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We describe two-field optical techniques to control interactions in Feshbach resonances for two-body scattering
in ultracold gases. These techniques create a molecular dark state in the closed channel of a magnetically
tunable Feshbach resonance, greatly suppressing optical scattering compared to single optical field methods.
The dark-state method enables control of the effective range, by creating narrow features that modify the energy
dependence of the scattering phase shift, as well as control of the elastic and inelastic parts of the zero-energy
s-wave scattering amplitude. We determine the scattering length and the effective range from an effective range
expansion, by calculating the momentum-dependent scattering phase shift from the two-body scattering state.

DOI: 10.1103/PhysRevA.86.063625 PACS number(s): 03.75.Ss

I. INTRODUCTION

Ultracold atomic gases with controllable interactions are
now widely studied by exploiting collisional (Feshbach)
resonances [1–4], where the interaction strength is controlled
by means of a bias magnetic field. In a recent theoretical
paper [5], we suggested a general “dark-state” optical method
for widely controlling the scattering length near a magnetic
Feshbach resonance, while suppressing spontaneous scattering
by quantum interference. In this paper, we provide a more
detailed treatment of the method and show that the molecular
dark-state method enables control of both the scattering length
and the effective range in the two-body collisions of ultracold
gases.

Precision optical control of the scattering length and
effective range in two-body scattering enables rapid temporal
control and high-resolution spatial control of the interaction
strength near a Feshbach resonance, opening many new fields
of study, such as nonequilibrium strongly interacting Fermi
gases [6]. For example, the natural time scale in a Fermi gas is
the “Fermi time,” the time τF for an atom at the Fermi surface
to move a de Broglie wavelength, i.e., τF = λF /vF � h̄/EF .
For Fermi energies EF in the kB × 1 μK regime, τF is
several microseconds. To explore nonequilibrium dynamics
on this time scale [6] requires fast control of interactions,
which is readily achieved with optical methods. In simulating
neutron matter, the unitary Fermi gas provides the simplest
model, where the scattering length is large compared to the
interparticle spacing. A more realistic model of neutron matter
can be realized by adjusting both the scattering amplitude and
the effective range in a trapped Fermi gas, to achieve the known
ratios for neutrons, where the effective range is comparable
to the interparticle spacing [7]. Of great interest, as discussed
below, is that using optical control, the effective range can even
be made large and negative. This is especially interesting for
the narrow Feshbach resonance in 6Li, where recent theory [8]
suggests that a Fermi gas can be even more strongly interacting
than for the broad resonance in the unitary regime.

In contrast to Bose gases, which suffer from three-body
inelastic processes near a resonance, two-component Fermi
gas mixtures are stable as a result of the Pauli principle, and

can be rapidly cooled to quantum degeneracy by evaporation
in the resonant regime [1]. Typically, in a Feshbach resonance,
an external magnetic field controls the interaction strength
between spin-up and spin-down atoms, by tuning the energy
of an incoming, colliding atom pair into resonance with
that of a bound molecular state in an energetically closed
channel [9,10]. Optical control of Feshbach resonances has
been explored previously in Bose gases [11,12] and currently
is receiving substantial attention [13]. Optical Feshbach reso-
nances (OFR), which employ photoassociation light to drive a
transition from the continuum of the incoming atom-pair state
to an excited molecular bound state, has been proposed and
experimentally observed [12,14–18]. However, light-induced
inelastic collisions and the accompanying loss limit its prac-
tical applicability. Optical Feshbach resonances for control
of higher partial waves, such as p-wave scattering of 171Yb,
has been suggested [19] and demonstrated recently [20]. OFR
has also been studied by using a narrow intercombination line
of a bosonic gas 88Sr, with the laser frequency tuned far away
from resonance [21]. Submicron-scale spatial modulation of an
interatomic interaction has been observed in an alkaline-earth
atomic condensate [22]. Recently, Bauer and co-workers [13]
have used a single optical field to control the scattering length
near a magnetic Feshbach resonance by driving a transition be-
tween the resonant ground state and an excited molecular state
in the closed channel. This elegant method enables substantial
tuning of the scattering length, but a large laser intensity
and a large frequency detuning are required for suppressing
the light-induced loss [13]. The use of electromagnetically
induced transparency (EIT) to control Feshbach resonances
was suggested by Harris [23]. Deb [24] has suggested that
quantum interference between photoassociation and magnetic
Feshbach s-wave resonance amplitudes permits control of the
scattering length and suppression of inelastic scattering. The
method enables control of higher order partial waves as well. It
is clear that the development of improved quantum interference
methods for achieving wide tunability of scattering parameters
while suppressing light-induced loss and heating [5,23,24] will
greatly extend the applicability of optical control methods.

In this paper, we analyze the molecular dark-state method
proposed in Ref. [5] to determine both the optically controlled
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FIG. 1. (Color online) Scheme for dark-state optical control of
a Feshbach resonance using two closed-channel molecular states.
Optical fields of frequencies ω1 and ω2 and Rabi frequencies �1 and
�2, respectively, couple two singlet ground molecular states |g1〉 and
|g2〉 to the excited singlet molecular state |e〉; VHF is the hyperfine
coupling between the incoming atomic pair state in the open (triplet)
channel and |g1〉, which is responsible for a magnetically controlled
Feshbach resonance.

s-wave scattering length and the effective range from the
relative momentum dependence of the scattering phase shift.
The basic scheme, Fig. 1, is illustrated for a pair of atoms
in two hyperfine states (denoted spin up and spin down),
which undergoes an s-wave collision in the ground electronic
state triplet molecular potential (open channel). The hyperfine
interaction couples the scattering continuum of the open
channel to a bound singlet vibrational state |g1〉 in the
energetically closed channel. An applied bias magnetic field
B tunes the total energy of the colliding atom pair downward,
near |g1〉, producing a collisional (Feshbach) resonance. Two
optical fields with frequencies ω1 and ω2 couple |g1〉 and |g2〉 to
the electronically excited singlet vibrational state |e〉, creating
a “dark” state. All three molecular levels in the closed channel
are assumed to have the same total nuclear-electron-spin state
as |g1〉, so that both optical transitions to the level |e〉 are fully
allowed. For example, |g2〉 can be a different singlet vibrational
state from |g1〉. To determine the momentum dependence of
the s-wave scattering phase shift in the presence of the light
fields, we use a method similar to that employed by Fano [25],
to treat the coupling of an open channel continuum to a bound
state in an energetically closed channel.

The primary results of this paper show how both the s-wave
scattering length [Eq. (62)] and the effective range [Eq. (67)]
can be controlled using two optical fields, which alter the
momentum-dependent phase shift of the scattering state. This
method is applicable to both broad and narrow Feshbach
resonances, as occur in 6Li. In the Appendix, we present
a simple model to determine the parameters for Feshbach
resonances with large background scattering lengths and apply
it to 6Li.

