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Motivated by a recent experiment in a tunable graphene analog [Tarruell et al., Nature 483, 302 (2012)], we
consider a generalization of the Landau-Zener problem to the case of a quadratic crossing between two bands in
the vicinity of the merging transition of Dirac cones. The latter is described by the so-called universal Hamiltonian.
In this framework, the interband tunneling problem depends on two dimensionless parameters: one measures
the proximity to the merging transition and the other the adiabaticity of the motion. Under the influence of a
constant force, the probability for a particle to tunnel from the lower to the upper band is computed numerically
in the whole range of these two parameters and analytically in different limits using (i) the Stückelberg theory
for two successive linear band crossings, (ii) diabatic perturbation theory, (iii) adiabatic perturbation theory, and
(iv) a modified Stückelberg formula. We obtain a complete phase diagram and explain the presence of probability
oscillations in terms of interferences between two poles in the complex time plane. We also compare our results
to the above-mentioned experiment.
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I. INTRODUCTION

The recent surge of interest in the band structure of
unusual crystals was spurred by various developments in the
study of condensed matter systems. Two examples relevant
to our present work are the successful isolation of single
layer graphene [1] and the fabrication of three-dimensional
(3D) topological insulators [2,3]. In contrast to ordinary
two-dimensional (2D) crystals, the low-energy Hamiltonian
involves at least two coupled bands. It gives rise to band
crossings which, depending on the material parameters, can be
gapped or not. The extra degree of freedom in the internal space
(generically called the pseudospin space) offers opportunity
for the investigation of new system properties.

Most recently, Hamiltonian engineering with artificial
crystals—which is a main theme of the active field of quantum
simulation (see, e.g., [4])—provides a complementary route
to realize coupled-band systems [5–7]. While the low-energy
Hamiltonian mimics closely that of its solid-state counterpart,
it is no longer limited to parameters of the actual material.
For example, in the cold atom experiment performed at ETH
Zürich [6], a Dirac cone pair in the band structure is brought
to merge as a function of laser parameters, thus realizing a
Lifshitz transition, which has never been reached in graphene
[8–11]. The merging is a topological transition in which two
Dirac cones of opposite Berry phase approach and annihilate
before a gap opens.

In the ETH Zürich experiment, Bloch oscillations of
noninteracting fermionic atoms in a honeycomb-like optical
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lattice are executed to study the merging transition of Dirac
cones. As the atom traces out a closed trajectory in momentum
space, it may tunnel to the second band when it comes close
to a linear avoided band crossing (i.e., a Dirac cone), a
process known as Landau-Zener (LZ) tunneling. By measuring
the transfer probability after performing a Bloch cycle,
information about the band structure can be extracted with
momentum resolution [12].

In Ref. [13], we presented a tight-binding model that
reproduces the optical band structure in the parameter space
of the experiment. Using a low-energy description of the tight-
binding model known as the universal Hamiltonian [11], we
quantitatively reproduce the experimental results of Ref. [6].
In the framework of the universal Hamiltonian, the interband
tunneling problem depends only on two relevant parameters:
the merging gap d—which controls the proximity to the
transition—and the momentum perpendicular to the direction
of motion k—which controls the adiabaticity of the motion,
or in other words, how far in momentum space the atom is
from hitting exactly the tip of the Dirac cone. In particular,
in Ref. [13] we explain the situation where the two Dirac
cones are hit in succession during a single Bloch oscillation
(see Fig. 1) by using a simple approximation, known as the
Stückelberg theory [14,15], in which tunneling events are
assumed to be independent. The validity of this approach is
restricted to the gapless phase (d < 0) and not too close to the
merging transition (d � −1,−k), i.e., the two Dirac cones are
well separated.

The present paper is an extension of our letter [13] and
focuses on the tunneling problem where the atom encounters
two Dirac cones in succession. Here, we go beyond the
independent cone approximation and present a complete
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FIG. 1. (Color online) Energy spectrum in the gapless phase
(�∗ < 0): energy E = ±√

(p2
x/(2m∗) + �∗)2 + c2

yp
2
y as a function of

momentum px ∼ t and py ∼ k. The distance between the two Dirac
cones is controlled by the merging gap �∗ ∝ d . The perpendicular
gap cypy ∝ k controls how far the particle is from hitting the Dirac
cones, which are located at (t = ±√|d|, k = 0), directly at their tip.
Black lines are lines of constant k.

picture of the interband transition probability as a function of
the two parameters d and k. In particular, we now access the
whole phase diagram, including the gapped phase (d > 0) and
the transition point (d = 0). Our paper is organized as follows.
In Sec. II, we formulate the interband tunneling problem for the
universal Hamiltonian. In Sec. III, we recall the approximate
solution used in Ref. [13] based on the Stückelberg theory.
We then present three other analytical approaches: diabatic
perturbation theory in Sec. IV, adiabatic perturbation theory
in Sec. V, and a modified Stückelberg formula in Sec. VI. In
Sec. VII, we present numerical solutions in the whole param-
eter space and compare the results of the different approaches.
Finally, in Sec. VIII, we compare our results to the ETH Zürich
experiment before concluding in Sec. IX.

II. INTERBAND TUNNELING IN THE
UNIVERSAL HAMILTONIAN

In the LZ problem [16–18], an avoided linear crossing
between two bands is considered and the probability for a
particle (which is called an electron in the following) to tunnel
from the lower to the upper band under a constant applied force
is calculated. Landau solved the problem approximately using
perturbation theory and the semiclassical approximation [16],
while Zener was able to find the exact solution [17]. For a
concise modern presentation, see Ref. [18]. Here we consider
such a tunneling problem for the case of a quadratic band
crossing. The latter occurs close to the merging transition of
Dirac points [8–11] and was recently observed in a cold-atom
realization of a graphene analog [6]. In the gapless phase, the
quadratic band crossing can be approximated as two successive
linear crossings (or Dirac cones), which is at the heart of the
Stückelberg approach (see below).

We start from the universal Hamiltonian describing the
vicinity of the merging transition [11]:

Hu =
[

p2
x

2m∗
+ �∗

]
σx + cypyσy. (1)

It depends on three real parameters: the effective mass m∗ > 0
giving the spectrum curvature in the x direction, the effective
velocity cy > 0 for the y direction, and the merging gap
�∗, which is a real number controlling the distance to the
transition [19]. The state space is that of an electron moving
in a 2D plane and carrying a pseudospin 1/2 described by
the Pauli matrices σx , σy , σz. The corresponding spectrum
is E = ±√

(p2
x/2m∗ + �∗)2 + c2

yp
2
y and is plotted in Fig. 1

where �∗ < 0. If the merging gap is negative, the spectrum is
gapless and contains two Dirac cones, at (px = ±√

2m∗|�∗|,
py = 0). If it is 0 (the merging point), the two Dirac cones
are on top of each other and the spectrum is linear in
one direction and quadratic in the perpendicular direction,
E = ±√

(p2
x/2m∗)2 + c2

yp
2
y [9]. If it is positive, there are no

band touching points anymore but a true gap 2�∗ between the
two bands.

