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Acceleration of adiabatic transport of interacting particles and rapid manipulations of a dilute Bose
gas in the ground state
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We show a method to accelerate quantum adiabatic transport of identical spinless particles interacting with
each other by developing the preceding fast-forward scaling theory formed for one-particle systems [Masuda
and Nakamura, Proc. R. Soc. A 466, 1135 (2010)]. We derive a driving potential which accelerates adiabatic
dynamics of quantum systems composed of identical particles in order to obtain the final adiabatic states in any
desired short time. We also exhibit an ideal rapid manipulation of dilute Bose gas in the ground state without
energy excitation by using the fast-forward scaling theory.
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I. INTRODUCTION

Technology to manipulate quantum states is rapidly evolv-
ing, and various methods to control quantum states have
been reported in Bose-Einstein condensates (BECs) [1–4],
in quantum computing [5], and in many other fields of
applied physics. It would be very important to consider the
acceleration of such manipulations of quantum states for
manufacturing purposes and for innovation of technologies.
Earlier we proposed the acceleration of quantum dynamics [6]
and quantum adiabatic dynamics [7,8]. The theory is called
“fast-forward scaling theory” or “fast-forward theory.” We
derived a driving potential which accelerates given quantum
dynamics and generates exactly a target state in any desired
short time, where the target state is defined as the final state in
the given original dynamics.

The acceleration of quantum adiabatic dynamics is very
important for many current and future technologies. Adiabatic
manipulations seem to be an ideal method for the control
of quantum systems because of the adiabatic theorem [9].
However, adiabatic dynamics can take too long time compared
with the lifetime or coherent time of the system [10]. Acceler-
ation of adiabatic dynamics overcomes the difficulty. Various
methods of acceleration of adiabatic dynamics or shortcut
to adiabaticity have been proposed: counterdiabatic protocol
[11] and frictionless quantum driving [12], invariant-based
inverse engineering [13], and fast-forward scaling theory [7,8].
Recently, applications of these methods to the control of
BEC have been proposed theoretically [7,14–18] and been
demonstrated experimentally [19–21]. However, the range of
applications of the methods is still limited in simple cases.
Construction of the theory for many-body systems and for
more general controls is important and useful for various kinds
of manipulations of quantum systems.

In this paper we extend the previous scheme of the
acceleration of adiabatic dynamics to many-body systems.
Our theory combines opposite ideas—the infinitely fast accel-
eration and ultimately slow adiabatic dynamics—and uses a
space-dependent additional phase to give the driving potential.
We exhibit acceleration of adiabatic transport of identical
spinless particles interacting with each other. We show a
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driving potential which conveys the interacting particles
without energy excitation.

We also propose an ideal rapid manipulation of dilute Bose
gas in the ground state. By using the method, the final state of
the Bose gas in the original adiabatic dynamics is generated in
any short time without energy excitation. Driving potential is
analytically derived in the case that wave function has spherical
symmetry. In Sec. II we derive a formula of the driving
potential for many-body system composed of identical spinless
particles. In Sec. III we exhibit acceleration of adiabatic
transport of interacting particles and rapid manipulations of
dilute Bose gas by using fast-forward scaling theory. Section
IV is devoted to conclusions and discussion.

II. FAST-FORWARD THEORY IN MANY-BODY SYSTEMS

We extend the framework of the fast-forward theory formed
for one-particle systems to many-body systems composed of
identical spinless particles. We derive a driving potential which
realizes the final state of a given original dynamics from its
initial state. First we derive a formula of the driving potential
for (nonadiabatic) standard dynamics as a preparation for the
acceleration of adiabatic dynamics. The formula is used in the
derivation of a driving potential for adiabatic dynamics.