II. TIME-DEPENDENT SCATTERING STATE

We will consider first the relevant states for a broad
Feshbach resonance. As a concrete example, we will use a

mixture of the two lowest hyperfine states of 6Li, denoted |1〉
and |2〉. In a bias magnetic field, the atoms interact by s-wave
scattering, and have a total energy determined by the incoming
relative kinetic energy, the combined hyperfine energies, and
the Zeeman energies.

For a pair of atoms, one each in states |1〉 and |2〉, the total
magnetic quantum number, M = 0, is conserved in a bias
magnetic field, Bz. There are five two-atom states for M = 0,
which can be written in the “interior” singlet-triplet basis
|S,mS ; I,mI 〉. There are two singlet states |0,0; 0,0〉,|0,0; 2,0〉,
which differ in the total nuclear spin I = 0,2, and are
degenerate in the absence of hyperfine interactions. In addition,
there are three triplet states |1, − 1; 1,1〉, |1,0; 1,0〉, and
|1,1; 1, − 1〉. As shown below, however, only one singlet
state and one triplet state are relevant. At high bias magnetic
fields, the antisymmetric combination of states |1〉 and |2〉 is
predominantly the triplet electronic spin state |1, − 1; 1,1〉.

A Feshbach resonance in the s-wave channel arises when
the bias magnetic field tunes the total energy of a colliding atom
pair in the open triplet channel into resonance with a bound
molecular state in the energetically closed singlet channel.
For 6Li, the Feshbach resonant state, denoted by |g1〉, is the
ground-singlet 38th molecular vibrational state. As this singlet
bound state is lower in energy than the incoming unbound
triplet states at zero-bias field, the triplet state |1, − 1; 1,1〉,
which tunes downward with increasing B field, is responsible
for the resonance, which arises from the hyperfine coupling
between the triplet and singlet channels. The other two triplet
states tune negligibly or tune upward, and can be neglected for
the broad Feshbach resonance at 834 G.

Restricting attention to the three interior states |0,0; 0,0〉,
|0,0; 2,0〉, and |1, − 1; 1,1〉, we consider the origin of the
broad and narrow Feshbach resonances in 6Li. The hyperfine
interaction couples each of the singlet states to the triplet.
However, one combination of |0,0; 0,0〉 and |0,0; 2,0〉 has a
zero hyperfine matrix element with the triplet state |1, − 1;
1,1〉. This uncoupled singlet state is |ψN 〉 = (|0,0; 0,0〉 +
2
√

2|0,0; 2,0〉)/3 and is responsible for the narrow Feshbach
resonance in 6Li, near 543 G [26,27]. The narrow resonance
arises from a second-order coupling of |ψN 〉 to |1, − 1; 1,1〉
through the |1,0; 1,0〉 triplet state, which is far detuned from
the singlet states compared to the hyperfine energy.

To treat the broad Feshbach resonance, we can therefore
consider just two states. The first is the combination of singlet
states which is orthogonal to |ψN 〉, |g1〉 ≡ (2

√
2 |0,0; 0,0〉

− |0,0; 2,0〉)/3. The second is the triplet state |T 〉 ≡ |1,

− 1; 1,1〉, for which the diagonal element of the Zeeman-
hyperfine energy is ET ≡ −aHF/2 − 2μBB, where aHF/h =
152.1 MHz is the hyperfine coupling constant and μB is the
Bohr magneton, μB/h � 1.4 MHz/G.

We take the unperturbed two-state Hamiltonian, in the
absence of optical fields, to be

H0 = Eg1 |g1,v1〉〈g1,v1| + Eg2 |g2,v2〉〈g2,v2|
+Ee|e,ve〉〈e,ve| + VHF (|g1〉〈T | + |T 〉〈g1|)

+
(

ET + p2

m

) ∑
k1

|T ,k1〉〈T ,k1|

+ (ET + Eb)|T ,b〉〈T ,b|, (1)
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where |g1,v1〉,|g2,v2〉 are two ground electronic-vibrational
states in the singlet molecular potential and |e,ve〉 is an excited
singlet electronic-vibrational state. |T ,k1〉 is a triplet contin-
uum state. To model a large positive background scattering
length abg, we include in the model a near threshold triplet
bound state |T ,b〉, where Eb = −h̄2/(ma2

bg). We will omit
this term for small background scattering lengths and for large
negative background scattering lengths, but it will be important
for our discussion of the effective range. In Eq. (1), the singlet-
triplet hyperfine coupling for the broad 1-2 resonance in 6Li
is VHF = 〈g1|H ′

HF|T 〉 = −3 aHF/(2
√

3) = −h × 131.6 MHz,
where H ′

HF is the hyperfine interaction.
As the two optical fields used for this method can be tuned

relatively close to resonance, the isolated resonance model [15]
is adequate, in contrast to single field methods employing very
large detunings and high intensity to avoid optical scattering,
where this approximation fails [21]. According to Fig. 1, the
two optical fields introduce a perturbation,

H ′ = −h̄�1

2
e−iω1t |e,ve〉〈g1,v1|

− h̄�2

2
e−iω2t |e,ve〉〈g2,v2| + H.c., (2)

where we have used the rotating-wave approximation. Here,
�i are the Rabi frequencies for the optical transitions, which
include the vibrational Franck-Condon factors.

We take the time-dependent scattering state, for a triplet
input state of energy E = ET + h̄2k2/m, to be of the form

|�E(t)〉 = c1|g1,v1〉 + c2|g2,v2〉 + ce|e,ve〉
+ cT (k)|T ,k〉 + cT (b)|T ,b〉 +

∑
k′ �=k

cT (k′)|T ,k′〉,

(3)

where |T ,k〉 is the selected input triplet scattering state (in the
open channel), with h̄k the relative momentum of the colliding
atoms. Note that all of the amplitudes, c1, etc., are both k

dependent and time dependent. The sum denotes the rest of the
triplet continuum for k′ �= k, which leads to the principal part
of the integral obtained in the continuum limit. For r → ∞,
the triplet continuum background states (box normalization)
have the asymptotic form

〈r|k〉 = 1√
V

sin(kr + δbg)

kr
, (4)

where δbg denotes the phase shift arising from the effective
triplet potential, which corresponds to the background scatter-
ing length abg, i.e., δbg → −kabg for k → 0.