We add a constant electric field E in the x direction such
that during its motion an electron encounters the two Dirac
cones in succession [20] (see Fig. 1). The gauge is such that
the vector potential Ax = −E t and Ay = 0. Therefore

Hu(t) =
[

(px − F t)2

2m∗
+ �∗

]
σx + cypyσy. (2)

The force F = eE is taken to be positive and −e < 0 is
the electron charge. The Hamiltonian commutes with px

and py and therefore the nontrivial dynamics only occurs
in the internal space of the pseudospin 1/2 and px and py

can be taken as c numbers (conserved quantities). Shifting
the origin of time F t − px → F t , it is now possible to get
rid of px . This Hamiltonian defines a characteristic energy
scale Echar = (h̄F )2/3/(2m∗)1/3 and, therefore, a time scale
tchar = h̄/Echar and a length scale Lchar = Echar/F . Energies,
times, and lengths are therefore given in units of these
characteristic scales. We then define the dimensionless quanti-
ties d ≡ �∗/Echar and k ≡ cypy/Echar and the dimensionless
Hamiltonian Hu(t) = [t2 + d]σx + kσz.

Performing a unitary transformation in pseudospin space
allows one to rewrite the 2 × 2 Hamiltonian in a familiar
LZ form. Let (σx,σy,σz) → (σz,σx,σy), which is realized by
the unitary operator U = exp(i 2π

3 σ · n) = 1
2 (I + iσx + iσy +

iσz), where n = (1,1,1)/
√

3. Then Hu(t) becomes

H (t) =
(

E1(t) H12

H21 E2(t)

)
= [t2 + d]σz + kσx, (3)

where E1(t) = −E2(t) = t2 + d is a quadratic function of time
[in contrast to the original LZ problem, in which E1(t) =
−E2(t) ∝ t] and H21 = H12 = k = const. The quantities d

and k are the only two relevant dimensionless parameters.
The first parameter, d, controls the distance to the merging
transition, which occurs at d = 0. When d < 0 there are two
Dirac cones (gapless phase) and when d > 0 there are no Dirac
cones (gapped phase). The other parameter, k, controls how far
the electron is from hitting the Dirac cones directly [21] (see
Fig. 1); it is also a measure of the adiabaticity. We call d the
merging gap and k the perpendicular gap. The orthonormal
basis {|1〉,|2〉} in which the Hamiltonian is written is called
the diabatic basis. The diabatic spectrum corresponds to a
negligible k and is simply E1(t) = t2 + d and E2(t) = −E1(t).
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FIG. 2. (Color online) Energy E as a function of time t when d =
−2 < 0. (a) Diabats E1,2 = ±[t2 + d] are parabolas that intercept in
real time. (b) Adiabats E+,− = ±√

[t2 + d]2 + k2 (with k = 0.5) do
not intercept in real time but do intercept in complex time. Solid
(blue) line is for a plus sign; dashed (red) line is for a minus sign.

It is plotted in Fig. 2(a) for negative d. It features two band
crossings in real time.

The state of the electron at a given time t is described by the
bispinor |ψ(t)〉. Its time evolution is given by the Schrödinger
equation i d

dt
|ψ〉 = H (t)|ψ〉. Let us assume that initially (t →

−∞), the electron is in the lower band |ψ(−∞)〉 ∼ |2〉. Our
aim is to compute the probability P (k,d) = |〈1|ψ(∞)〉|2 that
it ends in the upper band (t → ∞) as a function of the two
parameters k and d. As the result does not depend on the sign
of k, we assume that k � 0, without loss of generality.

In the following, we mathematically formulate this problem
in two different bases, namely, the diabatic and the adiabatic
bases.

A. Diabatic basis

In the diabatic basis, we write the state at an arbitrary time
as a function of two complex numbers A1(t) and A2(t):

|ψ(t)〉 = A1(t)e−i
∫ t

dt ′E1(t ′)|1〉 + A2(t)e−i
∫ t

dt ′E2(t ′)|2〉. (4)

The time evolution is governed by the Schrödinger equation,
which reads

Ȧ1 = −iH12A2(t)ei
∫ t

dt ′E12(t ′),
(5)

Ȧ2 = −iH ∗
12A1(t)e−i

∫ t
dt ′E12(t ′),

where E12(t) ≡ E1(t) − E2(t). One therefore needs to solve
this system of coupled equations with the initial conditions
A1(−∞) = 0 and A2(−∞) = 1 (up to a global phase factor).
As |A1(t)|2 + |A2(t)|2 = 1 at any time, we are only interested
in finding P = |A1(∞)|2. This system of two coupled first-
order differential equations can also be written as a single
second-order differential equation for A1 (or A2) alone [17].

If the force is large, the motion of the electron is fast
and k = cypy(2m∗)1/3/(h̄F )2/3 � 1 is negligible. This is the
diabatic or sudden limit. In such a limit, the electron stays in the
lower state |2〉 and P → 0. Indeed, when k = 0, the tunneling
probability is 0 for all d as a result of the conservation of the
pseudospin σz, which commutes with the Hamiltonian H (t).
This may seem surprising as it means that even when the two
bands overlap the probability of interband tunneling is 0. In
particular, when d = 0 with a single quadratic crossing point,
the electron does not tunnel to the upper band even though the
gap vanishes. This is actually the same phenomenon as Klein
tunneling for a 1D version of the graphene bilayer (see, e.g.,
the Appendix of Ref. [22]). When in the gapless phase d < 0,
this may be seen as two successive perfect Klein tunnelings
for a 1D massless Dirac electron: first going from the lower to
the upper band with unit probability and then going down to
the lower band with certainty at the second Dirac cone. When
k is nonzero but small, one can solve the coupled differential
equations in perturbation theory as shown below and show that
the probability becomes finite.

B. Adiabatic basis

It is also useful to write the same problem in the adiabatic
basis, which corresponds to diagonalizing H (t) with t being
treated as a parameter. We call Eα(t) = α

√
(t2 + d)2 + k2 =

αE+ the adiabatic eigenenergies [plotted in Fig. 2(b) where
d < 0; see also Fig. 1], where α = ± is the band index,
and |ψα(t)〉 the corresponding eigenvectors. They satisfy
H (t)|ψα(t)〉 = Eα(t)|ψα(t)〉. The angle θ (t) is defined by
sin θ = k/E+ and cos θ = (t2 + d)/E+, which allows us to
write the adiabatic eigenvectors as

|ψ+(t)〉 =
(

cos(θ/2)

sin(θ/2)

)
, |ψ−(t)〉 =

(
sin(θ/2)

− cos(θ/2)

)
. (6)

They form an orthonormal basis at each t . The state of the
electron at any time can now be expressed in this basis as

|ψ(t)〉 =
∑

α

Aα(t)e−i
∫ t

dt ′Eα(t ′)|ψα(t)〉 (7)

in terms of two unknown amplitudes Aα(t), which satisfy∑
α |Aα|2 = 1. The initial state is such that A−(−∞) = 1

(up to a global phase factor) and A+(−∞) = 0 and we are
interested in P = |A+(∞)|2. Indeed, as t → ±∞, θ ≈ 0 and
|ψ−(t)〉 ≈ −|2〉 and |ψ+(t)〉 ≈ |1〉. Therefore at both initial
and final times, the adiabatic and diabatic bases coincide.

