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Interferometry using adiabatic passage in dilute-gas Bose-Einstein condensates
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We theoretically examine three-well interferometry in Bose-Einstein condensates (BECs) using adiabatic
passage. Specifically, we demonstrate that a fractional coherent transport adiabatic passage protocol enables
stable spatial splitting in the presence of nonlinear interactions. A reversal of this protocol produces a coherent
recombination of the BEC with a phase-dependent population of the three wells. The effect of nonlinear
interactions on the interferometric measurement is quantified and is found to lead to an enhancement in sensitivity
for moderate interaction strengths.
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I. INTRODUCTION

Since the creation of the first Bose-Einstein condensate
(BEC) [1,2], cold-atom experiments have provided a powerful
platform for the study of macroscopic quantum states [3,4],
emulation of solid-state physics [5,6], and insight into many-
body quantum phenomena. The utility of BECs stems from
the experimental freedom to control many system parameters,
including the interaction strength, degrees of freedom, size,
and shape of the BEC.

One enticing proposal is to use BECs for interferometry
[7–9]. BEC interferometers would have many advantages over
their optical counterparts. Trapped-atom interferometers can
be sensitive to changes in mass, charge, magnetic moment,
and polarizability. As with optical interferometry, a BEC
interferometer involves the spatial splitting, followed by
the generation of a relative phase difference between split
components and then coherent recombination of the quantum
state. Performing these operations in a way that is relatively
insensitive to small errors in the implementation is a necessary
precondition for a reliable interferometer.

The conventional two-well splitting of a BEC is highly
sensitive to atom-atom interactions where phase diffusion
and Josephson oscillations lead to a loss of phase resolution
[10–12]. Beam splitting via laser-induced adiabatic passage
has the advantage of being robust to changes in experimental
parameters. Marte et al. [13] proposed a variant of the efficient
and robust three-state adiabatic process known as stimulated
Raman adiabatic passage (STIRAP) [14–17], called frac-
tional STIRAP (f-STIRAP) [18,19]. This scheme can be used
to generate any preselected coherent superposition of two
atomic states, |1〉 and |3〉, via an intermediate excited state, |2〉.
Electromagnetic pulses are used to couple states |1〉 to |2〉 and
|2〉 to |3〉, characterized by coupling parameters �12 and �23.
As in STIRAP, �23 precedes �12, but unlike STIRAP where
�23 vanishes first, here, the two pulses vanish simultaneously
while maintaining a constant ratio of amplitudes. The ratio of
probability amplitudes of the resulting coherent superposition
of states |1〉 and |3〉 is proportional to the ratio �23/�12. Hence,
stopping at �23/�12 = 1 can create an atomic beam splitter
as demonstrated experimentally by Weitz et al. [20].

Here, we propose an alternative method for the spatial
splitting and coherent recombination of a BEC based on

the ideas underpinning f-STIRAP. In three-well atomic [21]
and electronic quantum dot [22] systems, the coherent spatial
transport of single-particle quantum states is known as coher-
ent tunneling adiabatic passage (CTAP). Recent papers have
shown that this principle can be extended to interacting many-
body quantum systems, such as BECs, both in the quantum
[23] and in the semiclassical mean-field limits [24–30].

Analogous to f-STIRAP, fractional CTAP (f-CTAP)
allows for the creation of a coherent spatial superposition
of eigenstates of wells 1 and 3. For photons, f-CTAP has
been demonstrated experimentally in three-channel optical
waveguides [31,32]. Consider the initial state with the BEC
confined to well 1, schematically shown in Fig. 1(a). The
atomic population of the BEC is transported from well 1 to
well 3 through adiabatic changes to the tunneling rates between
the wells and is halted once the BEC is equally split [see
Fig. 1(b)]. At this point, one component of the BEC can be
made to interact with some system of interest for time τ . In the
case where a phase difference accumulates between the two
states of the superposition, this phase can be determined via
an interferometric measurement as demonstrated in two-well
systems [9,33] by releasing the BEC from the three-well
system. In this paper, f-CTAP is proposed to also be used in
the recombination stage of the interferometer as reversing the
f-CTAP protocol results in a phase-dependent population of
the three wells [see Fig. 1(c)]. Interferometric f-CTAP needs
to be performed on a time scale that is much longer than
nonadiabatic methods. However, the tunneling interaction be-
tween the split BECs maintains mutual coherence throughout
the splitting and recombination processes. As with CTAP,
the f-CTAP protocol has the advantage of being robust to
variations in trap parameters and pulse time.