A. Standard fast forward

We consider a system composed of N identical spinless
particles interacting with each other. The Hamiltonian is
given by

H0 =
N∑

j=1

p2
j

2m
+ Ve({r},t) + VI ({r}), (1)

where j denotes the particles and m is mass.
{r} = (r1,r2, . . . ,rN ) denotes a set of coordinates of all
the particles. Ve is an external potential expressed by
one-particle operators ve(r,t) as

Ve({r},t) =
N∑

j=1

ve(rj ,t). (2)

VI is a time-independent interaction potential which is
a function of the relative positions of the particles.
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�0 = �0({r},t) is a many-body wave function ruled by H0.
We call �0 standard state. Instead of a simply accelerated state
of �0 we consider the fast-forwarded state �FF defined by

�FF ({r},t) = �0({r},�(t))eif ({r},t), (3)

with the additional phase f ({r},t) ∈ R, because it is
not possible to realize the simply accelerated state
�0({r},�(t)) [6]. �(t) is defined as

�(t) =
∫ t

0
α(t ′)dt ′, (4)

where α(t) ∈ R is the magnification factor of the fast forward
which characterizes the intensity of the acceleration. Time
dependence of α is tuned so that the additional phase f

disappears at the initial and final time of the acceleration.
(The detail is shown later.) We define �0 at time T as the
target state. Arbitrary time TF > 0 is the final time of the

acceleration. α relates TF and T through

T =
∫ TF

0
α(t)dt. (5)

The driving Hamiltonian for �FF is assumed as

HFF ({r},t) =
N∑

j=1

p2
j

2m
+Ve({r},�(t)) + VI ({r}) +VFF ({r},t),

(6)

where VFF is called the driving potential. The Schrödinger
equation is represented as

ih̄
∂�FF

∂t
= HFF �FF . (7)

By using Eq. (3) and Schrödinger equations for �0 and
�FF we can derive the equation

−h̄
∂f

∂t
|�0(�(t))|2 + [α(t) − 1]

⎡
⎣ N∑

j=1

− h̄2

2m
�∗

0

(
�(t))∇2

j �0(�(t)
) + (Ve(�(t)) + VI )|�0(�(t))|2

⎤
⎦

+ h̄2

2m

N∑
j=1

{
2i∇j f · �∗

0 (�(t))∇j�0(�(t)) + i
(∇2

j f
)|�0|2 − (∇j f )2|�0(�(t))|2} = VFF (t)|�0(�(t))|2, (8)

where f ({r},t) is abbreviated by f . By decomposing Eq. (8)
into real and imaginary parts, we can obtain the driving
potential and the additional phase as

VFF

h̄
= −∂f

∂t
−

N∑
j=1

{
(α − 1)

h̄

2m
Re

[∇2
j �0/�0

]

+ h̄

m
∇j f · Im[∇j�0/�0] + h̄

2m
(∇j f )2

}

+ (α − 1)
Ve + VI

h̄
(9)

and

f ({r},t) = (
α(t) − 1

)
η({r},�(t)), (10)

respectively. In Eq. (9) f , α, �0, Ve abbreviate f ({r},t),
α(t), �0({r},�(t)), and Ve({r},�(t)), respectively. We suppose
η({r},t) ∈ R is the phase of �0({r},t), that is, �0({r},t) =
�̃0({r},t) exp[iη({r},t)], where �̃0 is the real amplitude of
�0. Because f in Eq. (10) includes the factor α(t) − 1,
the additional phase disappears everywhere when α = 1.
Therefore, we tune α so that α becomes unity at the initial
and the final time of the acceleration and Eq. (5) is satisfied.
In Eq. (9), a space-independent term was neglected, because it
is concerned only with the space-independent phase on �FF

and we are not concerned about it.
We should note that, although VFF accelerates the dynam-

ics, we cannot generate VFF in general because we cannot
control general many-body potentials. This scheme is basically
applicable when VFF in Eq. (9) is expressed in terms of

one-body operators vFF as

VFF =
N∑

j=1

vFF (rj ,t). (11)

In the next section such accelerations are shown after extending
the above formula for acceleration of adiabatic dynamics in the
following section.