The time-dependent amplitudes satisfy the following
Schrödinger equations:

Ȧ+ + A+〈ψ+|ψ̇+〉 = −〈ψ+|ψ̇−〉A−ei
∫ t

dt ′E+−(t ′),
(8)

Ȧ− + A−〈ψ−|ψ̇−〉 = −〈ψ−|ψ̇+〉A+e−i
∫ t

dt ′E+−(t ′),
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where E+− ≡ E+ − E−. As |ψ̇±〉 = ∓ θ̇
2 |ψ∓〉, one has

〈ψ±|ψ̇±〉 = 0 and 〈ψ−|ψ̇+〉 = −〈ψ+|ψ̇−〉 = − θ̇
2 , so that the

equations become

Ȧ+ = −〈ψ+|ψ̇−〉A−ei
∫ t

dtE+−(t),
(9)

Ȧ− = (〈ψ+|ψ̇−〉)∗A+e−i
∫ t

dtE+−(t)

and are quite similar to the ones obtained in the diabatic basis
[see Eq. (5)]. They also depend on two functions of time: one
is the energy difference between the two basis states E+−(t)
[instead of E12(t)] and the other is the coupling between these
states 〈ψ+|ψ̇−〉(t) = θ̇/2 [instead of iH12(t)].

If the force is small, the motion of the electron is slow and
k = cypy(2m∗)1/3/(h̄F )2/3 � 1 is large. This is the adiabatic
limit and k can be thought of as an adiabaticity parameter. It
is also the semiclassical limit, as it is equivalent to h̄ → 0 (in
a purely classical problem, the transition probability would
always be 0). In this limit, the electron stays in state |ψ−(t)〉,
which in both limits t → ±∞ is ∼|2〉. As a consequence,
the transition probability P = |〈1|ψ(∞)〉|2 ≈ |〈1|ψ−(∞)〉|2
is also 0. When k is large but finite, it is possible to compute
the transition probability in perturbation theory (this time the
small parameter being 1/k) as shown below.

To summarize, both when k � 1 and when k � 1, the
transition probability vanishes. Away from these two limits,
the probability will be nonzero. This already shows that the
probability P is a nonmonotonic function of the perpendicular
gap k, which is in stark contrast to the LZ problem of a linear
avoided band crossing. In the following, we use perturbation
theory to compute the transition probability first in the diabatic
and then in the adiabatic basis.

III. STÜCKELBERG THEORY IN THE GAPLESS PHASE

We start by recalling the results we obtained previously
using the Stückelberg theory in the gapless phase (d < 0) (see
the Supplemental Material for Ref. [13]). We first compute
the transition probability associated with the two successive
LZ events, in the limit where they can be considered to be far
apart (i.e., deep in the gapless phase) using the Stückelberg
approach [13–15]. During a single LZ event the probability
amplitude to stay in the upper/lower band is

√
1 − PZe∓iϕSt ,

where the Zener probability is PZ = e−2πδ . The nonadiabatic
phase delay ∓ϕSt (where ∓ refers to the upper/lower band) is
given in terms of the Stokes phase [15]

ϕSt = π

4
+ δ(ln δ − 1) + Arg 
(1 − iδ), (10)

where

δ = k2

4
√|d| (11)

is the adiabaticity parameter in the linear band crossing
problem (not to be confused with k, which is the adiabaticity
parameter in the quadratic band crossing). In the diabatic
limit, δ → 0, the Stokes phase is π/4 and it monotonically
goes to 0 in the adiabatic limit δ → ∞. If the sequence
between the two tunneling events is coherent, the two avoided
linear crossings realize a Stückelberg interferometer. The total
probability amplitude to go from the lower to the upper band

is the sum of the amplitude for two distinct paths. In the first
path, the electron jumps to the upper band at the first Dirac
cone and then stays in the upper band at the second, such
that the amplitude is A+ = −√

PZeiϕ+
√

1 − PZe−iϕSt , where
−√

PZ is the amplitude to jump at the first avoided band

crossing and ϕ+ = − ∫ √|d|
−√|d| dtE+(t) is the phase dynamically

acquired by the electron traveling in the upper band between
the two Dirac cones, with 2

√|d| the time needed to travel
between the two Dirac points. In the second path, the electron
stays in the lower band at the first Dirac cone and then
jumps to the upper band at the second. The associated
amplitude is A− = √

1 − PZeiϕSt × eiϕ− × √
PZ , where

√
PZ

is the amplitude to jump at the second avoided band crossing

and ϕ− = − ∫ √|d|
−√|d| dtE−(t) is the dynamically acquired phase

of the electron traveling in the lower band from one Dirac
cone to the other. Note that the jumping amplitudes ∓√

PZ

at the two avoided crossings are opposite to each other. This
is related to the fact that the linear LZ problem is not exactly
the same for the two Dirac cones: indeed the local low-energy
Hamiltonians are slightly different, just as the ones describing
the two different valleys of graphene [23]. The total probability
P = |A+ + A−|2 is therefore

P = 4PZ(1 − PZ) sin2

(
ϕdy

2
+ ϕSt

)
, (12)

where ϕdy = ϕ− − ϕ+ is the dynamically accumulated phase
between the two tunneling events [13]

ϕdy =
∫ √|d|

−√|d|
E+−(t)dt = 4|d|3/2I

(
k

|d|
)

(13)

written in terms of the integral I (x) ≡ ∫ 1
0 du

√
(u2 − 1)2 + x2.

This probability as a function of d and k is plotted in Fig. 3(a).
If the two tunneling events are incoherent, the interferences are
washed out, sin2 → 1/2, and the probability becomes Pincoh =
2PZ(1 − PZ) [see Fig. 3(b)].

In the limit δ � 1, PZ = exp(−2πδ) → 0, 1 − PZ → 1,
ϕSt ≈ 0, and ϕdy ≈ 4k

√|d|. Therefore

P ≈ 4e
− πk2

2
√|d| sin2(2k

√
|d|). (14)

The probability goes to 0 exponentially because of the large
gap, as is usual for the tunneling process.

In the opposite limit δ � 1, PZ → 1, 1 − PZ ≈ 2πδ → 0,
ϕSt ≈ π/4, and ϕdy ≈ 8|d|3/2/3. Therefore

P ≈ 2π
k2

√|d| sin2

(
4

3
|d|3/2 + π

4

)
. (15)

The probability also goes to 0 but as k2 because of the special
symmetry when k = 0 (conservation of the pseudospin σz).

