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Anisotropic dynamics of a spin-orbit-coupled Bose-Einstein condensate
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By calculating the density response function we identify the excitation spectrum of a Bose-Einstein condensate
with equal Rashba and Dresselhaus spin-orbit coupling. We find that the velocity of sound along the direction
of spin-orbit coupling is deeply quenched and vanishes when one approaches the second-order phase transition
between the plane-wave and the zero momentum quantum phases. We also point out the emergence of a roton
minimum in the excitation spectrum for small values of the Raman coupling, providing the onset of the transition
to the stripe phase. Our findings point out the occurrence of a strong anisotropy in the dynamic behavior of the
gas. A hydrodynamic description accounting for the collective oscillations in both uniform and harmonically
trapped gases is also derived.
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I. INTRODUCTION

Synthetic gauge fields are a developing field of research
in atomic physics. They have been the object of recent
experimental [1–6] and theoretical works [7–15], giving rise to
the occurrence of new quantum phases exhibiting unique mag-
netic features, including spin-orbit-coupled configurations.
The elementary excitations of such systems are also expected
to exhibit novel properties [16–21]. Some of these features
have already been the object of experimental measurements
[5]. In particular the experiment of [5] has shown that the
center-of-mass oscillation of a harmonically trapped Bose-
Einstein condensate (BEC) can be deeply affected by the
coupling with the spin degree of freedom, in agreement with
the predictions of theory [20].

The purpose of the present work is to study the ele-
mentary excitations and the corresponding behavior of the
dynamic structure factor of a spin-orbit-coupled BEC at zero
temperature by direct investigation of the response of the
gas to a time-dependent perturbation. We explore both the
phonon regime of long wavelengths and the region at higher
momentum transfer, where the spectrum exhibits features that
include the occurrence of a roton minimum. Our results point
out the occurrence of a strong anisotropy in the dynamic
behavior of the gas. In ultracold gases the excitation spectrum
can be measured via two-photon Bragg spectroscopy [22],
so our predictions can be relevant for future experiments on
spin-orbit-coupled BECs.

II. THE HAMILTONIAN AND THE QUANTUM PHASES

We consider a spin-1/2 Bose gas of N particles enclosed in
a volume V , characterized by the single-particle Hamiltonian
(we set h̄ = m = 1)

h0 = p2

2
+ �

2
σx cos(2k0x − �ωLt)

+ �

2
σy sin(2k0x − �ωLt) − ωZ

2
σz, (1)

accounting for the presence of two laser fields with frequencies
ωL and ωL + �ωL, wave vector difference k0 = k0êx along
the x direction, and orthogonal linear polarizations providing

transitions between the two spin states via the Raman coupling
�. ωZ is the Zeeman shift between the two spin states in the
absence of Raman coupling [2], while σk , with k = x, y, z,
are the usual 2 × 2 Pauli matrices. The Hamiltonian (1) is not
translationally invariant but exhibits a screwlike symmetry,
being invariant with respect to helicoidal translations of
the form eid(px−k0σz), consisting of a combination of a rigid
translation by distance d and a spin rotation by angle −dk0

around the z axis.
Let us now apply the unitary transformation ei�σz/2,

corresponding to a position and time-dependent rotation in
spin space by the angle � = 2k0x − �ωLt , to the wave
function obeying the Schrödinger equation. As a consequence
of the transformation, the single-particle Hamiltonian (1)
is transformed into the translationally invariant and time-
independent form

hSO
0 = 1

2
[(px − k0σz)

2 + p2
⊥] + �

2
σx + δ

2
σz. (2)

The spin-orbit nature acquired by the Hamiltonian results
from the noncommutation of the kinetic energy and the
position-dependent rotation, while the renormalization of
the effective magnetic field δ = �ωL − ωZ results from the
additional time dependence exhibited by the wave function
in the rotating frame. The new Hamiltonian is characterized
by equal contributions of Rashba [23] and Dresselhaus [24]
couplings. It is worth pointing out that the operator p entering
(2) is the canonical momentum −i∇, with the physical velocity
being given by v± = p ∓ k0êx for the spin-up and spin-down
particles. In terms of p the eigenvalues of (2) are given by (we
set here δ = 0)

ε±(p) = p2
x + p2

⊥ + k2
0

2
±

√
k2

0p
2
x + �2

4
(3)

and are characterized by a double-band structure.
In the presence of two-body interactions the Hamiltonian

of the N -body system is given by

H =
∑

j

hSO
0 (j ) +

∑
α, β

1

2

∫
d3r gαβ nα(r)nβ(r), (4)

