconductor

quantum bits with programmable spin-spin interaction [2];
such a setup allows for a high degree of control of the system
parameters. We anticipate that under an adiabatic change of
the static local field g0 and the driving amplitude g1 our model
could be interesting in the context of quantum annealing, as
the effective Hamiltonian equation (19) corresponds to the XY

model. Another experimental setup can be realized by means
of cold atoms [3,4,7], and in fully C-labeled sodium butyrate
using liquid state nuclear magnetic resonance [43,44].
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APPENDIX A: DESCRIPTION OF THE PERIODICALLY
DRIVEN ISING MODEL FOR FINITE SIZE

In this section we introduce the fundamental tools used in
the solution of the Ising model following the methods and
the notation of Ref. [26]. Let us consider the Hamiltonian
equation (1) in the case of even number of lattice sites N . For
convenience, we use the Jordan-Wigner representation of the
Pauli matrices

σx
j = 1 − 2c

†
j cj ,

σ
y

j = −i(c†j − cj )
j−1∏
l=1

(1 − 2c
†
l cl), (A1)

σ z
j = (c†j + cj )

j−1∏
l=1

(1 − 2c
†
l cl).

Under this representation of the angular momentum algebra,
the parity operator equation (2) acquires the form

�̂ =
N∏

j=1

(1 − 2c
†
j cj ). (A2)

Using this parity operator we are able to define projectors
on the subspaces with an even (+) and odd (−) number of
fermionic quasiparticles as follows:

P̂± = 1
2 (1 ± �̂). (A3)

The projectors P̂± satisfy the usual properties of orthog-
onal projection operators such as P̂+ + P̂− = 1, P̂+P̂− =
P̂−P̂− = 0, and (P̂±)2 = P̂±. Using these properties and the
algebra of fermionic operators it is possible to show that the
Hamiltonian equation (1) can be decomposed as follows:

Ĥ (t) = P̂+Ĥ (+)(t)P̂+ + P̂−Ĥ (−)(t)P̂−, (A4)

where

Ĥ (±)(t) = −g(t)
N∑

i=1

(1 − 2c
†
i ci) − J

N∑
i=1

(c†i − ci)(c
†
i+1 + ci+1).

(A5)
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To perform the splitting we have defined antiperiodic boundary
conditions in the even (+) subspace cN+1 = −c1 and periodic
boundary conditions in the odd (−) subspace cN+1 = c1. In this
paper we focus on the projection Ĥ (+) in the even subspace.
Translational invariance suggests the use of the discrete Fourier
transform

cn = e−iπ/4

√
N

∑
k

cke
ikn, (A6)

which is compatible with the antiperiodic boundary
conditions when k ∈ {± π

N
, ± 3π

N
, . . . , ± (N−1)π

N
}. The dis-

crete Fourier transform maps Ĥ (+) into Hamiltonian equation
(3).

APPENDIX B: THE QUANTUM PHASE TRANSITION IN
THE ANISOTROPIC XY SPIN CHAIN IN A

TRANSVERSE FIELD

Here we consider the critical behavior in a model described
by the Hamiltonian

Ĥ = −h

N∑
i=1

σx
i −

N∑
i=1

(
Jzσ

z
i σ z

i+1 + Jyσ
y

i σ
y

i+1

)
, (B1)

which is unitarily equivalent to the Hamiltonian of an
anisotropic XY spin chain in a transverse field [38–40].

Similarly to the Ising model, after Jordan-Wigner trans-
formation, and a discrete Fourier transform, the Hamiltonian
equation (B1) in the even subspace (the subspace with an even
number of fermionic quasiparticles) acquires the form

Ĥ =
∑
k>0

{2[h − (Jz + Jy) cos k](c†kck + c
†
−kc−k) − 2h}

+
∑
k>0

2(Jz − Jy) sin k(c†kc
†
−k + c−kck). (B2)

The diagonalization of this Hamiltonian is completed after a
Bogoliubov transformation,

Ĥ =
∑

k

Ek

(
γ
†
k γk − 1

2

)
, (B3)

where

Ek = 2
√

[h − (Jz + Jy) cos k]2 + [
(
Jz − Jy

)
sin k]2. (B4)

The system exhibits an Ising-like QPT along the lines |h| =
Jz + Jy and an anisotropic QPT along the line Jz = Jy ,
providing that |h| < Jz + Jy . The anisotropic transition is
characterized by two ferromagnetic phases, i.e., for Jz > Jy

the system is in a ferromagnetically ordered phase along the z

direction FMZ, while it is the other way around in the FMY

phase. Similarly to Ref. [38], we consider a reparametrization
of the asymmetries

Jz = J

2
(1 + γ ),

(B5)

Jy = J

2
(1 − γ ),

where γ is a dimensionless parameter characterizing the
degree of anisotropy in the zy plane. Under this reparametriza-

tion, the Ising-like critical lines correspond to |h| = J , and the
anisotropic transition occurs at γ = 0, as long as |h| < J .

Interestingly, in the absence of a transverse field, i.e., for
h = 0, the scaled ground-state energy can be written in the
thermodynamic limit as

EG = − lim
N→∞

1

N

∑
k

Ek

2

= −J

∫ π

−π

dk

2π

√
1 − (1 − γ 2) sin2 k

= −2J

π
E[1 − γ 2], (B6)

where E[z] is the complete elliptic integral of the second kind
[37]. The scaled ground-state energy exhibits a nonanalyticity
of the second derivative at the critical line of the anisotropic
transition γ = 0 [38], which is a generic characteristic of a
second-order QPT [1].

APPENDIX C: NUMERICAL CALCULATION OF THE
EXPECTATION VALUES

By using the BCS ansatz, Eq. (4), we can solve the
Schrödinger equation for the Ising model in terms of the
solution of the Schrödinger equation for an effective two-level
system described by the BdG Hamiltonian equation (5),
which is parametrized by the quasimomentum k ∈ {± π

N
, ±

3π
N

, . . . , ± (N−1)π
N

}.
In the numerical calculation we assume that the system

is prepared initially in the unoccupied state |0−k,0k〉, which
implies that 


†
k (0) = (u∗

k(0),v∗
k (0)) = (0,1). After numerical

integration of the dynamical BdG equation (6), we find the
spinor 
k(t). To calculate the scaled expectation value of
the transverse magnetization Mx(t) = 1

N
〈∑N

i=1 σx
i 〉 for a given

system size N , we use the formula

Mx(t) = − 2

N

∑
k>0

[
k(t)]†[σ z(k)]
k(t). (C1)

In the last expression we have used the definition of σ z(k)
given in Eq. (31). For example, to calculate the dynamics of
the system for N = 4, we perform the numerical integration
of Eq. (6) for k ∈ {π

4 , 3π
4 }. Based on the solution of this

equation we find the solution of the Schrödinger equation for
Hamiltonian equation (1) using the BCS ansatz

|ψ,t〉 = |ψπ/4,t〉 ⊗ |ψ3π/4,t〉, (C2)

where

|ψπ/4,t〉 = [uπ/4(t)|1−π/4,1π/4〉 + vπ/4(t)|0−π/4,0π/4〉] (C3)

and

|ψ3π/4,t〉
= [u3π/4(t)|1−3π/4,13π/4〉 + v3π/4(t)|0−3π/4,03π/4〉].

(C4)
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[6] S. Mostame and R. Schützhold, Phys. Rev. Lett. 101, 220501
(2008).

[7] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger,
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