To explore the dynamics of our three-well system, we
employ the three-mode Gross-Pitaevskii equation (GPE)
[25,26,28,34–36]. In the noninteracting limit, we show ana-
lytically that a BEC initially residing in well 1 can be split
between wells 1 and 3 and can be recombined to give a
phase-dependent density in well 1 [see Fig. 1]. To understand
the role of interactions, we use a nonlinear three-mode
treatment. The presence of interactions gives rise to a window
where canonical CTAP can occur and a regime where more
sensitive interferometric sensing can be observed. By solving
the corresponding classical equations of motion, we identify
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FIG. 1. (Color online) Schematic of a three-well system: at
(a) t = 0, at (b) tp/2 < t < tp/2 + τ where τ is the hold time
required for phase accumulation, and at (c) t = tp + τ . The system
consists of two parallel repulsive Gaussian barriers embedded in
an ambient harmonic trap, dividing the system into three wells.
At t = 0—(a)—the BEC resides in a well. At t = tp/2—(b)—the
BEC is split into two equal components residing in wells 1 and 3.
To perform the interferometric measurement, the tunneling rates are
then kept constant for some hold time τ during which a relative phase
difference may be accumulated. At t = tp + τ—(c)—the two BECs
are recombined, which leads to a phase-dependent population in
well 1.

the nonlinear eigenstates of the system, identifying the bifurca-
tion point where extra nonlinear states appear, and investigate
the stability of the CTAP state.

The nonlinear dynamics that are obtained from the in-
teraction CTAP model have been mapped directly onto a
corresponding three-dimensional GPE [29] showing that the
adiabatic transport of a BEC containing 2000 7Li atoms can
be achieved over 20 μm within an ambient harmonic trap of
ω = 2π × 40 Hz.

II. NONINTERACTING MODAL APPROXIMATION

Consider a three-well system. For sufficiently large wells,
the system is accurately described by the modal approximation
[14,25,26,28,36,37]. Each well is approximated by a single
mode �j , giving

� =
3∑

j=1

ψj (t)�j (x), (1)

where the amplitude of each mode j is expressed as ψj =√
Nje

iφj with Nj and φj being the modal occupation and
phase, respectively. The system is normalized such that

∑3
j=1 Nj (t) = 1. In this basis, the Hamiltonian of the three-

well system is as follows:

H = h̄�

⎛
⎝ U1 −�12 0

−�12 U2 −�23

0 −�23 U3

⎞
⎠, (2)

where �ij is the dimensionless tunneling rate between modes
i and j , determined by the wave-function overlap. The
dimensionless on-site interaction energy per particle is Uj =
E0

j + gNj . h̄�E0
j is the ground-state energy of well j with �

being the maximum tunneling rate that sets the characteristic
energy scale of the system and g as the dimensionless
parameter, describing the nonlinear atomic interactions.

We first describe the f-CTAP protocol for BEC splitting and
recombination in the noninteracting regime g = 0.