B. Acceleration of adiabatic dynamics

We derive a driving potential which accelerates adiabatic
dynamics by using the formula in the previous section. We
consider adiabatic dynamics of a system composed of N

spinless particles. The Hamiltonian is given by

H0 =
N∑

j=1

p2
j

2m
+ Ve({r},R(t)) + VI ({r}). (12)

External field Ve is a function of an adiabatic parameter R

defined by

R(t) = R0 + εt. (13)

R0 is the initial value of R. The constant value ε is the
rate of adiabatic change in R(t). ε is infinitesimally small,
ε � 1. VI is a time-independent interaction potential. We
suppose that the system is in an nth energy eigenstate of an
instantaneous Hamiltonian H (R) in the adiabatic dynamics.
The wave function is represented as

�0 = �0({r},t) = φn({r},R(t))e− i
h̄

∫ t

0 En(R(t ′))dt ′eiγ (t), (14)
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where φn({r},R) is the nth energy eigenstate of the instanta-
neous Hamiltonian. En is the eigenenergy. γ (t) is an adiabatic
phase. φn satisfies

H0(R)φn(R) = En(R)φn(R). (15)

Now we consider the acceleration of the adiabatic dynam-
ics. The wave function and Hamiltonian should be regular-
ized [7], because we need a standard state which satisfies
Schrödinger equation up to O(ε) to apply the theory developed
in the previous section. Standard wave function is modified
with a phase εθ ({r},t) as

�
(reg)
0 ({r},R,t) = φn({r},R)e− i

h̄

∫ t

0 En(R(t ′))dt ′eiεθ . (16)

The regularized standard Hamiltonian is defined as

H
(reg)
0 =

N∑
j=1

p2
j

2m
+ Ve({r},R(t)) + VI ({r}) + εṼ ({r},t).

(17)

θ = θ ({r},t) and Ṽ = ({r},t) are introduced so that the
Schrödinger equation,

ih̄
∂�

(reg)
0

∂t
= H

(reg)
0 �

(reg)
0 , (18)

is satisfied up to O(ε). Then θ should satisfy

N∑
j=1

h̄

2m

[∇2
j θ + 2Re[∇jφn/φn] · ∇j θ

]

+ Re

[
∂φn

∂R

/
φn

]
= 0. (19)

Ṽ is given by

Ṽ

h̄
= −Im

[
∂φn

∂R

/
φn

]
−

N∑
j=1

h̄

m
[∇j θ · Im[∇jφn/φn]].

(20)

We define a fast-forwarded state and driving Hamiltonian with
�

(reg)
0 as

�FF ({r},t) = �
(reg)
0 ({r},�(t))eif ({r},t), (21)

HFF (t) =
N∑

j=1

p2
j

2m
+ Ve({r},�(t)) + VI ({r}) + VFF ({r},t),

(22)

where f is the additional phase. �(t) is defined by Eq. (4). We
take the limit ε → 0, α = O(1/ε) → ∞ and εα = O(1); that
is, we consider the infinitely fast acceleration of the ultimately
slow dynamics. α relates the initial (R0) and final (R1) values
of the adiabatic parameter as

R1 − R0 = ε

∫ TF

0
α(t)dt, (23)

where TF is the arbitrary final time of the acceleration. By
using Eq. (15) in the Schrödinger equation of �FF we can
obtain the driving potential and the additional phase in an

analogous manner to [7] as

VFF

h̄
= −dα

dt
εθ − α2ε2 ∂θ

∂R
−

N∑
j=1

h̄

2m
α2ε2(∇j θ )2

−αεIm

[
∂φn

∂R

/
φn

]
−

N∑
j=1

αε
h̄

m
Im

[∇jφn

φn

]
· ∇j θ,

(24)

and

f ({r},t) = (α − 1)εθ, (25)

respectively. In Eqs. (24) and (25) α(t), θ ({r},R(�(t))), and
φn({r},R(�(t))) are abbreviated by α, θ , and φn, respectively.
In Eq. (24) we omit the terms which are space independent
because they concern only the space-independent phase. εα

is tuned to be zero at the initial and final time of the
acceleration so that the additional phase in Eq. (25) vanishes.
It should be emphasized that the driving potential should
be one-particle potential, because we cannot control general
many-body potentials. Thus, the driving potential should be
written as Eq. (11). Moreover, the additional phase must not
change the statistics of the system. In general, the driving
potential in Eq. (24) cannot be represented as Eq. (11) because
it can contain an unrealizable many-body potential. However,
in some specific but important manipulations, the driving
potential becomes a one-particle potential. Such manipulations
are exhibited in the following section.