063621-11050-2947/2012/86(6)/063621(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.063621


MARTONE, LI, PITAEVSKII, AND STRINGARI PHYSICAL REVIEW A 86, 063621 (2012)

where hSO
0 is given by (2) and α,β are the spin indices

(↑,↓ = ±) characterizing the two spin states. The spin-up
and spin-down density operators entering Eq. (4) are defined by
n±(r) = (1/2)

∑
j (1 ± σz, j )δ(r − rj ), while gαβ = 4πaαβ are

the relevant coupling constants in the different spin channels,
with aαβ being the corresponding s-wave scattering lengths.
Notice that the two-body interaction terms are not affected by
the spin rotation discussed before.

Hamiltonian (4) has already been implemented experimen-
tally [2,5] and has recently been employed to predict a variety
of nontrivial quantum phases in Bose-Einstein condensates
[11,12]. It has the peculiar property of violating both parity and
time-reversal symmetry. In the presence of a spin-symmetric
interaction (g↑↑ = g↓↓ = g and δ = 0), the quantum phases
predicted by mean-field theory depend on the value of the
relevant parameters k0, �, and the interaction parameters [25]

G1 = n(g + g↑↓)/4 , G2 = n(g − g↑↓)/4, (5)

where n = N/V is the average density. In uniform matter one
can use the ansatz

ψ = √
n

[
C+

(
cos θ

− sin θ

)
eik1x + C−

(
sin θ

− cos θ

)
e−ik1x

]
(6)

for the ground-state wave function of the condensate, with
|C+|2 + |C−|2 = 1 and k1 representing the momentum where
Bose-Einstein condensation takes place. Energy minimiza-
tion with respect to k1 yields the general relationship θ =
arccos(k1/k0)/2 fixed by the single-particle Hamiltonian (2).
Minimization with respect to the other parameters eventually
permits us to calculate key physical quantities such as
the momentum distribution and the longitudinal (〈σz〉) and
transverse (〈σx〉, 〈σy〉) spin polarization of the gas [26]:

〈σz〉 = (|C+|2 − |C−|2)
k1

k0
, (7)

〈σx〉 = −
[√

k2
0 − k2

1

k0
+ 2|C+C−| cos(2k1x + φ)

]
, (8)

〈σy〉 = |C+C−|2k1

k0
sin(2k1x + φ), (9)

where 〈 〉 corresponds to the average in spin space divided by
the average density n and φ is the relative phase between C+
and C−. The resulting ground state for G1 > 0 is compatible
with the three distinct BEC phases (see Fig. 1).

Phase I. For small values of the Raman coupling � and
positive values of G2, the ground state corresponds to a
linear combination of the two plane waves e±ik1x with equal
weight (|C+| = |C−| = 1/

√
2). This phase (hereafter called

stripe phase or phase I) shares important analogies with
supersolids, being characterized by the coexistence of BEC
and by density modulations in the form of stripes, whose actual
spatial location is the result of a mechanism of spontaneous
breaking of translational invariance. The density modulations
take the form n(r) = n[1 +

√
1 − (k1/k0)2 cos(2k1x + φ)],

with k1 = k0

√
1 − �2/[2(k2

0 + G1)]2. It is worth mentioning
that these modulations differ from those of the laser potential
[see Eq. (1)] and have a different nature with respect to the
modulations exhibited by the density in the presence of the
usual optical lattices. The contrast in n(r) vanishes as � → 0
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FIG. 1. (Color online) Phase diagram corresponding to the
spin-orbit-coupled Hamiltonian (4). The lines corresponding to the
I-II [solid blue (dark gray)], II-III (dashed red) and I-III [solid
green (light gray)] phase transitions are shown. The parameters are
g = 4π × 100 aB , where aB is the Bohr radius, γ = 0.0012, and
k2

0 = 2π × 80 Hz, corresponding to a critical density n(c) = k2
0/

(2γg) = 4.37 × 1015 cm−3.

as a consequence of the orthogonality of the two spin states
(in fact in this limit θ = 0 and k1 = k0). In the stripe phase the
longitudinal spin density identically vanishes: 〈σz〉 = 0, while
〈σx〉 
= 0. It is worth mentioning that the ansatz, Eq. (6), for the
stripe phase provides only a first approximation which ignores
higher-order harmonics caused by the nonlinear interaction
terms in the Hamiltonian.