Quantitatively, the Stückelberg approach is valid if the
Zener tunneling time ∼ max(δ,

√
δ)/k is shorter than the time

2
√|d| it takes for an electron to travel between the two Dirac

points [15]. This means that −d � 1 and −d � k. Therefore,
one needs to be deep in the gapless phase (far from the merging)
and with a perpendicular gap that is not too large.
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FIG. 3. (Color online) Contour plot of the transition probability P

computed with the Stückelberg approach as a function of the merging
gap d and the perpendicular gap k. The white region corresponds to
d � 0, where the Stückelberg approach is not defined. (a) In the
coherent case, interferences as a function of both d and k are clearly
visible as well as the vanishing of P in the k → 0 and k → ∞
limits. The probability varies between 0 and 1 as given by the color
code (color steps corresponds to 0.1). (b) In the incoherent case,
the oscillations are washed out and the maximum probability is 1/2
instead of 1 in the coherent case (note the change of color scale for P ).

IV. PERTURBATION THEORY IN
THE DIABATIC/SUDDEN LIMIT

In the diabatic basis, we perform perturbation theory in the
perpendicular gap k � 1. Assuming that A2(t) ≈ 1 for all t

gives the probability P = |A1(∞)|2 to tunnel from the lower
to the upper band in terms of the amplitude

A1(∞) = −k

∫ ∞

−∞
dtA2(t) exp

[
i

∫ t

0
dt ′E12(t ′)

]

≈ −k

∫ ∞

−∞
dt exp[i(2td + 2t3/3)] (16)

computed at first order in k. The probability

P ≈ 42/3π2k2[Ai(41/3d)]2 (k � 1) (17)

is given in terms of the Airy function, which has the following
definition (when its argument x is real):

Ai(x) ≡ 1

2π

∫ ∞

−∞
dyei( 1

3 y3+xy). (18)

As it will be useful later, we also perform a saddle-point
analysis of the integral in Eq. (16) in three different limits to
obtain simpler analytical results. If d �= 0, there are two saddle
points t0 in the complex time plane. If d > 0, t0 = ±i

√
d and

only t0 = i
√

d contributes, as Im t0 � 0 is needed. If d < 0,
t0 = ±√|d| and the two saddle points contribute, giving rise to
interferences (this is really a stationary-phase approximation).
If d = 0, there is a single saddle point at t0 = 0. The results of
the saddle-point approximation are

P ≈
(

2

3

)4/3(
π


(2/3)

)2

k2 if |d| � 1, (19)

P ≈ πk2

2
√

d
e− 8d3/2

3 if d � 1, (20)

P ≈ 2πk2

√|d| sin2

(
4

3
|d|3/2 + π

4

)
if − d � 1 (21)

The last case recovers the result of the previous section [see
Eq. (15)], featuring Stückelberg oscillations. These three limits
are well-known expansions of the Airy function. The transition
probability P of Eq. (17) is plotted in Figs. 4 and 5. It goes to 0
as k → 0, as expected from the σz conservation, and increases
quadratically with k. As a function of d, P shows oscillations

FIG. 4. (Color online) Contour plot of the transition probability
P as a function of the merging gap d and the perpendicular gap k. For
small k, it is computed with the diabatic perturbation theory, Eq. (17);
while for large k, it is computed using adiabatic perturbation theory,
Eq. (30) (see Sec. V). Interferences as a function of d are clearly
visible in the gapless phase (d < 0). In the gapped phase (d > 0),
the probability vanishes exponentially. White regions corresponds
to a probability exceeding 1. Indeed, close to k ∼ 1, the two
perturbative approaches break down. The color code is the same as in
Fig. 3(a).
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FIG. 5. (Color online) Transition probability P as a function of
d for fixed k = 0.1 as computed in diabatic perturbation theory [see
Eq. (17)]. For a negative argument (gapless phase, d < 0) it shows
Stückelberg oscillations and then decays exponentially for a positive
argument (gapped phase, d > 0). There is an inflexion point right at
the merging (when the argument vanishes, d = 0).

when d < 0, which we interpret as Stückelberg interferences,
and decreases exponentially when there is a true gap d > 0 in
the diabatic spectrum.

V. PERTURBATION THEORY IN THE
ADIABATIC/SEMICLASSICAL LIMIT

In order to consider the opposite adiabatic limit (k � 1),
we use perturbation theory in the adiabatic basis [24]. From
the adiabatic eigenenergies and eigenvectors, we find that
E+− = 2E+, 〈ψ+|ψ̇+〉 = 0, and 〈ψ+|ψ̇−〉 = θ̇/2 = −kt/E2

+.
The Schrödinger equations to be solved are therefore

Ȧ+ = − θ̇

2
A−e2i

∫ t
dt ′E+(t ′), (22)

Ȧ− = θ̇

2
A+e−2i

∫ t
dt ′E+(t ′), (23)

with the initial conditions A−(−∞) = 1 (up to a phase factor)
and A+(−∞) = 0. If we now assume that the coupling θ̇

is small, we find that A−(t) ≈ 1, Ȧ+ ≈ − θ̇
2 e2i

∫ t
dtE+(t), and

therefore,

A+(∞) ≈ −
∫ +∞

−∞
dt

θ̇

2
e2i

∫ t
dt ′E+(t ′) ≡ −

∫ +∞

−∞
dt

θ̇

2
eiφ(t),

(24)

where φ(t) ≡ 2
∫ t

tl
dt ′E+(t ′) is the adiabatic phase and tl is the

lower bound of the phase integral, which is undecided for the
moment except that it has to be a real number.

The amplitude A+(∞) can be computed by integration in
the complex plane. First, there are four poles corresponding
to E+(t) = 0, i.e., to t2 = −d ± ik. Note that these are also
saddle points as φ̇(t) = 2E+. In the following we refer to them
simply as poles even when they are playing the role of saddle
points. If we write −d + ik = √

k2 + d2eiβ , which defines
the angle β, the four poles are t1 = (k2 + d2)1/4eiβ/2, t2 = t∗1 ,
t3 = −t1, and t4 = −t∗1 . In addition to the four poles, there are
also branch cuts coming from the square root function in the
exponential. The corresponding branching points are at the
same position as the poles. Therefore, there is a branch cut

Im t

Re t

t1t4

0

FIG. 6. (Color online) Poles t1 and t4 = −t∗
1 in the complex time

plane. Poles are represented at the merging transition (d = 0 such
that arg t1 = π/4 = −arg t4). The short horizontal (green) arrows
indicate their motion when d increases (gapped phase, d > 0); the
long vertical (red) arrows, that when it decreases (gapless phase,
d < 0). When the poles have a finite real part, there are oscillations in
the probability, whereas a finite imaginary part implies an exponential
decay of the probability. Note that there is a branch cut relating the two
poles.

linking t1 and t4 and another one linking t2 to t3, for example.
When constructing a closed contour, one has to keep in mind
this branch cut structure. Of the four poles, only t1 and t4 have
a positive imaginary part and are therefore relevant, as we
want to close the integration contour in the upper plane (see
Fig. 6). Since Im t1 = Im t4, both poles contribute equally to
the amplitude. We choose the lower bound tl = 0 such that
φ(t) = 2

∫ t

0 dt ′E+(t ′). It is important to make a single choice
for tl for both poles, as they will interfere. As E+(−t) = E+(t)
and t4 = −t∗1 , we have φ(t4) = −φ(t1)∗. One possibility is
therefore to construct a contour that encloses both these two
poles and the branch cuts.