III. APPLICATIONS

A. Acceleration of adiabatic transport of identical particles

Recently, several experimental investigations have been
devoted to fast-atomic transport [22,23]. Theoretical inves-
tigations on the acceleration of adiabatic transport avoiding
the energy excitation at the final time of the manipulation have
been reported with the use of fast-forward scaling theory [7,8]
and inverse engineering technique based on Lewis-Riesenfeld
invariants [16,18,24]. These protocols can derive the same
driving potential for transport of a particle. (The relation
between fast-forward scaling theory and inverse engineering
technique based on Lewis-Riesenfeld invariants was clarified
in [25].) However, the range of applications of the theoretical
protocols is still limited in the control of one-body systems
or in the cases where the many-body state is governed
by a time-dependent Gross-Pitaevskii (GP) equation. Here
we consider more general many-body systems consisting of
identical particles interacting with each other and show the
rapid transport without energy excitation at the final time of
the control by using the result of the previous section.

We consider adiabatic transport of identical particles inter-
acting with each other in a trapping potential. The particles are
conveyed into the x direction by a driving potential. We assume
that the system is in the nth energy eigenstate of the instanta-
neous Hamiltonian. φn in Eq. (16) is represented with φ′

n as

φn({r},R(t)) = φ′
n({x − R(t),y,z}), (26)

where φ′
n({r}) is a stationary wave function of the nth energy

eigenstate trapped by a stationary potential V ′
e ({r}). External
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potential Ve in Eq. (17) is written by V ′
e as

Ve({r},R(t)) = V ′
e ({x − R(t),y,z}). (27)

The fast-forwarded state is defined by Eq. (21) with φn in
Eq. (26). The phase θ ({r},t) of the wave function in Eq. (16)
is a solution of Eq. (19). Noting that

∂φn

∂R
= −

N∑
j=1

∂φn

∂xj

, (28)

we obtain the solution as

θ =
N∑

j=1

m

h̄
xj . (29)

On the other hand, it turns out that Ṽ in Eq. (20) vanishes
everywhere. Substituting Eq. (29) into Eq. (24) we obtain the
driving potential as

VFF = −dα

dt
εm

N∑
j=1

xj . (30)

Therefore, by applying the driving potential,

vFF (r) = −dα

dt
εmx, (31)

with the translation of the original trapping potential as
Eq. (27) we can accelerate trapped particles without energy
excitation at the final time of the transport. The driving
potential does not depend on the detail of the interaction
among particles. The wave function of fast-forwarded state
has the additional phase in Eq. (25) during the transport. The
additional phase does not change the statistics of the system
because θ is given by Eq. (29). αε is chosen to be zero at the
initial and final time of the transport so that the additional phase
vanishes and the fast-forwarded state coincides with the target
state. The distance of the transport is given by ε

∫ TF

0 α(t)dt .
Moreover, although we have considered energy eigenstates
so far, it turns out from Eq. (31) that the driving potential can
transport not only energy eigenstates but also general states
which is a superposition of energy eigenstates because the
driving potential does not depend on energy levels. The form
of the driving potential in Eq. (31) is identical to one for the
transport of one particle or a wave packet of BEC [7,16]. Our
result insists that, even in the case with interaction among the
particles, we can transport them by tuning a spatially linear
potential accompanied with the translation of the original
trapping potential in Eq. (27) without inconvenient energy
excitation and disturbance of the quantum system.