Phase II. For larger values of the Raman coupling the
system enters a new phase, the so-called plane-wave phase
(hereafter called phase II), where BEC takes place in a single
plane-wave state with momentum p = k1êx , lying on the x

axis (in the following we choose k1 > 0). In this phase,
the density is uniform. The spin polarization characterizing
this phase is given by the simple expression 〈σz〉 = k1/k0,

with k1 = k0

√
1 − �2/[2(k2

0 − 2G2)]2, while the transverse

polarization is given by 〈σx〉 = −�/[2(k2
0 − 2G2)]. An ener-

getically equivalent configuration is obtained by considering
the BEC in the single-particle state with p = −k1êx , the
choice between the two configurations being determined by
a mechanism of spontaneous symmetry breaking, typical of a
ferromagnetic configuration.

Phase III. At even larger values of � the system enters
the so-called zero momentum phase (phase III), where the
condensate has zero momentum (k1 = 0), the density is
uniform, and the longitudinal spin polarization 〈σz〉 identically
vanishes, while 〈σx〉 = −1.

The chemical potential in the three phases can be calculated
following the procedure of [12] and is given by

μ(I) = 2G1 − k2
0�

2

8
(
k2

0 + G1
)2 , (10)

μ(II) = 2 (G1 + G2) − k2
0�

2

8
(
k2

0 − 2G2
)2 , (11)

μ(III) = 2G1 + k2
0 − �

2
. (12)
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The critical values of the Raman frequencies � characterizing
the phase transitions are obtained by imposing that the
chemical potential and the pressure P = nμ(n) − ∫

μ(n)dn

be equal in the two phases at equilibrium. One finds that the
transition between phases I and II has a first-order nature and
is characterized by different values of the densities of the
two phases. The density differences are, however, extremely
small and are not visible in Fig. 1. The transition between
phases II and III has instead a second-order nature and is
characterized by a jump in the compressibility n−1(∂μ/∂n)−1

if G2 
= 0 and by a divergent behavior of the spin polarizability
(see Sec. IV). For small values of the coupling constants
(G1,G2 � k2

0) the critical value of the Raman coupling �(I-II)

between phases I and II is given by the density-independent
expression [11,12]

�(I-II) = 2k2
0

√
2γ

1 + 2γ
, (13)

with γ = G2/G1. The transition between phases II and III
instead takes place at the higher value [12]

�(II-III) = 2
(
k2

0 − 2G2
)
, (14)

provided that the condition k2
0 > 4G2(1 + γ ) is satisfied;

in the opposite case one instead has the first-order tran-
sition directly between phases I and III [12]. One should
finally recall that if G2 < 0 only phases II and III are
available, with the stripe phase being always energetically
unfavorable.

III. DENSITY RESPONSE FUNCTION

In order to calculate the dynamic density response of
the system we add the time-dependent perturbation Vλ =
−λei(q·r−ωt) + H.c. to the single-particle Hamiltonian (2).
The direction of the wave vector q is characterized by the
polar angle 0 � α � π with respect to the x axis. The
density response function is then calculated through the usual
definition χ (q,ω) = limλ→0 δρq/(λe−iωt ), where δρq are the
fluctuations of the q component of the density induced by the
external perturbation. In the following we calculate χ (q,ω) by
solving the time-dependent Gross-Pitaevskii equation

i∂tψ =
[
hSO

0 + Vλ + 2G1

n
(ψ†ψ) + 2G2

n
(ψ†σzψ)σz

]
ψ,

(15)

where hSO
0 is the single-particle Hamiltonian (2) with δ =

0. We restrict the analysis to phases II and III, where the
ground-state density is uniform and the wave function of the
condensate can be written in the simple form

ψ = √
n

[(
cos θ

− sin θ

)
eik1x +

(
u↑(r)

u↓(r)

)
e−iωt

+
(

v∗
↑(r)

v∗
↓(r)

)
eiωt

]
e−iμt . (16)

The terms depending on the Bogoliubov amplitudes u and v

provide the deviations in the order parameter with respect to
equilibrium, caused by the external perturbation. In the linear,
small λ limit we find the result (near the poles one should
replace ω with ω + i0)

χ (q,ω) = −Nq2[ω2 − 4k1q cos α ω + a(q, α)]

ω4 − 4k1q cos α ω3 + b2(q, α)ω2 + k1q cos α b1(q, α)ω + b0(q, α)
, (17)

where the coefficients a and bi are even functions of q ≡ |q|
and cos α, implying that bi(q, α) = bi(q, π ± α) and
a(q,α) = a(q,π ± α), and their actual values depend on
whether one is in phase II or III (see the Appendix).