Another trick to perform this integral is to make a change
of variable from the time t to the phase φ variable (see, e.g.,
Ref. [27]). The resulting integral

A+(∞) ≈ −1

2

∫ +∞

−∞
dφ

dθ

dφ
eiφ (25)

is over a function (dθ/dφ)eiφ that has no branch cut anymore
and only four isolated poles, at φ1 ≡ φ(t1), φ(t2) = φ∗

1 , φ(t3) =
−φ1, and φ(t4) = −φ∗

1 . The residue theorem can now be used
with a simple contour closed in the upper complex plane of
the φ variable. As the residues are −eiφ1/3i and e−iφ∗

1 /3i, we
obtain

A+(∞) ≈ π

3
(eiφ1 − e−iφ∗

1 ) = 2iπ

3
sin(Reφ1)e−Im φ1 . (26)

This is valid whatever the sign of d. Therefore

P ≈ 4π2

9
sin2(Re φ1)e−2Im φ1 , (27)

where

φ1 ≡ φ(t1) = 2k3/2
∫ u1

0
du

√
1 + (u2 + D)2, (28)

with D ≡ d/k and u1 ≡ t1/
√

k = (
√√

1 + D2 − D +
i
√√

1 + D2 + D)/
√

2.
The result we found is the first-order perturbation in the

adiabatic basis. The exponential behavior is correct but not
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the prefactor, even in the adiabatic limit, as argued by Landau
long ago [25,26]. This is known in the literature as the “π/3
problem” [27,28]. Actually, in the case of a single linear
band crossing (E1 = −E2 = αt/2 and H12 = constant), which
is the standard LZ problem, adiabatic perturbation theory
gives P = (π/3)2 exp(−2π |H12|2/α) [29], whereas the exact
result found by Zener is PZ = exp(−2π |H12|2/α) [17]. The
reason for this discrepancy is well explained in Ref. [30]:
it comes from the fact that each order of the adiabatic
perturbation expansion for A+ contains a term of the form
# exp(−π |H12|2/α). Obtaining the exact factor in front of the
exponential requires resumming the whole series by keeping
only the dominant—in the adiabatic limit—exponential be-
havior in each order. This series has a first term which is π/3
and a sum which is 1 [24,28–30]. In the adiabatic limit, the
correct pre-exponential factor in the usual LZ problem is such
that

P ≈ e
−Im

∫ t0
t∗0

dtE+−(t) = e
−2Im

∫ t0
tl

dtE+−(t)
, (29)

which amounts to reducing the residue of the pole found in
first-order adiabatic perturbation theory from π/3 to 1 in the
amplitude. This can also be done in the two-pole case and we
find that A+(∞) ≈ π

3 (eiφ(t1) − e−iφ(t1)∗ ) → eiφ(t1) − e−iφ(t1)∗ so
that the probability becomes, instead of Eq. (27),

P ≈ 4 sin2(Re φ1)e−2Im φ1 (k � 1), (30)

where φ1(k,d) is given in Eq. (28). As we will see, this
result agrees very well with the exact numerical solution.
It also agrees with the Stückelberg theory in the adiabatic
limit when PZ � 1 such that P ≈ 4PZ sin2(ϕdy/2), where
PZ = exp(−πk2/(2

√−d)) deep in the gapless phase [indeed
2e−2Im φ1 ≈ e−πk2/(2

√|d|)]. Therefore, we take this result as the
correct analytical expression in the adiabatic limit.

We now come back to the phase φ1 given in Eq. (28).
As u1(D) = iu1(−D)∗, one has φ1(k,d) = iφ1(k, − d)∗ and
therefore Re φ1(k,d) = Im φ1(k,−d), which allows one to
express P in terms of Imφ1 only. The integral J (D) ≡
Im

∫ u1

0 du
√

1 + (u2 + D)2 giving Im φ1(k,d) = 2k3/2J (d/k)
can be computed numerically for any D and analytically
in three limits. When D ∼ 0, J (D) ≈ 
(1/4)2

12
√

π
+ π3/2


(1/4)2 D.

When D → ∞, J (D) ≈ 2D3/2/3 + ln D/(4
√

D). In practice,
a good approximate interpolation between 0 and ∞ is J (D) ≈

(1/4)2

12
√

π
+ 2

3D3/2. When D → −∞, J (D) ≈ π/(8
√|D|). This

function J (D) is plotted in Fig. 7.
From the behavior of J (D), we can obtain approxi-

mate analytical results for the probability P in three limits
(Fig. 8):

P ≈ 4e
− 
(1/4)2

3
√

π
k3/2

sin2

(

(1/4)2

6
√

π
k3/2

)
if |d| � k, (31)

P ≈ 4e− 8d3/2

3 sin2

(
πk2

4
√

d

)
if d � k > 0, (32)

P ≈ 4e
− πk2

2
√|d| sin2

(
4|d|3/2

3

)
if − d � k > 0. (33)

−4 −2 0 2 4
D

1

2

3

4

5

6
J

FIG. 7. (Color online) Integral J ≡ Im
∫ u1

0 du
√

1 + (u2 + D)2,
giving Im φ1 = 2k3/2J (d/k), plotted as a function of D. The numer-
ical calculation is shown by the solid (red) line and is compared to

different analytical results: π/(8
√|D|), dashed (green) line; 
(1/4)2

12
√

π
+

π3/2


(1/4)2 D, dotted (magenta) line; and 2D3/2/3 + ln D/(4
√

D), dot-

dashed (blue) line. Interpolation formula (for positive d) 
(1/4)2

12
√

π
+

2
3 D3/2 is shown by the thin black line.

If the contributions of the two poles add incoherently,
sin2 → 1/2, and the oscillations are washed out (Fig. 8),

Pincoh ≈ 2e−2Imφ1 , (34)

as in the Stückelberg theory when PZ � 1.
It is interesting to discuss the motion of the two

poles t1 = (k2 + d2)1/4eiβ/2 and t4 = −t∗1 , where −d + ik =√
k2 + d2eiβ , in the complex time plane as k and d vary [31].