B. Rapid manipulation of dilute Bose gas in ground state

We propose an ideal rapid manipulation of dilute Bose gas
in the ground state by using fast-forward scaling theory. Let
us suppose that a system is composed of N identical Bose
particles with mass m. We assume that the wave function of
the ground state is represented as

φ0({r},R) = ϕ(r1,R)ϕ(r2,R) · · · ϕ(rN,R) (32)

for an instantaneous Hamiltonian H (R), where ϕ is a
one-particle wave function parametrized by R (mean-field

approximation [26]). In general ϕ is not the wave function
of the ground state of an noninteracting boson. We consider
acceleration of the adiabatic dynamics of the Bose gas. Naive
controls of external field without fast-forward theory would
make the state much more complex than that in Eq. (32)
with energy excitation. By using fast-forward theory we can
transform the state from φ0({r},R0) to φ0({r},R1) in any short
time, where R0 and R1 are the initial and final values of the
adiabatic parameter.

Equation (19) is rewritten by using Eq. (32) as

N∑
j=1

{
h̄

2m

(
2∇j θ · Re[∇jϕj /ϕj ] + ∇2

j θ
) + Re

[
∂ϕj

∂R

/
ϕj

]}

= 0, (33)

where ϕj denotes ϕ(rj ,R). In the derivation of Eq. (33) we
used

∂φ0

∂R

/
φ0 =

N∑
j=1

∂ϕj

∂R

/
ϕj , (34)

∇jφ0/φ0 = ∇jϕj /ϕj . (35)

We assume the form of θ as

θ =
N∑

j=1

a(rj ,R), (36)

where a(rj ,R) is real. Substituting Eq. (36) in Eq. (33) it turns
out that aj is obtained by solving

h̄

2m

(
2∇j aj · Re[∇jϕj /ϕj ] + ∇2

j aj

) + Re

[
∂ϕj

∂R

/
ϕj

]
= 0.

(37)

Let us suppose that ξ (r,R) is the phase of ϕ(r,R). Then the
phase η({r},R) of φ0({r},R) is written as

η({r},R) =
N∑

j=1

ξ (rj ,R). (38)

By using Eqs. (34)–(38) in Eq. (24), we obtain the driving
potential as

VFF

h̄
=

N∑
j=1

vFF (rj ,t)

h̄
, (39)

with

vFF

h̄
(rj ,t) = −∂α

∂t
εaj − α2ε2 ∂aj

∂R
− αεIm

[
∂ϕj

∂R

/
ϕj

]

− h̄

2m
(2αε∇j aj · ∇j ξj + α2ε2(∇j aj )2). (40)

In Eq. (40) α, aj , ϕj , and ξj stand for α(t), a(rj ,R(�(t))),
ϕ(rj ,R(�(t))), and ξ (rj ,R(�(t))), respectively. The driving
potential in Eq. (39) is composed of one-body operators. These
results insist that if the ground state of dilute Bose gas is
represented by Eq. (32), we can transform the Bose gas from
a ground state to another in any desired short time.

The form of the driving potential coincides with one
obtained under the assumption that the dynamics of the dilute
Bose gas is governed by the time-dependent GP equation [7].
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However, in general, it is not guaranteed that the dynamics
of the dilute Bose gas is well described by time-dependent
GP equation in the case that the external potential is very
rapidly changed, because rapid controls of external field can
make the states much more complex than states represented
by Eq. (32). Our theory insists that the existence of the ground
state expressed by Eq. (32) is essential for the derivation of
the driving potential and the assumption of the validity of the
time-dependent GP equation is not necessary. The resultant
driving potential in Eq. (40) can transform the state from one
ground state to another rapidly.