A. BEC splitting with fractional CTAP

In the absence of nonlinear atomic interactions (g = 0) and
for E0

1 = E0
3 = 0, E0

2 = 
, the eigenstates of the Hamiltonian
Eq. (2) are as follows:

D0 = �23�1√
�2

23 + �2
12

− �12�3√
�2

23 + �2
12

, (3)

D± = 1√
γ (γ ± 
)

[√
2�12�1−
 ± γ√

2
�2+

√
2�23�3

]
,

(4)

where γ =√

2+4(�2

12+�2
23). The D0 eigenstate has no pop-

ulation in the center well for all 
 and, in the limit of
�12/�23 � 1, the atomic population is confined entirely to
well 1.

Consider the scenario where the BEC initially resides in
well 1 (�12/�23 = 0). Adiabatic transport through the D0

state such that the BEC is equally split between wells 1 and
at t = tp/2 requires a smooth transformation of �12 = 0 to
�12 = �23 = 1/2. A pulsing sequence for τ = 0 that meets
this criterion is as follows:

�12(t) = 1
2 sin2[πt/tp], (5)

�23(t) = 1
2 + 1

2 cos2[πt/tp], (6)

as shown in Fig. 2(a). The mode energies for this pulse
sequence are shown in Fig. 2(b) with the population of the three
wells shown in Fig. 2(c) (where adiabatic pulsing has been
assumed). At tp/2, N1 = N3 = 0.5, which is the condition we
require for sensing.

The robustness of the splitting protocol relies on adiabatic
changes to the system tunneling. For noninteracting BECs, the
adiabaticity is quantified by the adiabaticity parameter,

α = max
i=±

|〈D0; t | ∂
∂t

H (t)|Di ; t〉|
|E0(t) − Ei(t)|2 , (7)

which is shown in Fig. 2(d) through the protocol. Adiabatic
transfer requires tp to be chosen such that α � 1 over the
entirety of the protocol.
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FIG. 2. (Color online) Ideal three-well system with 
 = 0 and
g = 0: (a) Proposed pulsing scheme: Eqs. (5) and (6). (b) Energies of
the eigenmodes: D0 and D±. (c) Evolution of the occupation of the
three wells: solid curve: N1 and dashed curve: N3. (d) Adiabaticity
parameter αtp . In these figures, we have assumed that τ = 0.

B. Phase interferometry with fractional CTAP

Once the BEC is split, interaction with a target system can
induce a relative phase difference between the two compo-
nents. Since �12 = �23 = 1/2 at t = tp/2, phase information
is shared between the BECs in wells 1 and 3. This enables
the mutual coherence between the two BECs during splitting
to be maintained, inhibiting phase diffusion. To enable the
desired phase accumulation, tunneling between wells 1 and 3
needs to be suppressed. This can be achieved via a variety of
means, such as (i) applying a blocking laser field at the middle
point of well 2 or (ii) reducing �12 and �23 adiabatically
to zero. After the decoupling of the BECs, phase diffusion
will occur. The BECs can be recoupled some time later by,
for example, (i) switching off the blocking laser field or
(ii) adiabatically increasing �12 and �23 to 1/2. We assume
that the process of decoupling and recoupling occurs over time
scale τ . Considering the case where the two BECs accumulate
a phase difference φ over τ , the state of the system is then

�S(tp/2 + τ,φ) = 1√
2

(�1 − eiφ�3). (8)

The acquired phase difference during τ moves the system out
of the D0 state and into a superposition of all three eigenstates.
Hence, the resulting change in eigenstate populations for a
given φ is as follows:

N (D+) = sin2(φ/2) sin2 θ, (9)

N (D−) = sin2(φ/2) cos2 θ, (10)

N (D0) = cos2(φ/2), (11)

where

θ = 1
2 arctan[

√
2/
]. (12)

Adiabatic evolution of the system through to t = tp + τ

returns the barriers back to their initial configuration where

�12 = 0 and �23 = 1. At the end of the splitting and phase
accumulation (t = tp + τ ), the D0 eigenstate is simply the
state in well 1 with the final population given by

N1(tp + τ ) = N (D0) = cos2(φ/2). (13)

Thus, the phase difference accumulated during τ manifests as
a population imbalance at the end of the protocol. Density
measurements on the final state of the BEC then allow
determination of the phase φ. This is demonstrated by full
numerical integration of the three-mode GPE in Sec. III C
where the g = 0 lines in Fig. 9 confirm the phase response
predicted by Eq. (13).