These two poles correspond to the band crossings at complex
times and always exist (whatever the sign of d and even at the
merging). When d = 0, β/2 = π/4, and Re t1 = Im t1. When
d > 0, π/4 < β/2 < π/2, and Re t1 < Im t1, the poles are
close to the imaginary axis, the corresponding exponentials are
essentially decaying, and the probability as well. In the limit
d → +∞, β/2 → π/2 and the two poles are on the imaginary
axis. Remember that, in the diabatic limit k → 0, we found a

− 5 − 4 − 3 − 2 − 1 0 1
d

0.01

0.02

0.03

0.04

P

FIG. 8. (Color online) Transition probability P as a function of
d (at fixed k = 2.5) computed in adiabatic perturbation theory [solid
(red) line]; see Eq. (30). Also shown, by the dashed (black) line, is
the incoherent probability Pincoh; see Eq. (34).
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saddle point at t0 = i
√

d, i.e., β/2 ∼ π/2 and (k2 + d2)1/4 ∼√
d . When d < 0, 0 < β/2 < π/4, and Re t1 > Im t1, the

poles are close to the real axis, the corresponding exponentials
are essentially oscillating, and the interference of the two
gives oscillations in the probability. In the limit d → −∞,
β/2 → 0 and the two poles are on the real axis. Remember
that, in the diabatic limit k → 0, we found two stationary
points at t0 = ±√−d , i.e., β/2 ∼ 0 and (k2 + d2)1/4 ∼ √−d .
The approximate Stückelberg theory also falls in this general
frame. It corresponds to a situation where −d � 1,k such
that t1 ≈ √|d| and t4 ≈ −√|d| (there, we identified t1 − t4 ≈
2
√|d| as the time needed to travel between the two Dirac

cones). We speculate that in the general case of arbitrary k and
d, there are always two separated complex poles with the same
positive imaginary part. The motion of the poles in the complex
t plane as d changes at fixed k �= 0 is illustrated in Fig. 6.

VI. MODIFIED STÜCKELBERG FORMULA

In the preceding section, adiabatic perturbation theory
helped us uncover a general two-pole structure—either in
the complex t or in the complex φ plane—which leads to
a total probability of the Stückelberg form P = 4PS(1 −
PS) sin2(· · ·), where PS is the probability for a single avoided
crossing. This should be valid for all k and d and not just when
the spectrum is gapless. A reasonable guess (see also [32])
is to combine the adiabatic perturbation theory, giving the
exponential weight of the two poles and their interferences in
the adiabatic limit, with the Stückelberg approach, giving the
PS(1 − PS) structure. From Eqs. (12) and (30), we obtain

P ≈ 4e−2Im φ1 (1 − e−2Im φ1 ) sin2(Re φ1 + ϕna). (35)

Here, eiφ1 is the amplitude to tunnel for a single pole, so
that e−2Im φ1 plays the role of the Zener probability PZ for
a single Dirac cone, and Re φ1 that of ϕdy/2. The quantity
ϕna is the no-adiabatic phase acquired by a particle when it
does not tunnel at a single pole—the associated amplitude
being

√
1 − e−2Im φ1eiϕna . We only know its expression in

the Stückelberg limit (d � −1, − k), where it is given by
the Stokes phase ϕSt [see Eq. (10)] with δ as in Eq. (11).
Here, we assume that ϕna ≈ ϕSt for all k and d, which is
a reasonable approximation except when k < 1 and d � 0.
Equation (35) should be exact for both small k and negative
d, where it recovers the Stückelberg result, Eq. (12), and for
large k, where it recovers the result of adiabatic perturbation
theory, Eq. (30), for all d. By continuity, it should also be
reasonable in the intermediate region k ∼ 1 [see Fig. 13(b)].
It allows one to have an approximate analytical formula that
can describe the crossover from small to large k at fixed d (see
Fig. 12). This modified Stückelberg probability is plotted in
Fig. 9(a). As shown, this formula is not applicable for positive
d and small k as the relevant nonadiabatic phase is no longer
simply given by the Stokes phase. In the incoherent case, the
probability becomes

Pincoh ≈ 2e−2Im φ1 (1 − e−2Im φ1 ) (36)

and is plotted in Fig. 9(b). As this incoherent probability
does not depend on the partly unknown nonadiabatic phase, it
should be reasonable in the whole (d,k) plane.

FIG. 9. (Color online) Contour plot of the modified Stückelberg
transition probability P as a function of the merging gap d and the
perpendicular gap k. (a) Coherent case [see Eq. (35)]: the probability
is between 0 and 1 [the color code is the same as in Fig. 3(a)]. Note that
the modified Stückelberg formula does not work in the (d � 0,k < 1)
region, as the nonadiabatic phase is not properly given by the Stokes
phase. (b) Incoherent case [see Eq. (36)]: the probability is between
0 and 0.5 [the color code is the same as in Fig. 3(b)].

VII. NUMERICAL SOLUTION AND COMPARISON
BETWEEN APPROACHES

The coupled first-order differential equations in Sec. II
[see Eqs. (5) and (9)] are solved numerically. We checked that
solving these equations either in the diabatic or in the adiabatic
formulation gives the same answer (up to numerical errors of
order 10−3 in the probability). We can therefore consider that
these numerical solutions are essentially exact and use them
to check the approximate analytical solutions. The probability
obtained numerically for any d and k is shown in Fig. 10.
Compared to diabatic perturbation theory, the agreement is
perfect for small k � 1. Compared with the Stückelberg
theory, the agreement is very good when d is very negative
and k not too large compared to −d (−d � 1 and −d � k).
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FIG. 10. (Color online) Contour plot of the numerically computed
transition probability P as a function of the merging gap d and the
perpendicular gap k. Oscillations are clearly visible in the gapless
phase, whereas the probability is vanishingly small in the gapped
phase. The vanishing of the probability in both the diabatic k � 1
and the adiabatic k � 1 limits is also visible. The color code is the
same as in Fig. 3(a).

It also compares very well with adiabatic perturbation theory
(provided π/3 → 1) when k is large (k � 1).

To compare the different approaches, we first concentrate on
the d = 0 case exactly at the merging transition. The numerical
solution along with the diabatic and adiabatic perturbative
results is shown in Fig. 11. Note the excellent agreement in
both the k → 0 (diabatic perturbation theory) and the k → ∞
limits (adiabatic perturbation theory). At large k, a surprising
oscillation in the probability is seen both in the numerical
solution and in the adiabatic perturbative result. This is
surprising because the spectrum (whether diabatic E = ±t2 or
adiabatic E = ±√

t2 + k2) features at most a single real-time
crossing. However, in complex time, the adiabatic bands cross
twice. This leads to an interference between the two complex
poles t1 and t4 and results in oscillations in the probability P .

Next we consider the gapless region d = −1 and compare
the different analytical approaches to numerics (see Fig. 12).
Note the excellent job done by the modified Stückelberg
formula, which is able to describe the whole crossover from
small to large k. The only discrepancy with the numerical
result is close to the maximum probability near k = 0.5.