1. Control of wave function with spherical symmetry

We show the way to obtain the driving potential for the
case of spherically symmetric wave functions. We assume that
the wave function is spherically symmetric in the adiabatic
dynamics. ϕj = ϕ(rj ,R) in Eq. (32) is represented as a
function of rj = |rj | and R as

ϕ(rj ,R) = ϕ̃(rj ,R)eiη(rj ,R), (41)

where ϕ̃ and η, which are real functions of rj and R, are
the amplitude and phase of ϕj , respectively. Now we derive a
driving potential which transforms the system from φ0({r},R0)
to φ0({r},R1). By using Eq. (41), Eq. (37) is rewritten as

∇ · (ϕ̃2(r,R)∇a(r,R)) = −g(r,R), (42)

where

g(r,R) ≡ 2m

h̄
ϕ̃(r,R)

∂ϕ̃(r,R)

∂R
. (43)

In the above equations we omit the subscript j of rj for the
simplicity of the notation. We assume the spherical symmetry
of a(r,R) and define a vector E(r,R) as

E(r,R) ≡ ϕ̃2(r,R)∇a(r,R) = ϕ̃2(r,R)
∂a(r,R)

∂r
er . (44)

er is a radial unit vector. We consider the volume integral of
Eq. (42) in a sphere with radius r as∫

∇ · E(r,R)dV = −
∫

g(r,R)dV

= −
∫ r

0
4πr ′2g(r ′,R)dr ′. (45)

With the use of Gauss’s theorem
∫ ∇ · EdV = ∫

E · dS,
Eq. (45) leads to

|E(r,R)| = E(r,R) = − 1

r2

∫ r

0
r ′2g(r ′,R)dr ′. (46)

Combining Eqs. (44) and (46) we have

∂a

∂r
= − 1

r2ϕ̃2(r,R)

∫ r

0

2m

h̄
r ′2ϕ̃(r ′,R)

∂ϕ̃(r ′,R)

∂R
dr ′. (47)

a is obtained by integrating Eq. (47): a(r,R) = a(r = 0,R) +∫ r

0 [∂a(r ′,R)/∂r ′]dr ′ for each R. It is seen that there is
no singularity in ∂ra in Eq. (47) at r = 0 by substituting
ϕ̃(r,R) = ϕ̃(0,R) + ∂ϕ̃

∂r
(0,R)r + · · · in the right-hand side. The

value of a at the origin, a(r = 0,R), is arbitrary because it is
concerned only with the space-independent phase. Substituting
a(r,R) into Eq. (40) we can obtain the driving potential for
the acceleration of adiabatic dynamics in which the wave

 0

 0.7

-3  3

R=0.1
     0.5
     0.8
     1
    10
  

r

R=0.1
0.18

0
x

y

FIG. 1. (Color online) r dependence of |ϕ̃(r,R)|2 for R =
0.1, 0.5, 0.8, 1, 10 (×L) (curves shown from lowest to highest)
and A = 1(×L−2), where L is a typical space scale like L = 10−2×
the linear dimension of a device. The inset shows profile of |ϕ̃(r,R)|2
in xy plane for R = 0.1.

function has spherical symmetry. We should choose α(t)
so that α relates initial (R0) and final (R1) values of the
adiabatic parameter through Eq. (23). Time dependence of
εα(t) determines the final time TF through Eq. (23) for given
R0 and R1. Note that although the time dependence of εα(t) is
arbitrary if Eq. (23) is satisfied, the driving potential depends
on εα(t). In the above manner we can obtain the driving

-0.25

 0

 0  2

-0.2

 0

 1

 0  2

R=1

R=0.1

r

r

(a)

(b)

FIG. 2. (Color online) r dependence of a(r,R) for (a) R = 1 and
(b) R = 0.1 with A = 1. a(r,R) is scaled by L−1τ , where L and τ are
typical space and time scales like L = 10−2× the linear dimension
of a device and τ = 10−2× the phase coherent time, respectively.
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"a_box.dat" u 2:1:3

 0  1.7

 2

-0.4

 0

 0.1

 0.1

R

r

FIG. 3. (Color online) r − R dependence of a(r,R) for 0 < R <

2, 0 < r < 1.7, and A = 1. The color indicates a(r,R).

potential which generates φ0({r},R1) from φ0({r},R0) in short
time TF when we have the wave function of the ground state.