To obtain the scattering solution, we solve the time-
dependent Schrödinger equation,

(H0 + H ′)|�E(t)〉 = ih̄
∂

∂t
|�E(t)〉. (5)

Taking projections of Eq. (5) with 〈g1,v1|, we obtain

ċ1 = − i

h̄
Eg1c1 − ig∗(k)cT (k)

− i
∑
k′ �=k

g∗(k′)cT (k′) − ig∗
bcT (b) + i

�∗
1

2
e+iω1t ce, (6)

where we have defined the hyperfine coupling strengths

h̄g(k) ≡ VHF〈k|v1〉, (7)

h̄gb ≡ VHF〈b|v1〉. (8)

Here, the overlap integrals are determined from the spatial
wave functions 〈r|v1〉 and 〈r|b〉, which are vibrational wave
functions in the singlet and triplet channel, respectively, and
〈r|k〉 is given by Eq. (4). Similarly, projecting onto 〈g2,v2|
yields

ċ2 = − i

h̄
Eg2c2 + i

�∗
2

2
eiω2t ce, (9)

while 〈e,ve| gives for the excited singlet electronic state
amplitude

ċe = −i
Ee

h̄
ce − γe

2
ce + i

�1

2
e−iω1t c1 + i

�2

2
e−iω2t c2. (10)

Here, we have added a phenomenological decay term corre-
sponding to the excited state molecular spontaneous emission
rate γe. As the decay rate arises from a spontaneous emission
into a broad range of ground singlet vibrational states, the
arrival rate of molecules into the ground states |g1〉 and |g2〉 is
negligible. Finally, projecting onto 〈T ,k′′| and 〈T ,b| yield

ċT (k′ �= k) = − i

h̄

(
ET + h̄2k′2

m

)
cT (k′) − ig(k′)c1 (11)

and

ċT (b) = − i

h̄
(ET + Eb)cT (b) − igbc1, (12)

where we note that the triplet bound state and triplet continuum
states are orthogonal.

These time-dependent amplitude equations are easily
solved. We expect that all of the triplet amplitudes will have a
time-dependent phase factor exp(−iEt/h̄), as the asymptotic
input and output states are energy eigenstates in the triplet
potential. Hence, we take cT (k′) = bT (k′) exp(−iEt/h̄) for
all k′ including k and cT (b) = bT (b) exp(−iEt/h̄). Then,
Eqs. (11) and (12) yield

ḃT (k′) = − i

h̄

(
ET + h̄2k′2

m
− E

)
bT (k′) − ig(k′)c1e

iEt/h̄

(13)

for k′ �= k and

ḃT (b) = − i

h̄
(ET + Eb − E) bT (b) − igbc1e

iEt/h̄. (14)

It is obvious that we can eliminate the explicit time-
dependent phase factors in Eqs. (13) and (14) by taking
c1 = b1 exp(−iEt/h̄). Hence,

ḃT (k′) = − i

h̄

(
ET + h̄2k′2

m
− E

)
bT (k′) − ig(k′)b1 (15)

and

ḃT (b) = − i

h̄
(ET + Eb − E)bT (b) − igbb1. (16)

Using c1 = b1 exp(−iEt/h̄) in Eq. (6) we obtain an equation
for ḃ1. We eliminate the explicit time-dependent phase factor
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that appears in the ḃ1 equation by taking ce = be exp[−i(ω1 +
E/h̄)t], which yields

ḃ1 = − i

h̄

(
Es1 − E

)
b1 − ig∗(k)bT (k)

− i
∑
k′ �=k

g∗(k′)bT (k′) − ig∗
bbT (b) + i

�∗
1

2
be. (17)

Using ce = be exp[−i(ω1 + E/h̄)t] in Eq. (10), we obtain an
equation for ḃe. We eliminate the explicit time-dependent
phase factor in that equation by taking c2 = b2 exp[+i(ω2 −
ω1 − E/h̄)t]. Then,

ḃe = i�e be − γe

2
be + i

�1

2
b1 + i

�2

2
b2, (18)

where the one-photon detuning �e is given by

�e ≡ ω1 − Ee − E

h̄
. (19)

Finally, using c2 = b2 exp[+i(ω2 − ω1 − E/h̄)t] in Eq. (9),
we obtain

ḃ2 = −iδb2 + i
�∗

2

2
be, (20)

where the two-photon detuning δ is given by

δ ≡ ω2 − ω1 − E − Eg2

h̄
. (21)

For 6Li, where the molecular spontaneous emission rate
γe � 2γspont = 2π × 11.8 MHz, and for other atoms with a
large spontaneous decay rate, we can eliminate the excited state
amplitude by making an adiabatic approximation, where we
assume ḃe � γebe/2. In this case, the excited state amplitude
tracks b1 and b2.

be � − �1b1 + �2b2

2(�e + iγe/2)
. (22)

We look for scattering state solutions of the amplitude
equations where ḃ1, ḃ2, ḃT (k), and ḃT (b) are all zero. Then,
Eq. (20) yields b2 = �∗

2be/(2δ), which with Eq. (22) yields be

in terms of b1. Then Eq. (15) yields

bT (k′ �= k) = h̄g(k′)b1(k)

E − ET − h̄2k′2/m
(23)

and Eq. (16) gives bT (b) = h̄gbb1(k)/(E − ET − Eb). Using
these results in Eq. (17), we obtain b1(k) in terms of the
amplitude of the input triplet scattering state amplitude bT (k),

b1(k) = h̄g∗(k)bT (k)

D(E)
, (24)

where

D(E) ≡ E − Eg1 − 
E(k) − h̄|�1|2
4
[
�e + i

γe

2 + |�2|2
4δ

] . (25)

Here, the shift is given by


E(k) ≡
∑
k′ �=k

h̄2|g(k′)|2
E − ET − h̄2k′2

m

+ h̄2|gb|2
E − ET − Eb

, (26)

where the sum arises from the coupling of the state |g1〉 to the
continuum and the last term arises from the coupling of |g1〉 to

a near threshold triplet bound state. Note that we will include
this term in the model only when the background scattering
length abg is large and positive.

To convert the sums into integrals, we use
∑

k′ �=k =
[V/(2π )3]P

∫
4πk′2 dk′, where P denotes the principal part,

and we define the volume-independent coupling strength

h̄g̃(k′) ≡
√

V

(2π )3
h̄g(k′) ≡ VHF〈k̃′|v1〉, (27)

where 〈k̃′|v1〉 is the spatial overlap integral of the vibrational
wave function 〈r|v1〉 with the continuum normalized momen-
tum eigenstate. In the limit r → ∞,

〈r|k̃′〉 = 1√
(2π )3

sin(k′r + δ′
bg)

k′r
. (28)

To determine the shift, we define Eb = −h̄2K2
b/m, where

Kb ≡ 1/abg for large abg > 0 with |abg| large compared to the
range of the scattering potential. Using E = ET + h̄2k2/m,
and noting that

∑
k′ �=k becomes the principal part P of the

integral over k′, we obtain


E(k) ≡ m|gb|2
k2 + K2

b

+ P

∫ ∞

0
4πk′2 dk′ m|g̃(k′)|2

k2 − k′2 . (29)