The above equations include all the relevant information
relative to the frequency of the elementary excitations, given
by the poles of χ , i.e., by the zeros of

ω4 − 4k1q cos α ω3 + b2ω
2 + k1q cos α b1ω + b0 = 0, (18)

as well as to the dynamic structure factor given, at T = 0, by

S(q, ω) = π−1Imχ (q, ω) (19)

for ω � 0 and S(q, ω) = 0 for negative ω. In particular the
f -sum rule

∫
dωS(q, ω)ω = Nq2/2 is exactly satisfied, as

one can deduce from the correct large ω behavior of the
density response function: χ (q, ω)ω→∞ = −Nq2/ω2 [27].
It is also worth pointing out that the density response
function is invariant with respect to the unitary transformation
yielding the Hamiltonian in the spin-rotated frame, so that
the results presented in this paper, based on Eq. (17),

hold also in the original frame and are relevant for actual
experiments.

Equation (17) reduces to a simplified form in two limiting
cases. A first case is when G2 = 0 and � = 0. In this
limit the denominator can be rewritten in a factorized form,
and χ reduces to the usual Bogoliubov form χ (q, ω) =
−Nq2/[ω2 − q2(2G1 + q2/4)], characterizing the response
of a BEC gas in the absence of spin-orbit coupling. A second
case is the ideal Bose gas (G1 = G2 = 0), where H reduces
to the single-particle Hamiltonian (2) with δ = 0 and the
excitation spectrum, given by the solutions of Eq. (18), takes
the simple form

ω±(q) = ε±(p1 + q) − ε−(p1), (20)

where p1 = k1êx is the momentum where Bose-Einstein
condensation takes place and ε± are the two branches of the
single-particle spectrum (3).

It is worth noticing that the odd terms in ω entering the
response function identically vanish in the zero momentum
phase III but survive in phase II, reflecting the lack of parity
and time-reversal symmetry of the ground-state wave function.
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The condition Imχ (q, ω) = −Imχ (−q,−ω), characterizing
the imaginary part of the response function, is always satisfied,
but the symmetry relationship Imχ (q, ω) = Imχ (−q,ω) is
not ensured in phase II, where one consequently finds
S(q, ω) 
= S(−q, ω). The first results for the excitation
spectrum of Hamiltonian (4) for small and large values of �,
far from the transition between the plane-wave and the zero
momentum phases, have recently been discussed in [21] using
a hydrodynamic formalism.

Equation (17) permits us to calculate the static response
function χ (q) ≡ χ (q, ω = 0)/N , yielding the results

K−1
II = 2G1 + 2G2k

2
1

(
k2

1 cos2 α + k2
0 sin2 α − 2G2

)
k2

1

(
k2

0 cos2 α − 2G2
) + k4

0 sin2 α
, (21)

K−1
III = 2G1 (22)

for the q = 0 value K ≡ χ (q = 0) of the static response in
phases II and III, respectively. Result (21) depends on the
polar angle α, revealing the anisotropy of K in the plane-wave
phase caused by the spin-interaction term G2. It is also worth
pointing out that, if cos α 
= ±1, in phase II the q = 0 static
response K differs from the thermodynamic compressibility
n−1(∂μ/∂n)−1, with μ calculated from (11). Furthermore,
if cos α = ±1 and G2 
= 0, the q = 0 static response K
exhibits a jump at the transition between phases II and

III. One can easily prove that the frequencies ω(q) of the
elementary excitations, given by the zeros of (18), are instead
always continuous functions of the Raman coupling � at the
transition for all values of q.

IV. VELOCITY OF SOUND AND THE ROLE
OF THE MAGNETIC SUSCEPTIBILITY

The low-frequency excitations at small q (sound waves)
can be easily obtained by setting ω = cq and keeping the
leading terms in q2 in (18). In phase III we find the result

cIII =
√

2G1

(
1 − 2k2

0 cos2 α

� + 4G2

)
, (23)

which explicitly shows the strong reduction of the sound
velocity along the x direction (cos α = ±1) caused by the
spin-orbit coupling when one approaches the transition to the
plane-wave phase. The quenching can be understood in terms
of the increase of the effective mass associated with the single-
particle spectrum (3). At the transition, where the velocity
of sound propagating along the x direction vanishes, the
elementary excitations exhibit a different q2 dependence. On
the other hand, the sound velocities along the other directions
(α 
= 0 and π ) remain finite at the transition. In the plane-wave
phase, phase II, the sound velocity is instead given by