Then we consider small k and compare numerics, the
Stückelberg approach, and diabatic perturbation theory as a
function of d [see Fig. 13(a)]. Diabatic perturbation theory
agrees very well with the numerical result except for a small
difference close to d = −1 where the probability is not small
and the approximation is therefore not so good anymore.
Stückelberg theory works very well deep in the gapless
phase and its validity breaks down as one approaches the
merging transition. The opposite limit of large k shows that
the adiabatic perturbation theory is very good [see Fig. 13(c)].
The Stückelberg theory works qualitatively in the gapless
regime but not as well as for small k. There are also regimes
which are difficult to access analytically. This is the case for
intermediate k ∼ 1. See Fig. 13(b) for the k = 1 curve as a
function of d. Stückelberg theory works fine but only covers

(a)

0.0 0.5 1.0 1.5 2.0
k0.0

0.1

0.2

0.3

0.4

0.5

0.6
P

(b)

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
k

0.0002

0.0004

0.0006

0.0008

0.0010
P

FIG. 11. (Color online) Transition probability P at the merging
d = 0 as a function of k. The numerically exact result is shown by the
solid (blue) line. The diabatic perturbative result, Eq. (17), is shown
by the dashed (red) line; the adiabatic perturbative result, Eq. (30),
by the dotted (black) line. (a) k between 0 and 2. (b) k between 1.5
and 3 (note the change in the vertical scale by a factor of 103): there
is a tiny oscillation due to the interference between two poles.

the large −d regime, whereas both perturbative calculations
(not shown for clarity) are unreliable for intermediate k. The
modified Stückelberg is qualitatively correct also when k ∼ 1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k0.0

0.1

0.2

0.3

0.4

0.5
P

FIG. 12. (Color online) Transition probability P at fixed d = −1
as a function of k. The numerically exact result is shown by the
solid (blue) line; the diabatic perturbative result, Eq. (17), by the
short-dashed (red) line; the Stückelberg result, Eq. (12), by the dotted
(black) line; the adiabatic perturbative result, Eq. (30), by the dot-
dashed (green) line; and the modified Stückelberg formula, Eq. (35),
by the long-dashed (magenta) line.
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(a)
k 0.1
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FIG. 13. (Color online) Transition probability P at fixed k as a
function of d . The numerically exact result is shown by the solid (blue)
line; the diabatic perturbative result, Eq. (17), by the short-dashed
(red) line; the Stückelberg result, Eq. (12), by the dotted (black)
line; the adiabatic perturbative result, Eq. (30), by the dot-dashed
(green); and the modified Stückelberg formula, Eq. (35), by the long-
dashed (magenta) line. (a) k = 0.1 (the modified Stückelberg formula
coı̈ncides with the Stückelberg probability when d < 0—it is not
shown for clarity—and is not applicable when d � 0); (b) k = 1;
(c) k = 2.5. Note the different probability scales in the three graphs.

VIII. COMPARISON TO THE EXPERIMENT:
ABSENCE OF INTERFERENCES

Recently, an experiment with ultracold fermionic atoms in
an optical lattice could study the merging transition and the
interband tunneling of atoms performing Bloch oscillations
[6]. There, atoms moving in an artificial graphene-like crystal
could mimic Bloch electrons in a usual solid-state crystal. In
Ref. [13], in order to understand the result of this experiment,
we computed the interband transition probability for a single
atom using the approximate Stückelberg theory as a function

of k and d. Then we translated these two parameters into the
experimentally tunable laser intensities VX̄ and VX defined in
Ref. [6]. Qualitatively, VX̄ controls the merging transition and
is roughly equivalent to −d (called −�∗ in Ref. [13]), whereas
VX controls the transverse gap and is equivalent to k (called
cx in Ref. [13]). The last step was to average the probability
over the atomic distribution of a 2D degenerate Fermi gas.
The agreement between theory and experiment was found to
be very good: compare Fig. 4(b) in Ref. [6] with Fig. 4(b) in
Ref. [13].

However, as the Stückelberg theory is only valid in the
gapless phase (d < 0) and not too close to the merging
transition [see Fig. 3(b)], we could only compare theory and
experiment in the gapless region. Near the transition and in the
gapped region, the experimental signal was vanishingly small
and could not be compared with any theoretical prediction.
Within the present framework, it is now possible to understand
the interband probability very close to the merging. When
looking at Fig. 4(b) in Ref. [6] in detail, one sees that the red
line of maximum transition probability—which lies essentially
in the gapless region—actually crosses the merging line and
slightly extends in the gapped region at very small VX. This
line qualitatively corresponds to PZ = 1/2 such that P = 1/2.
Such a behavior is found in our calculations as well: see
Fig. 9(b), where the orange region of maximum probability
(between 0.4 and 0.5) lies essentially in the gapless (d < 0)
region but also slightly extends to the gapped region (d > 0),
reaching d ∼ 0.4 when k → 0.

We now consider the merging point (d = 0) and study both
the interband probability P2 for the motion in the direction
where two Dirac cones are hit (x direction) and that, P1, in
the perpendicular direction in which a single cone is hit (y
direction) [19]. In the present paper, we concentrate on P2—
which is called P (d,k)—as P1 is simply given by the usual LZ
formula and was studied in detail in Ref. [13]. The merging
point is special in the sense that the spectrum is gapless and
features a single contact point, which is linearly dispersing
in the py direction and quadratically in the px direction [9].
The LZ formula gives P1 = exp{−π [p2

x/(2m∗)]2/(h̄cyF )}.
In the coherent case, the numerical solution in Sec. VII
gives P2 = P (d = 0,k), where k = cypy(2m∗)1/3/(h̄F )2/3 as
plotted in Fig. 11 [see the solid (blue) line], and in the
incoherent case, the modified Stückelberg equation (36), gives
P2 ≈ 2 exp(−
(1/4)2

3
√

π
k3/2)[1 − exp(−
(1/4)2

3
√

π
k3/2)]. The proba-

bility P1 depends on px and varies between 0 and 1, whereas
P2 depends on py (i.e., on k) and varies between 0 and ∼0.55
[coherent case; see Fig. 11(a)] or 0.5 (incoherent case). The
ratio P2/P1 can therefore take any positive value depending
on what the relevant px and py values are. The latter depend
on the size of the atomic cloud and on the way in which the
averaging over the atomic cloud is done. For example, for a
single atom px = py = 0, giving P1 = 1 and P2 = 0, so that
P2/P1 = 0. In particular, there is no reason for this ratio to
take the simple value 0.5 [6]. We have performed averaging
over various atomic cloud sizes comparable to that in the ETH
Zürich experiment and find that 〈P2〉/〈P1〉 can vary between 0
and ∼0.7.