The asymptotic form of the scattering state, 〈r|�E(t)〉, in
the limit r → ∞, determines the s-wave phase shift. At large
distances, the singlet and triplet molecular wave functions
vanish. Hence, the scattering state is determined by the triplet
continuum part of the wave function, 〈r → ∞|�E(t)〉 →
ψT (r)|T 〉 exp(−iEt/h̄), where

ψT (r) = bT (k)〈r|k〉 +
∑
k′ �=k

bT (k′)〈r|k′〉. (30)

Using Eqs. (23) and (24), we obtain

bT (k′ �= k) = − mg(k′)
k′2 − k2

g∗(k)

D(E)
bT (k). (31)

With Eq. (30), this yields

ψT (r) = bT (k)

{
〈r|k〉 −

∑
k′ �=k

m g(k′)
k′2 − k2

g∗(k)

D(E)
〈r|k′〉

}
. (32)

From Eqs. (4), (27), and (32), we obtain the scattering state as

ψT (r → ∞) = bT (k)√
V

1

kr

{
sin[kr + δbg(k)] − 4πmkg̃∗(k)

D(E)
P

×
∫ ∞

0

dk′ k′ sin[k′r + δ′
bg(k′)]g̃(k′)

k′2 − k2

}
. (33)

To evaluate the principal part appearing in Eq. (33), we
note from Eq. (27) that g̃(k′) is an even function of k′ since
〈r|k̃′〉, Eq. (28), is even in k′. Note that δ′

bg is an odd function
of k′, i.e., the effective range expansion is k′ cot[δ′

bg(k′)] =
−1/abg + k′2rbg/2 and the right side is even in k′. Hence the
integrand is even in k′. Further, as shown below in the context
of our simple model, g̃(k′) has only pure imaginary poles
arising from the exponential form of the molecular bound
state of size R. In the convergent half planes, the sine function
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yields terms of the form exp(ik′r) → exp(−r/R) → 0, which
make no contribution to the integral as r → ∞. Hence, the
principal part in the limit r → ∞ is evaluated as

1

2
P

∫ ∞

−∞

dk′ k′ sin[k′r + δ′
bg(k′)]g̃(k′)

k′2 − k2

= π

2
g̃(k) cos[kr + δbg(k)]. (34)

Using Eq. (34) in Eq. (33), we obtain finally the asymptotic
triplet scattering state

ψT (r → ∞) = bT (k)√
V

1

kr

{
sin[kr + δbg(k)]

− 2π2mk|g̃(k)|2
D(E)

cos[kr + δbg(k)]

}
, (35)

where the input triplet continuum state is of energy E =
ET + h̄2k2/m and ET ≡ −aHF/2 − 2μBB is magnetic field
dependent.

To determine the total phase shift �(k) ≡ �̃(k) + δbg(k),
we write ψT (r → ∞) = A(k) sin[kr + �̃(k) + δbg(k)]/(kr),
where �̃(k) is the resonant part of the phase shift and
δbg(k) is the background part. Then, comparing Eq. (35) with
A(k) cos �̃ sin[kr + δbg(k)] and A(k) sin �̃ cos[kr + δbg(k)],
we obtain

tan �̃(k) = −2π2mk|g̃(k)|2
D(E)

, (36)

where the numerator determines the resonance width, which
arises from the decay of the dressed molecular state into the
continuum at a rate �(k), where

h̄�(k)

2
= 2π2mk|g̃(k)|2, (37)

as is readily verified using Fermi’s golden rule.

III. ZERO-ENERGY SCATTERING LENGTH
AND EFFECTIVE RANGE

We determine the zero-energy scattering length a and the
effective range re, from the total phase shift � = �̃ + δbg using

k cot[�(k)] = −1

a
+ k2re

2
. (38)

With the elementary trigonometric relation between cot(�̃ +
δbg) and cot �̃ and cot δbg, we have

k cot � = (k cot �̃)(k cot δbg) − k2

k cot δbg + k cot �̃
. (39)

To expand Eq. (38) up to order k2, we use

k cot[�̃(k)] = − D(E)

2π2m|g̃(k)|2 ≡ −1

ã
+ k2r̃e

2
(40)

and

k cot[δbg(k)] = − 1

abg
+ k2rbg

2
, (41)

with obvious notation.

After some straightforward algebra, keeping terms up to
order k2 (we avoid the zero crossing, assuming ã + abg �= 0),
we obtain the zero-energy scattering length

a = abg + ã (42)

and the effective range

re = r̃eã
2 + 2ãabg(ã + abg) + rbga

2
bg

(ã + abg)2
. (43)

Note that in the limit ã = 0, we have re = rbg and for abg = 0,
we have re = r̃e as expected.

We are interested in the zero-energy scattering length and
the effective range near resonance, where the resonant part
of the zero-energy scattering length is large in magnitude
compared to that of the background scattering length. In the
near resonance limit |ã| 
 |abg|, Eq. (43) yields

re =
[
r̃e + 2abg + 2|abg|2

ã

] (
1 − 2abg

ã

)
. (44)

Here, we ignore the effective range rbg for the background
scattering states. For small |abg|, we can take re = r̃e. In
addition, we show in the Appendix using a simple model,
that when |abg| is large compared to the singlet molecular
size, the leading contributions to re from r̃e exactly cancel
the abg-dependent terms in the square brackets. Assuming a
near resonance condition, where |abg/ã| is small, we can then
neglect the correction in parentheses.

In the following, we obtain the zero-energy scattering
length, the optically induced inelastic decay rate, and the
effective range, including the modification arising from the
optical fields. This is accomplished by expanding Eq. (40) up
to order k2. In this way, we obtain both the resonant part of the
scattering length ã and corresponding effective range r̃e.

For the resonant phase shift, we have, using Eqs. (40) and
(25) with E = ET + h̄2k2/m,

k cot �̃ = −ET − Eg1 − 
E(k) + h̄2k2

m
+ Dopt(k)

2π2m|g̃(k)|2 , (45)

where the optical contribution in the numerator is

Dopt(k) ≡ − h̄|�1|2
4
[
�e + i

γe

2 + |�2|2
4δ

] . (46)

Note that both �e and δ are dependent on E = ET + h̄2k2/m

and are therefore k2 dependent, altering the effective range.
Using k cot �̃ = −1/ã + k2re/2, the resonant part of the

zero-energy scattering length is given by the k = 0 contribu-
tion,

1

ã
= ET − Eg1 − 
E(0) + Dopt(0)

2π2m|g̃(0)|2 . (47)

Since ET ≡ −aHF/2 − 2μBB, we can write

ET − Eg1 − 
E(0) ≡ −2μB (B − B∞), (48)

where the resonance position B∞ includes the shift 
E(0).
We define the width �B of the resonance in terms of the
background scattering length, by

2π2m|g̃(0)|2 ≡ |abg|2μB�B, (49)
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where �B is positive by definition. We show in the Appendix
that for a background scattering length that is large compared
to the molecular size, the energy width 2μB�B and the shift

E(0) are equal in magnitude. Equation (47) determines how
the optical fields control the zero-energy scattering length a =
abg + ã.