cII =
√

2
[
G1k

4
0 + G2k

2
1

(
k2

0 − 2G1 − 2G2
)] [

k4
0 − 2G2k

2
1 − k2

0

(
k2

0 − k2
1

)
cos2 α

] + 2G2k1
(
k2

0 − k2
1

)
cos α

k4
0 − 2G2k

2
1

(24)

and exhibits a further interesting feature caused by the lack of
parity symmetry. The asymmetry effect in the sound velocity
is due to the presence of the last term in the numerator of
Eq. (24); therefore the symmetry will be recovered if G2 = 0
or α = π/2 (corresponding to phonons propagating along
the directions orthogonal to the x axis). Also in phase II, the
velocity of sound along the x direction vanishes when one
approaches the transition to phase III.

In order to better understand the role played by the
spin degree of freedom in the propagation of sound, it is
interesting to relate the sound velocity to the magnetic
polarizability, which can be calculated by generalizing the
ground-state condensate wave function (6) in the presence
of a static magnetic field h coupled to the system through
the interaction term −hσz. To calculate the new ground
state we replace the variational parameters θ and k1 entering
the ansatz (6) with two independent sets of parameters, θ+,
k+

1 and θ−, k−
1 , characterizing the two plane waves, and

we minimize the energy. In the small h limit the magnetic
polarizability is determined by M = ∫

d3r〈σz〉/(hV ). After
some straightforward algebra we find the following results
hold, respectively, in phases II and III [20]:

MII = k2
0 − k2

1

k2
1

(
k2

0 − 2G2
) , (25)

MIII = 2

� − 2
(
k2

0 − 2G2
) . (26)

A peculiar feature exhibited by the above equations is the
divergent behavior near the second-order phase transition
II-III where � = 2(k2

0 − 2G2) and k1 = 0. In terms of the
q = 0 static response K and the magnetic susceptibility M
one can rewrite the results for the sound velocity in the useful
form

c(α)c(α + π ) = 1 + k2
0M sin2 α

K
(
1 + k2

0M
) , (27)

which holds in both phases II and III. Equation (27) generalizes
the usual relation c2 = n(∂μ/∂n) between the sound velocity
and the compressibility holding in the usual superfluids. It
explicitly shows that, along the x direction, where sin α = 0,
the sound velocity c vanishes at the transition because of the di-
vergent behavior of the magnetic polarizability. The results for
the sound velocity along the x axis are shown in Fig. 2 for a con-
figuration with relatively large G2, emphasizing the difference
between c+

II (α = 0) and c−
II (α = π ), i.e., between the velocities

of sound waves propagating in opposite directions along the
x axis. Notice that the sound velocity, in the absence of spin-
orbit and Raman coupling, would correspond to the value c =√

2G1 (horizontal dashed line). This value is asymptotically
reached only for very large values of �. The quenching effect
exhibited by the sound velocity near the II-III phase transition
is particularly remarkable in the zero momentum phase,
phase III, where BEC takes place in the p = 0 state and the
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FIG. 2. (Color online) Sound velocity as a function of the Raman
coupling for the following choice of parameters: G1/k2

0 = 0.2,
G2/k2

0 = 0.05. The two sound velocities in phase II correspond to
phonons propagating in the directions parallel (c+

II ) and antiparallel
(c−

II ) to k1. The horizontal dashed line corresponds to the value√
2G1 = 0.63 k0 of the sound velocity in the absence of spin-

orbit and Raman coupling. The vertical dashed lines indicate the
Raman frequencies at which the I-II and II-III phase transitions
take place.

compressibility of the gas is unaffected by spin-orbit coupling.
It explicitly reveals the mixed density and magnetic nature
of the sound waves, with the spin nature becoming more and
more important as one approaches the phase transition where
M diverges.

It is finally interesting to understand the role played by
the sound waves in terms of sum rules. From Eq. (17) one
can easily prove that phonons exhaust the compressibility
sum rule

∫ +∞
−∞ dωS(q,ω)/ω at small q but, different from

ordinary superfluids, they give only a small contribution to the
f -sum rule

∫ +∞
−∞ dωS(q,ω)ω = Nq2/2 as one approaches the

transition [28]. This contribution becomes vanishingly small at
the transition for wave vectors q oriented along the x direction.
Also, the static structure factor S(q) = ∫ ∞

0 dωS(q,ω)/N is
strongly quenched compared to the usual BECs. This results
in an enhancement of the quantum fluctuations of the order
parameter, as predicted by the uncertainty principle inequality
[29]. The effect is, however, small because the sound velocity
vanishes only along the x direction [12].