As an example we show a behavior of function a(r,R) in
two dimensions for a particular ϕ̃(r,R):

ϕ̃(r,R) = C(R)e−Ar2
(r2 + R2), (48)

where r =
√

x2 + y2 and C(R) is a normalization factor given
by

C(R) =
{
π

(
1

4A3
+ R2

2A2
+ R4

2A

)}−1/2

. (49)

We assume that the wave function of the ground state is
represented by Eq. (32) with ϕ̃ in Eq. (48). With use of a
typical space scale like L = 10−2× the linear dimension of a
device, we take A = 1(×L−2). Figure 1 shows r dependence
of |ϕ̃(r,R)|2 for various values of R. The inset shows a profile
of |ϕ̃(r,R)|2 in xy plane for R = 0.1(×L). ϕ̃(r,R) is well
approximated by a Gaussian function for R > 10. ϕ̃(r,R)
decreases around the origin with the decrease of R as seen in
Fig. 1. We calculate r dependence of a(r,R) by using Eq. (47)
with a boundary condition a(0,R) = 0 for R = 1 and R = 0.1
as Figs. 2(a) and 2(b), respectively. a(r,R) is scaled by L−1τ ,
where τ is a typical time scale like τ = 10−2× the phase
coherent time. A behavior of a(r,R) in rR space is exhibited
in Fig. 3 for 0 < R < 2 and 0 < r < 1.7 (×L). The driving po-
tential can sharply increase for r > 2 because a(r,R) increases
sharply with r . In actual manipulations it may make the control
of a driving potential difficult. However, it is expected that the
influence of a deviation of a driving potential from the exact
one at r > 2 does not cause a crucial problem because in this
region the wave function is very small, as seen in Fig. 1.

IV. CONCLUSION

We have presented the acceleration of adiabatic dynamics
of quantum systems composed of identical spinless particles

interacting with each other. We have derived a driving poten-
tial, which accelerates the adiabatic dynamics, by extending
the preceding fast-forward scaling theory formed for single-
particle systems. The driving potential produces the final state
of an original adiabatic dynamics from the initial state of
the adiabatic dynamics in any desired short time. There is
no energy excitation at the final time of the manipulation.
Although the driving potential is a many-body potential
in general, it becomes a one-body potential for particular
manipulations: transport of interacting identical particles and
control of dilute Bose gas in the ground state.

We have showed a driving potential for acceleration of
adiabatic transport of interacting particles. The driving poten-
tial transports particles without energy excitation. The driving
potential does not depend on the detail of the interaction among
particles. It was also proved that the driving potential conveys
not only energy eigenstates but also general states, which
is a superposition of energy eigenstates because the driving
potential does not depend on energy levels. Interestingly, the
form of the driving potential is identical to one for one particle
or a wave packet of BEC [7,16]. We can transport interacting
particles by tuning the spatially linear potential combining with
the translation of the original trapping potential even in the case
that there is interaction among particles without inconvenient
energy excitation at the final time of the manipulation.

We have also showed an ideal rapid manipulation of a dilute
Bose gas in the ground state. We have derived a formula of
the driving potential which accelerates adiabatic dynamics of
the Bose gas with the mean-field approximation as Eq. (32).
Naive rapid control of external fields without fast-forward
theory would deform the states into more complex features.
However, our results insist that we can transform a dilute
Bose gas from an initial ground state to another without
leaving disturbances in the wave function in any short time
if the ground state is well represented by the mean-field
approximation. As an example, we have applied our theory
to the case that the wave function has spherical symmetry. The
way to derive the driving potential was shown explicitly.

In actual experiments we cannot tune exactly the driving
potential. In general, the deviation of the potential from exact
driving potential can cause inconvenient disturbance or energy
excitation on the quantum systems. In this paper the stability
of the acceleration against the noise or deformation of the
potential is not discussed as investigated for one-body system
or a BEC wave packet [18,24]. It is expected that the stability
of this protocol will be investigated in the future.
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[16] E. Torrontegui, S. Ibáñez, X. Chen, A. Ruschhaupt, D. Guéry-
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