In the absence of optical fields, Dopt → 0, the resonant part
of the scattering length is then ã[B] = −|abg|�B/(B − B∞)
and the zero-energy scattering length takes the usual form [10]

a[B] = abg − |abg| �B

B − B∞
. (50)

We see that the zero crossing a[B0] = 0 occurs at a field B0

below (above) resonance for abg negative (positive).
The resonant part of the effective range is determined from

the k2 terms in the expansion of Eq. (45),

k2

2
r̃e = −

h̄2k2

m
− k2 ∂
E (k)

∂(k2)

∣∣∣
k=0

+ k2 ∂Dopt(k)
∂(k2)

∣∣∣
k=0

2π2m|g̃(0)|2

+
k2 ∂|g̃(k)|2

∂(k2)

∣∣∣
k=0

[−2μB(B − B∞) + Dopt(0)]

2π2m|g̃(0)|4 . (51)

Equation (51) can be rewritten as

r̃e = r̃ (0)
e + r̃ ′

e + r̃opt
e , (52)

where r̃ (0)
e = −2(h̄2/m)/[2π2m|g̃(0)|2] arises from the

h̄2k2/m term in Eq. (51), i.e., the relative kinetic energy. This
term is always present, i.e., even if the shift is independent of
k2. Using Eq. (49), we obtain

r̃ (0)
e = − h̄2

mμB�B |abg| , (53)

which gives the resonant part of the effective range in the
absence of optical fields when the shift 
E(k) is independent
of k2. We see that for broad resonances with large background
scattering lengths, this contribution to the effective range will
be small, while it can be large for narrow resonances with
small background scattering lengths [8,28].

The r̃ ′
e term arises from the energy-dependent shift 
E(k)

and coupling |g̃(k)|2, which may vary rapidly with k2 when
|abg| is large, producing large contributions to the effective
range. Using Eq. (47) for the resonant part of the scattering
length ã, this term can be written in the form

r̃ ′
e =

2 ∂
E (k)
∂(k2)

∣∣
k=0

2π2m|g̃(0)|2 + 2

ã|g̃(0)|2
∂|g̃(k)|2
∂(k2)

∣∣∣∣
k=0

. (54)

Finally, the optical fields alter the resonant part of the effective
range,

r̃opt
e = −

2 ∂Dopt(k)
∂(k2)

∣∣
k=0

2π2m|g̃(0)|2 . (55)

In the Appendix, we determine the optical field independent
part of the effective range using a simple model for |abg| 
 R,
where R is the effective size of the singlet vibrational state
|v1〉. To evaluate r̃ ′

e, Eq. (54), we use Eq. (A7) to obtain

∂
E(k)

∂(k2)

∣∣∣∣
k=0

= −2π2m|g̃(0)|2|abg|{2 θ [abg] − 1}, (56)

and Eq. (A4), which gives

∂|g̃(k)|2
∂(k2)

∣∣∣∣
k=0

= −|abg|2|g̃(0)|2. (57)

Then, Eq. (54) yields

r̃ ′
e = −2|abg|{2θ [abg] − 1} − 2|abg|2

ã

= −2abg − 2|abg|2
ã

, (58)

where the θ function assures that the first term is just −2abg,
for either positive or negative abg. We see from Eq. (58) that r̃ ′

e

exactly cancels the corresponding terms in the square brackets
of Eq. (44).

Hence, neglecting the small correction arising from the
parentheses in Eq. (44), the effective range for both small and
large background scattering lengths takes the simple form

re = r̃ (0)
e + r̃opt

e , (59)

where r̃
opt
e is given by Eq. (55) and r̃ (0)

e is given by Eq. (53).
In the absence of optical fields, we see that re = r̃ (0)

e , which
is usually obtained by ignoring the energy dependence of the
shift and width.

As Dopt(k) in Eq. (55) is a function of E = ET + h̄2k2/m,
we can write 2∂Dopt(k)/∂(k2) = 2 (h̄2/m)∂Dopt(E)/∂E.
Then, since −2 (h̄2/m)/[2π2m|g̃(0)|2] = r̃ (0)

e , we have

re = r̃ (0)
e

[
1 + ∂Dopt(E)

∂E

∣∣∣∣
k=0

]
. (60)

The Dopt term enables optical control of the effective range,
as it can be made to vary rapidly with energy near a dark-state
resonance. In the following, we systematically examine the
real and imaginary parts of Eqs. (47) and (60).

IV. OPTICAL CONTROL OF THE SCATTERING LENGTH

To find the real and imaginary parts of the zero-energy
(k = 0) scattering length from Eq. (47), we set a = abg +
ã = a′ + ia′′. For this purpose, it is convenient to define the
magnetic field detuning,

�0 = 2μB (B − B∞)/h̄, (61)

so that −h̄�0 ≡ −2μB (B − B∞) = ET − Eg1−
E(0). Then,
we obtain the simple form

a = abg − |abg|β 1

�0 + |�1|2
4(δe+iγe/2)

, (62)

where β ≡ 2μB�B/h̄. Here, we have defined

δe = �e + |�2|2
4δ

. (63)

Note that all the detunings are evaluated for k = 0, i.e., with
E → ET = −aHF/2 − 2μBB the magnetic field dependent
triplet energy.

The real part of the scattering length is then given by

a′ = abg − |abg|β 4�0�
2
2 + |�1|2�2δ + (γeδ)2�0

4(�0�2 + δ|�1|2/4)2 + (γeδ�0)2
, (64)
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FIG. 2. (Color online) Scattering length as a function of the
effective two-photon detuning δ in units of γe. Real a′/abg (top
blue curve) and imaginary a′′/abg (bottom dashed red curve). From
Ref. [5].

where �2 ≡ δδe = δ�e + |�2|2/4 has a dimension of fre-
quency squared. Here, the one-photon detuning, Eq. (19),
is �e = ω1 − (Ee − ET )/h̄, while Eq. (21) defines the two-
photon detuning δ = ω2 − ω1 − (ET − Eg2 )/h̄.

The corresponding imaginary part is

a′′ = −|abg| β

2

γe|�1|2δ2

4(�0�2 + δ|�1|2/4)2 + (γeδ�0)2
. (65)

The imaginary part of the scattering rate causes inelastic loss,
which arises from optical scattering, with a two-body rate
constant K2(cm3/s) = −8πh̄a′′/m in the k = 0 limit.

The dark state method offers many options for controlling
the scattering length, the inelastic rate, the resonance width,
and the effective range. These include varying the frequencies
of the two optical fields, choosing the magnetic field detuning,
and controlling the amplitudes of the optical fields in space and
time. For the initial discussion, we reproduce here the figures
from our paper [5].