V. ROTON AND MAXON EXCITATIONS

When one moves far from the phonon regime, new interest-
ing features emerge from the study of the response function.
First, the poles of Eq. (17) provide two separated branches
[see Figs. 3(a) and 3(b)], with the lower one approaching the
phonon dispersion at small q. For example, in phase III, where
the excitation spectrum is symmetric under inversion of q into
−q, the gap between the two branches is given, at q = 0, by
� = √

�(� + 4G2).
A very peculiar feature of the lower branch is exhibited

in the plane-wave phase, phase II, for negative values of qx ,
resulting in the emergence of a roton minimum [21] which
becomes more and more pronounced as one approaches the
phase transition to the stripe phase, phase I. The occurrence
of the rotonic structure in spin-orbit-coupled BEC gases

 0
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 0.3

-1 -0.5  0  0.5  1

qx/k0

 2.2

 2.3

 2.4

 2.5
ω

III
/k

2 0
(b)
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qx/k0
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 1.4

ω
II/

k2 0

(a)

FIG. 3. (Color online) Excitation spectrum (a) in phase II
(�/k2

0 = 0.85) and (b) in phase III (�/k2
0 = 2.25) as a function

of qx (qy = qz = 0). The blue (dark gray) and green (light gray) lines
represent the lower and upper branches, respectively. In phase II the
spectrum is not symmetric and exhibits a roton minimum for negative
qx , whose energy becomes smaller and smaller as one approaches the
transition to the stripe phase at �/k2

0 = 0.09. The other parameters
are G1/k2

0 = 0.12 and γ = G2/G1 = 10−3.

shares interesting analogies with the case of dipolar gases
in quasi-two-dimensional configurations [30]. In Fig. 3(a) we
show the excitation spectrum in phase II, calculated in the
experimental conditions of [5], for wave vectors q lying on the
x axis. In Fig. 3(b) we instead show the excitation spectrum in
phase III, which, different from Fig. 3(a), exhibits symmetry
under inversion of qx into −qx . The physical origin of the
roton minimum is quite clear. In phase II the ground state is
degenerate, and it is very favorable for atoms to be transferred
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k2 0χ

qx/k0

FIG. 4. (Color online) Static response in phase II as a function
of qx (qy = qz = 0). The curve is symmetric and exhibits a typical
peak near the roton momentum. The parameters are �/k2

0 = 0.85,
G1/k2

0 = 0.12, and γ = G2/G1 = 10−3.

from the BEC state at p = p1 to the empty state at p = −p1.
The occurrence of the roton minimum is also reflected in a
strong enhancement in the static response function χ (qx) (see
Fig. 4). Notice that χ (qx), different from ω(qx), is always
a symmetric function of qx . The occurrence of the roton
minimum in the excitation spectrum and the corresponding
enhancement of the static response represent a typical tendency
of the system towards crystallization. In the case of excitations
propagating along the x axis we have investigated in detail
the condition for the roton frequency being equal to zero,
corresponding to a divergent behavior for χ (qx). A simple
analytic expression for the corresponding value of the Raman
coupling � is obtained in the weak-coupling limit G1,G2 �
k2

0, where we find that the critical value exactly coincides
with the value given by Eq. (13) characterizing the transition
between the plane-wave and the stripe phases. For larger values
of the coupling constants G1 and G2 we expect that the critical
value takes place for values of the Raman coupling smaller
than the value at the transition, exhibiting the typical spinoidal
behavior of first-order liquid-crystal phase transitions.

Despite the divergent behavior exhibited by the static
response function χ (qx), the static structure factor S(qx) does
not exhibit any peaked structure near the roton point, different
from what happens, for example, in superfluid helium [31].
In Fig. 5 we show S(qx) together with the contribution to

 0
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 0.6

 0.8

 1

-3 -2 -1  0  1  2  3

S

qx/k0

FIG. 5. (Color online) Contribution of the lower branch to the
static structure factor in phase II as a function of qx (blue solid line)
compared with the total S(qx) (red dashed line). The parameters are
�/k2

0 = 0.85, G1/k2
0 = 0.12, and γ = G2/G1 = 10−3.

the integral S(qx) = ∫
dωS(qx,ω)/N arising from the lower

branch of the elementary excitations. In Fig. 5 we have
chosen qy = qz = 0. Figure 5 shows that the lower-branch
contribution is not symmetric for exchange of qx into −qx ,
even if the total S(qx) is symmetric [32]. Remarkably, Fig. 5
shows that the strength carried by the lower branch is
significantly peaked for intermediate values of qx between
the phonon and the roton regimes, in the so-called maxon
region, where the lower-branch excitation spectrum exhibits a
maximum [see Fig. 3(a)].