One very striking experimental fact remains to be ex-
plained: the agreement is actually obtained with the incoherent
interband probability [see, e.g., Fig. 9(b)] rather than with
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the coherent probability (see, e.g., Fig. 10). In other words,
Stückelberg oscillations (interferences) are not observed in the
experiment, whereas they are predicted. Here we would like
to discuss this specific point in more detail. The absence of
interferences could be due to (i) decoherence, (ii) blurring,
or (iii) washing-out because of some averaging process.
(i) Decoherence is unlikely in a cold-atom experiment with
almost noninteracting fermions. We estimate the decoherence
time due to spontaneous emission following Ref. [33]. It is
roughly given by 1/γ̃ = (δ/�)2/γ ∼ 103 s, where γ ∼ 6
MHz is the natural line width for the relevant transition
of 40K, δ ∼ 108 THz is the detuning, and � ∼ 1 GHz
is the Rabi frequency estimated from h̄�2/δ ∼ ER , where
ER ∼ 4.4 kHz is the recoil energy. It is much longer than
the experimental time, therefore ruling out decoherence as a
possible mechanism to explain the absence of interferences.
(ii) Blurring of the interferences could also occur because of
the detection process using a finite pixel size. We checked that
possibility and found that the pixel size is small enough that
it should allow experimentalists to resolve the interferences.
(iii) We are left with the possibility of washing-out of the
oscillations due to several averaging processes. We included
averaging over a 2D atomic distribution in reciprocal space,
which only resulted in slightly smoothing the oscillations
(compare Fig. 10 here and Fig. 4(d) in Ref. [13]). However,
the atomic cloud in the experiment was actually not 2D but
3D, even though the optical lattice was 2D. The atomic gas
was indeed confined by an anisotropic 3D harmonic trap, but
very far from the regime where one of the direction of motion
would be frozen. This means that the system is best seen as
a bunch of parallel 1D tubes, each tube corresponding to a
single site of a 2D honeycomb-like lattice. The atoms hop
in a kind of tight-binding lattice in the xy plane (except for
a weak harmonic trap mω2

xx
2/2 + mω2

yy
2/2) and are almost

free to move in the z direction (except for a weak harmonic
trap mω2

zz
2/2). The period of the harmonic motion in the

z direction 2π/ωz is very long compared to the time an
atom spends in the Stückelberg interferometer ∼2

√|d|tcar,
where tcar = (2m∗h̄)1/3/F 2/3. One can therefore think that an
atom moves in the interferometer at an almost-constant z.
However, because of the finite laser waist, the laser intensities
are inhomogeneous, so that atoms at different z experience a
slightly different optical lattice. In other words, the parameters
d and k of the universal Hamiltonian are slightly z dependent.
As shown in Fig. 10, for example, the interferences in the
interband probability P are essentially a function of d (and
not so much of k), with a fringe spacing of roughly δd ∼ 1
(which is the same as saying that δ�∗ ∼ 0.04ER [13]). From
the experimental conditions in Ref. [6], we estimate a laser
waist of ∼150 μm and a cloud radius of ∼30 μm in the z

direction (half of the tube’s length) so that the parameter d

varies by roughly 0.7 between the center and the edge of the
atomic cloud. As this is comparable to the spacing between
a dark and a bright fringe, it should be enough to wash out
the oscillations. In the experiment, the interband probability
is automatically averaged over the third spatial direction, i.e.,
along the tubes axis. Therefore, we think that the averaging
over the third spatial direction could be responsible for the
absence of the oscillations in the interband probability. An
alternative explanation for the disappearance of the oscillations

was very recently proposed in Ref. [34]. It is based on
the spatial inhomogeneity of the applied force in the 2D
plane, which also leads to averaging and washing-out of the
probability fringes.

By breaking the inversion symmetry of the lattice, it is
also possible to induce a mass to the Dirac fermions, i.e.,
to gap the Dirac cones when d < 0 [6]. Such a situation is
easily incorporated in our theory by a simple mapping k →√

k2 + g2. Hamiltonian (3) becomes H = [t2 + d]σz + kσx +
gσy , where g is the (dimensionless) mass gap induced by inver-
sion symmetry breaking. The interband transition probability
P(d,k,g) when g �= 0 is simply related to that P (d,k) at g =
0 by P(d,k,g) = P(d,

√
k2 + g2,0) = P (d,

√
k2 + g2). This

mapping is easily found by looking at the coupled differential
equations (5), in which H12 = k becomes H12 = k − ig =√

k2 + g2eiγ , where γ ≡ Arg(k − ig). The phase γ is time
independent and can be gauged away so that only the modulus
of k − ig matters and H12 becomes

√
k2 + g2.

IX. CONCLUSION

Inspired by a recent experiment probing the merging
transition of Dirac cones via Bloch-Zener oscillations of
ultracold fermionic atoms [6,13], we have studied interband
tunneling for a quadratic band crossing. The latter problem
depends on two dimensionless parameters, which are the
merging gap d and the perpendicular gap k. We computed the
probability P for a particle to tunnel from the lower to the upper
band as a function of k and d. Qualitatively, the probability
oscillates as a function of d in the gapless phase and decays
exponentially in the gapped phase. The oscillations are a result
of Stückelberg interferences. As a function of k, the probability
shows quite an unusual nonmonotonic behavior: P vanishes
exponentially in the adiabatic/semiclassical limit (large k),
which is the expected tunneling behavior in the large-gap
limit, but it vanishes also in the opposite diabatic/sudden
limit (small k) as the result of a special symmetry. Indeed,
when k = 0, the conservation of the pseudospin σz implies
that P vanishes. When k �= 0, this symmetry is broken and,
quite counterintuitively, the opening of a gap leads first to
a quadratic increase in the probability to tunnel between the
bands. In addition, when k � 1, there are oscillations of P (as
a function of both k and d) whatever the sign of d. These are
due to interferences between two poles in the complex time
plane. The latter exist not only in the presence of Dirac points
(gapless phase) but also in the gapped phase (in which case
the bands do cross, but at times with a finite imaginary part).

The probability P of interband tunneling was calculated
using different methods. To summarize, the numerically exact
solution of the time-dependent Schrödinger equation is given
in Sec. VI. We also used approximate analytical techniques to
compute P : for small k � 1 and arbitrary d, we used diabatic
perturbation theory [see Eq. (17)]. For negative d � −1
and small k � −d, we employed the Stückelberg approach
[see Eq. (12)]. And for large k � 1, we used adiabatic
perturbation theory [see Eq. (30)]. For intermediate k values,
we have no exact analytical prediction but an approximate
modified Stückelberg formula [see Eq. (35)] that compares
well to the numerics in the whole negative-d region and
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also for large k and positive d (adiabatic regime). Using
the tools we have developed, it should be possible to com-
pute the interband tunneling probability for many two-band
Hamiltonians.

Note added in proof. Recently, we became aware of related
articles in the context of atomic collisions, in which a parabolic
level crossing problem was studied (see Ref. [32]). The specific
case d = 0 (exactly at the merging transition) was also very

recently analyzed in Ref. [35], where it is called parabolic level
glancing.
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