Figure 2 shows the real and imaginary parts of the scattering
length as a function of the two-photon detuning δ. We
use the parameters for 6Li: �B = 300 G, 2μB/h̄ = 2π ×
2.8 MHz/G, γe = 2π × 11.8 MHz, and abg = −1405a0. We
take �1 = 0.8γe, �2 = 2γe, ω2 = ωeg2 , and B − B0 = 2 G.

The dark-state optical control method enables the suppres-
sion of spontaneous scatter, which would cause substantial
loss and heating if the �1 beam were applied alone, as in
Ref. [13]. Analogous to dark-state methods for controlling the
ratio of absorption to dispersion, we can control the ratio a′′/a′.
Assuming that the resonant part of the scattering length a′ is
large compared to abg, a′′/a′ is given by

a′′

a′ = −1

2

γe|�1|2δ2

�0
[
4�2

2 + (γeδ)2
] + |�1|2�2δ

, (66)

where we recall that �2 ≡ δ�e + |�2|2/4. For �0 �= 0, we
see that loss is suppressed compared to elastic scattering
by the square of the two-photon detuning δ. For �0 = 0,
and large �2, the ratio is −2γeδ/|�2|2, which can be made
small for sufficiently large Rabi frequency �2. Figure 3 shows
the scattering length as a function of �2, demonstrating the
suppression of a′′ as �2 is increased. The corresponding ratio
a′′/a′ is shown in Fig. 4.

In addition to inelastic loss arising from optical scattering,
there is a small but finite photoassociation rate that arises
from transitions between the triplet ground state and the

a''

a'' 0

a'' abg

a' abg

MFR

0 2 4
150

100

50

0

2 γe

0 2 4
0
0.2
0.4
0.6
0.8
1

FIG. 3. (Color online) Real a′/abg and imaginary a′′/abg compo-
nents of the scattering length as a function of �2/γe for �1 = 5 γe,
and δ = 0.05 γe. All other parameters are the same as in Fig. 2. The
dashed blue line at the bottom is the scattering length without the laser
fields (magnetic Feshbach resonance). The dashed orange line at the
top denotes a′′ = 0. Inset: Loss ratio between the dark-state scheme
and a typical single laser scheme (where �2 = 0) as a function of
�2/γe. From Ref. [5].

excited singlet state. The triplet to triplet photoassociation
transition is far away from resonance. For example, choosing
the 6Li excited singlet vibrational state v′ = 70, the closest
vibrational state for the triplet state is v′ = 62, which is about
40 GHz away from the singlet transition. We will not discuss
photoassociation here. However, we have shown theoretically
that the small triplet to singlet photoassociation rate is also
suppressed near the dark-state resonance.

Finally, the dark-state method produces “artificial” narrow
Feshbach resonances, which enable rapid changes in the
scattering length for small changes in the magnetic field.
Figure 5 shows the results for a reasonably large value of �2,
to clearly separate the broad and narrow resonances, which
have the usual three-peak structure.

0 0.2 0.4
50

25

0

2 γe

a"
a'

FIG. 4. (Color online) The ratio of the imaginary to the real part
of the scattering length a′′/a′ as a function of �2/γe for �1 = 5 γe,
and δ = 0.05 γe. All other parameters are the same as in Fig. 3.
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FIG. 5. (Color online) Scattering length as a function of B − B0

for fixed laser parameters �1 = 8γe, �2 = 12γe, ω1 = ωeg1 , and ω2 =
ωeg2 . All other parameters are the same as in Fig. 2: (a) a′/abg; (b)
a′′/abg. From Ref. [5].

V. OPTICAL CONTROL OF THE EFFECTIVE RANGE

In addition to controlling the real and imaginary parts of
the scattering length, the dark-state method creates broad and
narrow resonances, as shown in Fig. 5, which have different
optically controllable effective ranges. The dark-state method
can be applied to both the broad Feshbach resonance in 6Li,
at 834 G, and the narrow resonance at 543 G. Using both of
these, we can explore the role of the effective range over a wide
range. As discussed below in more detail, for fixed two-photon
detuning δ = 0, i.e., at the dark-state resonance, the scattering
length remains at the preselected magnetic field value and the
inelastic scattering length vanishes, while the effective range
is dependent on the ratio of the intensities of the two optical
beams. In this case, the effective range can be varied at fixed
scattering length, with negligible scattering.

We determine the optically controlled part of the effective
range, r̃e from Eq. (60), using Eq. (46). In this case, we note
that the one-photon detuning �e defined by Eq. (19) and
the two-photon detuning defined by Eq. (21) have a simple
E dependence, yielding ∂�e/∂E = 1/h̄ and ∂δ/∂E = −1/h̄.
Hence,

∂[�e + iγe/2 + |�2|2/(4δ)]/∂E|k=0

= (1/h̄)[1 + |�2|2/(4δ2)],

which gives

re = r̃ (0)
e

[
1 + |�1|2

[
1 + |�2|2

4δ2

]
4(δe + iγe/2)2

]
, (67)

where δe is defined by Eq. (63) with all detunings evaluated
for k = 0, i.e., E = ET . Taking the real r ′

e and imaginary r ′′
e

parts of Eq. (67), we obtain

r ′
e = r̃ (0)

e

{
1 + |�1|2(4δ2 + |�2|2)

[
4�2

2 − (γeδ)2
]

4
[
4�2

2 + (γeδ)2
]2

}
, (68)

r ′′
e = −r̃ (0)

e

|�1|2(4δ2 + |�2|2)�2γeδ[
4�2

2 + (γeδ)2
]2 , (69)

where �2 = δδe = δ�e + |�2|2/4.
From Eq. (53), we recall that r (0)

e = −h̄2/(mμB�B|abg|).
For the broad resonance in 6Li at 834 G, where abg = −1405a0,
�B = 300 G [29], we have |r (0)

e | � 1a0 � |abg|. However, for
the narrow Feshbach resonance at 543 G [26,28], where �B �
0.1 G [28] and abg = 62 a0, r (0)

e � −7 × 104a0, as noted in
Ref. [28]. Using the dark-state method, the effective range can
be widely varied.

In general, the one-field method |�2| → 0 will alter the
effective range as well as the scattering length. Assuming
|�2|2/4 � �eδ, and taking the one-photon detuning �e = 0
for simplicity, we find r ′′

e = 0 and r ′
e = r̃ (0)

e (1 − |�1|2/γ 2
e ).

However, a′′ �= 0, which can cause substantial losses for a
one-field method.

For the two-field method, the imaginary part r ′′
e vanishes

when either δ = 0 or �2 = δ�e + |�2|2/4 = 0. The former
corresponds to the narrow peak at the center of Fig. 5, while the
latter corresponds to the two side peaks. For the limiting case
with �2 �= 0 satisfying |�2|2/4 
 δ�e, and taking δ → 0, we
obtain

r̃ ′
e = r (0)

e

[
1 + |�1|2

|�2|2
]

, (70)

which shows that the effective range is negative, since r (0)
e < 0

from Eq. (53), and increases in magnitude when the ratio
of the Rabi frequencies for the two transitions |�1/�2| > 1.
Note that when δ → 0 for the dark-state scheme, the loss
is negligible and the scattering length does not change. The
optical fields only modify the effective range.