VI. HYDRODYNAMIC FORMALISM

The peculiar behavior of the excitation spectrum in the
phonon regime discussed in Sec. IV can be usefully described
using the hydrodynamic formalism where one writes the
spin-up and spin-down components of the order parameter
in terms of their modulus and phase [21]. In this case one finds
four coupled equations instead of two equations as in usual
BECs. In the phonon regime of large wavelengths and small
frequencies one can safely neglect the quantum pressure terms.
Furthermore, one finds that the phase difference between
the two spin components is blocked (ϕ↑ = ϕ↓). This is the
consequence of the equation for the spin density and the fact
that ω � � [33]. By imposing the condition ϕ ≡ ϕ↑ = ϕ↓,
which holds for small frequencies, one then derives the
nontrivial relationship

k0∇xδϕ − k2
0Z

(
− s

n

δn

n
+ δs

n

)
− 2G2

δs

n
= 0 (28)

between the phase gradient, the density, and the spin fluctu-
ations. In the above equation s = nk1/k0 is the spin density
relative to the equilibrium configuration, and we have defined
the relevant parameter

Z = �

2k2
0

(
1 − k2

1

/
k2

0

)3/2 . (29)

Equation (28) permits us to reduce the hydrodynamic equa-
tions

∂tδn + ∇ · (n∇δϕ) − k0∇x

[
n

(
− s

n

δn

n
+ δs

n

)]
= 0, (30)

∂tδϕ + k1∇xδϕ − k2
0Z

s

n

(
− s

n

δn

n
+ δs

n

)
+ 2G1

δn

n
= 0

(31)

for the density and the phase, respectively, to a closed set
of coupled equations. The solutions of the hydrodynamic
equations reproduce exactly results (23) and (27) for the
sound velocity. It is particularly worth pointing out the crucial
changes caused by the spin-orbit term in the equation of
continuity [Eq. (30)]. These changes reflect the fact that
the current is not simply given by the canonical momentum
operator but is affected by the spin variable. The current
density operator should actually satisfy the continuity equation
[H,n(r)] = i∇ · j(r), where n(r) = ∑

k δ(r − rk) is the den-
sity operator. By explicitly carrying out the commutator one
identifies the current as j(r) = p(r) − k0σz(r)êx , where p(r) =∑

k [pk δ(r − rk) + H.c.] /2 and σz(r) = ∑
k σz, k δ(r − rk) are

the momentum and spin density, respectively.
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The hydrodynamic equations also permit us to calculate the
relative amplitudes of the density and spin-density oscillations
characterizing the propagation of sound. In terms of the
magnetic polarizability M we find(

δs

δn

)
II

= k0M cos α

1 + k2
0M

√
2
[
G2 + G1

(
1 + k2

0M
)]

1 + k2
0M sin2 α

+
√

1 + (
k2

0 − 2G2
)
M

1 + k2
0M

, (32)

(
δs

δn

)
III

= 2k0M cos α
√

G1√
2
(
1 + k2

0M
) (

1 + k2
0M sin2 α

) (33)

in phases II and III, respectively. Equations (32) and (33)
show that, near the transition between phases II and III, the
amplitude of the spin-density fluctuations δs of the sound
waves propagating along the x direction (sin α = 0) are
strongly enhanced with respect to the density fluctuations δn

as a consequence of the divergent behavior of the magnetic
susceptibility. This suggests that an effective way to excite
these phonon modes is through a coupling with the spin
degree of freedom, as recently achieved in two-photon Bragg
experiments on Fermi gases [34]. For sound waves propagating
in the direction orthogonal to x the situation is instead different.
In particular in phase III sound waves are purely density
oscillations (δs = 0).