The effective range as a function of �2 is shown in Fig. 6
when two-photon detuning is small, δ/γe = 0.05. It is clear
that the effective range can be widely modified by the laser
fields.

For the case �2 = 0, i.e., �e = −|�2|2/(4δ), we obtain
instead,

r̃ ′
e = r (0)

e

[
1 − |�1|2(4δ2 + |�2|2)

(2γeδ)2

]
. (71)

In this case, for small two-photon detuning δ and large one-
photon detuning �e, the effective range is large and positive,
since r (0)

e < 0.

VI. APPLICATION TO 6Li MAGNETIC FESHBACH
RESONANCES

In 6Li, |g1〉 is the v = 38 Feshbach resonance state. We can
take |g2〉 to be another lower lying vibrational state, which
are essentially uncoupled to the triplet state, since the nearest
state v = 37 is lower in energy than the v = 38 state by
55.8 GHz, while the v = 36 state is lower by 289 GHz [30]. We
employ the bound-to-bound singlet molecular transition from
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FIG. 6. (Color online) The real part of the optically controllable
effective range (r̃ ′

e) in units of the effective range without optical
fields (r (0)

e ) as a function of Rabi frequency �2 in units of γe. (i) (Blue
oscillatory curve) r̃ ′

e/r (0)
e for small two-photon detuning δ = 0.05γe.

(ii) (Red asymptotic curve) r̃ ′
e/r (0)

e for δ → 0. (iii) (Dashed orange
curve) r̃ ′

e/r (0)
e = 1, i.e., the effective range in the absence of optical

fields.

the ground 1
+
g (N = 0) state to the excited A1
+

u (N = 1)
state. Starting from the v = 38 Feshbach resonance state, the
best Franck-Condon factor [31] arises in a transition to the
v′ = 70 vibrational state, which we take as |e〉. The nominal
wavelength for this transition is 673 nm, which is readily
accessible with a diode laser. A second diode laser excites
the v = 37 or v = 36 to v′ = 70 transition.

We determine the Rabi frequencies from the known
dipole transition matrix element. For the v = 38 → v′ = 70
transition, the oscillator strength is feg = 0.035 [31], where
feg = μ′2

0 /[3(eaeg)2]. Here, μ′
0 is the z′ component (along the

internuclear axis) of the electronic transition dipole moment
between the selected vibrational states, e is the electron
charge, and aeg = √

h̄/(2meωeg) is the electron harmonic
oscillator length scale for an electronic transition of frequency
ωeg . At λ = 673 nm, eaeg = 6.9 D (1 D = 1 debye ≡
10−18 esu cm). Then μ′

0 = 2.2 D. The corresponding labora-
tory dipole operator is μ(1)

q = μ′
0D

(1)
0 q(θ,ϕ), where θ,ϕ are the

Euler angles of the molecular internuclear axis with respect to
the laboratory frame.

For a �M = 0, ± 1 transition in the laboratory frame
from the N = 0, v = 38 (J = 0) ground state to the N =
1, v = 70 (J = 1,M) excited state, the transition matrix
elements are then all μ ≡ μ′

0/
√

3 = 1.3 D. The corresponding

Rabi frequency is �R(Hz) = 4.37 MHz μ(D)
√

I (mW/mm2),
which yields �1 = 5.7 MHz

√
I (mW/mm2), where I is the

laser intensity. This result is nearly identical to that given in
Ref. [32] for the v′ = 68 excited state.

For the trapped atoms, the applied fields will produce an
effective light-shift potential, ULS = |�′

R|2/(4�laser) as well
as spontaneous scattering at a rate |�′

R|2/(4�2
laserτspont), where

�′
R is the Rabi frequency for the atomic D2 transition. For

6Li, τspont = 27 ns and the molecular transition is �1.66 nm
(�−1.1 THz) red detuned from the free atom transition at
671 nm. The atomic transition dipole moment is 5.9 D, so
that �′

R = (5.9/1.3) × �1 = 25.8 MHz
√

I (mW/mm2). For

�1 = 10γe = 120 MHz, �′
R = 540 MHz, the corresponding

free atom scattering rate is only 2.2/s, which is negligible for
the experiments, where the hold time in the optical fields will
be ≪1 s.

For these parameters, the corresponding attractive light-
shift potential ULS = 66 kHz or ULS � kB × 3 μK. This can
be eliminated when necessary using a repulsive potential,
provided by a spatially matched blue-detuned beam at 532 nm.

VII. CONCLUSIONS

The molecular dark-state method permits control of two-
body scattering parameters, while suppressing light-induced
inelastic loss and heating compared to single-field control
techniques. As narrow features are produced by these dark-
state quantum interference methods, optical fields can induce a
strong dependence of the scattering phase shifts on the relative
kinetic energy of the colliding atoms, enabling control of the
effective range as well as the zero-energy scattering amplitude.
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APPENDIX: A SIMPLE MODEL

When the background scattering length abg is large in
magnitude compared to the molecular size, as it is for the
broad resonance in 6Li, it is instructive to evaluate the width
given by Eq. (49) and the shift 
E(k) given by Eq. (29), using
a simple model.

We assume that the resonant singlet molecular state |v1〉
and the triplet bound state |b〉 (needed to describe a large
background scattering length) have the simple forms

〈r|v1〉 = 1√
2πR

e−r/R

r
, 〈r|b〉 = 1√

2πabg

e−r/abg

r
, (A1)

where we include the |b〉 triplet state only for large positive
scattering lengths, where abg 
 R. Otherwise, this state is
omitted from the calculation. Hence, there is an implied
θ [abg] unit step function in the following. We assume that the
background scattering states are everywhere given by Eq. (28),
i.e., we ignore the small region of rapid oscillation in the deep
part of the triplet potential well. Then, we easily obtain

〈k̃|v1〉 = R3/2

π

1√
1 + k2a2

bg

(1 − abg/R)

1 + k2R2
. (A2)

From Eq. (A1), we also have

〈b|v1〉 = 2
√

abgR

R + abg
, (A3)

where we assume a weakly bound (near threshold) triplet state
of energy Eb = −h̄2/(ma2

bg), which arises for large positive
(background) scattering lengths. Here, we again neglect
the small region in the deep part of the molecular potentials,
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TABLE I. Dominant singlet and triplet molecular states in the
molecular (interior) basis |SMs ; IMI 〉 for 6Li Feshbach resonances.
M is the total magnetic quantum number for a pair of colliding atoms.