A major advantage of the hydrodynamic equations is
that they can be easily extended to trapped nonuniform
configurations. In the simplest G2 = 0 case, corresponding
to G1 = ng/2, where the wave vector p1 = k1êx is density
independent, the chemical potential is given by the Bogoliubov
form μ = gn + κ , with κ being independent of the density in
both phases II and III, and the three-dimensional hydrody-
namic equations can be reduced to the compact form

∂2
t δn = g [(1 − 1/Z) ∇x (n∇xδn) + ∇⊥ · (n∇⊥δn)] . (34)

Here n is the Thomas-Fermi density profile given, in the pres-
ence of harmonic trapping Vho(r) = (ω2

xx
2 + ω2

yy
2 + ω2

zz
2)/2,

by an inverted parabola: n(r) = [μ0 − Vho(r)]/g, with μ0 fixed
by the normalization condition. One can easily check that all
the solutions that hold for usual BECs [35] still hold in the
presence of spin-orbit coupling, with the simple replacement of
the trapping frequency ωx with ωx

√
1 − 1/Z. This reproduces

the result

ω2
D = ω2

x

1 + k2
0M

(35)

derived in [20] for the frequency of the dipole oscillation along
the x axis using a sum rule approach and also shows that
the frequency of the other hydrodynamic modes involving a
motion of the gas along the x axis will be quenched. The
quenching of the dipole mode due to spin-orbit coupling has
been recently observed in the experiment of [5].

VII. CONCLUSION

In conclusion we have investigated the dynamic behavior of
a Bose-Einstein condensate with spin-orbit coupling, pointing
out the occurrence of features of high relevance for future

experiments, such as the strong quenching exhibited by the
sound velocity near the second-order transition between the
plane-wave and the zero momentum phases, the anisotropy of
the compressibility, and the occurrence of a roton minimum
in the excitation spectrum. Our theoretical predictions can be
tested in future experiments based on two-photon Bragg spec-
troscopy and are expected to deeply influence the superfluid
behavior of the gas.
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APPENDIX: THE COEFFICIENTS
IN THE RESPONSE FUNCTION

The coefficients in response function (17) can be expressed
as follows. In phase II we find

a = −q4

4
+ [(

k2
0 + 3k2

1

)
cos2 α− 2

(
k2

0 − G2
) + 2G2k

2
1

/
k2

0

]
q2

+ 4
(
k2

0 − 2G2
)[(

k2
0 − k2

1

)
cos2 α − k2

0 + 2G2k
2
1

/
k2

0

]
,

b0 = q8

16
− [(

k2
0 + k2

1

)
cos2 α − k2

0 − G1 + G2
]q6

2

+ {(
k2

0 − k2
1

)2
cos4 α − 2

[
k2

0

(
k2

0 − k2
1

)
+G1

(
k2

0 + 3k2
1

) − G2
(
k2

0 − 5k2
1

)]
cos2 α

+ k2
0

(
k2

0 − 2G2
) + 4G1

(
k2

0 − G2
)

+ 2
(
k2

0 − 2G1 − 2G2
)
G2k

2
1

/
k2

0

}
q4

− 8
(
k2

0 − 2G2
)[(

k2
0 − k2

1

)(
G1 + G2k

2
1

/
k2

0

)
cos2 α

−G1k
2
0 − (

k2
0 − 2G1 − 2G2

)
G2k

2
1

/
k2

0

]
q2,

b1 = q4 + 4
[(

k2
0 − k2

1

)
cos2 α + 2

(
G1 + G2

)]
q2

+ 16
(
k2

0 − 2G2
)(

k2
0 − k2

1

)
G2

/
k2

0,

b2 = −q4

2
− 2

[(
k2

0 − 3k2
1

)
cos2 α + k2

0 + G1 − G2
]
q2

−4
(
k2

0 − 2G2
)(

k2
0 − 2G2k

2
1

/
k2

0

)
.

In phase III we instead obtain the results

a = −q4

4
− (

� − k2
0 cos2 α + 2G2

)
q2

−�
[
� − 2

(
k2

0 cos2 α − 2G2
)]

,

b0 = q8

16
+ [

� − 2
(
k2

0 cos2 α − G1 − G2
)]q6

4
+ [

�2 − 4
(
k2

0 cos2 α − 2G1 − G2
)
�

+ 4
(
k2

0 cos2 α − 2G1
)(

k2
0 cos2 α − 2G2

)]q4

4
+ 2G1�

[
� − 2

(
k2

0 cos2 α − 2G2
)]

q2,

b1 = 0,

b2 = −q4

2
− [

� + 2
(
k2

0 cos2 α + G1 + G2
)]

q2

−�(� + 4G2).
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Lin, R. L. Compton, K. Jiménez-Garcı́a, J. V. Porto, and I. B.
Spielman, Nature (London) 462, 628 (2009); Y.-J. Lin, R. L.
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