Mixture M Singlet Triplet

1-2 (B) 0 (2
√

2|00; 00〉 − |00; 20〉)/3 |1 − 1; 11〉
1-2 (N) 0 (|00; 00〉 + 2

√
2|00; 20〉)/3 |1 − 1; 11〉

1-3 −1 |00; 2 − 1〉 |1 − 1; 10〉
2-3 −2 |00; 2 − 2〉 |1 − 1; 1 − 1〉

where the overlap integral of the singlet and triplet molecular
states oscillates rapidly. For |abg| 
 R, we then have from
Eqs. (27) and (A2),

|h̄g̃(k)|2 = |VHF|2 R|abg|2
π2

1

1 + (kabg)2
, (A4)

while Eqs. (8) and (A3) give for positive abg 
 R,

|h̄gb|2 = |VHF|2 4R

abg
= |VHF|2 4R

|abg| . (A5)

Using Eq. (A4), the principal part term in Eq. (29) is readily
shown to be −2π2m|g̃(k)|2/|abg|. Then, we have


E(k) = m|gb|2|abg|2
1 + (kabg)2

θ [abg] − 2π2m|g̃(0)|2
|abg|[1 + (kabg)2]

, (A6)

where we include a unit step function to indicate that the
contribution from the triplet bound state is to be used
only when the background scattering length is large and
positive. Now, Eqs. (A4) and (A5) show that m|gb|2|abg|2 =
2 × 2π2m|g̃(0)|2/|abg|. Hence,


E(k) = 2π2m|g̃(0)|2
|abg|[1 + (kabg)2]

{2θ [abg] − 1}. (A7)

From Eqs. (A7) and (49), we see that for |abg| 
 R, the
width �B and the shift 
E(0) are related by


E(0) = 2μB�B{2θ [abg] − 1}. (A8)

Hence, the magnitude of the shift is equal to twice the width
μB�B.

We can apply this simple model to the three broad
resonances in 6Li for 1-2, 1-3, and 2-3 mixtures of the three
lowest hyperfine states, which are described in Tables I and II.

TABLE II. Triplet energy ET and singlet-triplet coupling VHF for
Feshbach resonances in 6Li. VHF arises from the effective hyperfine
interaction aHF(I1 · S1 + I2 · S2), where aHF/h = 152.1 MHz. ET is
the Zeeman-hyperfine energy for the given triplet molecular state,
with μB the Bohr magneton μB/h = 1.4 MHz/G. For the narrow (N)
Feshbach resonance in the 1-2 mixture, the coupling is second order
in the hyperfine interaction and |10; 10〉 is the dominant off-resonant
intermediate state.

Mixture VHF (MHz) ET

1-2 (B) −3 aHF/(2
√

3) = −131.6 −2μBB − aHF/2
1-2 (N) −a2

HF/(Eg1

√
6) = −5.9 −2μBB − aHF/2

1-3 aHF/2 = 76.0 −2μBB

2-3 aHF/
√

2 = 107.5 −2μBB + aHF/2

TABLE III. Feshbach resonance parameters for binary mixtures
of the three lowest hyperfine states in 6Li. The broad (B) resonance
location B∞, width �B, and background scattering length abg in bohrs
(a0) are taken from Ref. [29]. The narrow (N) Feshbach resonance
parameters are taken from Ref. [28].

Mixture B∞ (G) �B abg(a0)

1-2 (B) 834 300 −1405
1-2 (N) 543 0.1 +62
1-3 690 122 −1727
2-3 811 222 −1490

The measured parameters for the 6Li Feshbach resonances
are given in Table III, taken from Ref. [29] for the broad
resonances and from Ref. [28] for the narrow resonance.
Recently, improved 6Li Feshbach resonance parameters have
been obtained by using radio-frequency spectra of dimer pairs
in very low density samples, which enables resolution of
individual trap-radial-vibrational states [33].

From Eq. (A8), for abg < 0, we have 
E(0) = −2μB�B.
This result can be used to estimate the energy Eg1 of the
resonant singlet bound state from the locations and widths of
the broad resonances given in Table III. At resonance we have
ET (B∞) = Eg1 + 
E(0). Then,

Eg1 = ET (B∞) − 
E(0) � ET (B∞) + 2μB�B (A9)

should be the same for all of the broad resonances. For the
narrow resonance, we assume that the shift 
E(0) � 0.

We can also compute the effective size R of the |v1〉 state,
Eq. (A1). Using Eqs. (49), (A4), and (27), we obtain

R = h̄2μB�B

m|abg||VHF|2 . (A10)

Expressing R in bohr units a0, we have R/a0 = 8.4 ×
105�B(G)/[|abg(a0)||VHF(MHz)|2], which also should be the
same for all of the broad resonances.

Using the parameters in Tables II and III and aHF/(4μB) =
27 G, we obtain from Eqs. (A9) and (A10) the results given in
Table IV.

The singlet energies obtained from all four resonances
are nearly identical. Hence, the approximation 
E(0) =
−2μB�B appears to be reasonably accurate for the large
negative background scattering lengths in 6Li, which are large
in magnitude compared to the size of the resonant molecular
state. Further, the nearly constant value of R validates the
scaling given by Eq. (A10) based on the simple model.

We can compare the results obtained for R with that ex-
pected using the overlap integrals for the true wave functions in
the singlet and triplet potentials. Using Eqs. (A4) and (27), we

TABLE IV. Estimated singlet vibrational energy Eg1 and size R

for Feshbach resonances in 6Li.

Mixture Eg1/h (GHz) R(a0)
1-2 (B) −2μB (561 G)/h = −1.57 10.3
1-3 −2μB (568 G)/h = −1.59 10.2
2-3 −2μB (562 G)/h = −1.57 10.8
1-2 (N) −2μB (570 G)/h = −1.60
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define an effective size R → Reff = (π2/|abg|2)|〈k̃|v1〉|2k→0.
Then, with ψv1 (r) ≡ uv1/r and ψT k(r) ≡ uT k/r ,

Reff ≡ 2π

(kabg)2

∣∣∣∣
∫ ∞

0
dr uv1 (r)uT k(r)

∣∣∣∣
2

k→0

, (A11)

where we take the triplet scattering state to be normalized so
that uT k(r → ∞) = sin[k(r − abg)] as k → 0. For the simple
model, Eq. (A1), we have uv1 (r) = exp(−r/R)/(

√
2πR).

Taking uT (r) = sin[k(r − abg)] everywhere and assuming
|abg| 
 R, we immediately obtain Reff = R as assumed above.
We have determined the overlap integral of the states obtained
for the real triplet and singlet potentials (which yield the
correct highest bound states), using the above normalization
for uT (r) and the triplet scattering length obtained from
the triplet scattering state abg = aT � −2046a0. This yields
Reff � 11.4a0, within 10% of the value R � 10.5a0 obtained
from the broad Feshbach resonance parameters.
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