Noise in the tunneling throughout the transport can be
suppressed by considering an experimental setup where a
single laser is split proportionally between two barriers to
mediate the tunneling interaction. Hence, noise in �12 and
�23 due to fluctuations in the intensity of the source laser will
be coupled. As shown in Eckert et al. [21], adiabatic transport
is still achievable in the presence of such noise.

Any small asymmetry in the final tunneling terms of the
Hamiltonian results in a loss of sensitivity proportional to the
population difference between wells |1〉 and |3〉 and as such,
does not affect our analysis.

III. NONLINEAR THREE-MODE APPROXIMATION

Controllable nonlinearities are one of the defining features
of BEC dynamics as compared to analogous photonic systems.
Accordingly, we now consider the effect of a nonzero g on
the f-CTAP interferometric protocol. Interparticle interaction
in BECs gives rise to a raft of interesting phenomena, for
example, quantum phase transitions [6], solitons [38–41], and
entanglement generation [42]. However, in the context of BEC
interferometry, these interactions are, in general, problematic
as they induce phase diffusion. These interactions manifest as
a nonlinearity in the mean-field description, leading to highly
nontrivial dynamics. We analyze the behavior of the system
by mapping the nonlinear GPE to a classical Hamiltonian.
The nature of the stationary states in the classical model
determines the behavior of the protocol in the adiabatic
limit. This analysis is complimented by numerical simulation.
Simulation of the protocol confirms the conclusions of the
classical analysis in the large tp limit and reveals several
interesting phenomena for finite tp. Interestingly, we find that
the presence of nonlinearities can lead to an enhanced phase
sensitivity.

A. Mapping to classical variables

The presence of a nonlinearity in the GPE makes analysis
of the dynamics significantly more difficult. Notably, the
superposition principle is no longer valid, making an eigenstate
decomposition impossible. In general, there will be more
eigenstates than the Hilbert space dimension. The system
can be approached through concepts borrowed from classical
mechanics as there is a mapping of our system to a classical
Hamiltonian. From this perspective, we study the stationary
points in the classical phase space, that correspond to the
eigenstates of the original system.
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Any quantum system with Hilbert space dimension N can
be mapped onto a classical system with 2N degrees of freedom,
namely, the N phases and N amplitudes of the state vector.
Symmetry under global phase shifts leads to a conservation
of probability amplitude as an integral of motion, and if the
Hamiltonian is time independent, the total energy also is an
integral of motion. This implies that two-mode BECs have non-
chaotic dynamics. In the three-well case, integrable dynamics
are no longer guaranteed. The presence of chaotic dynamics
has implications for the splitting and recombination elements
of the interferometer as adiabatic transport through a chaotic
region of phase space is not possible. Linear quantum systems
map onto N -dimensional harmonic oscillators and are neces-
sarily integrable. Introduction of nonlinear terms leads to more
complicated classical dynamics, which in some cases, can be
chaotic. This is indeed the case for the three-well BEC [43,44].

We take the classical degrees of freedom to be the amplitude
squared and phase of the BEC in each well: Ni = |ψi |2, φi =
arg (ψi). The number of degrees of freedom can be reduced by
2 using conservation of probability and global phase symmetry,

N2 =1 − N1−N3, φ12 =φ1 − φ2, φ32 =φ3 − φ2. (14)

The classical Hamiltonian is then

H/h̄� = 
(1 − N1 − N3) + g

2

[
N2

1 +N2
3 +(1 − N1 − N3)2

]
− 2�12

√
N1(1 − N1 − N3) cos φ12

− 2�23

√
N3(1 − N1 − N3) cos φ32, (15)

and the equations of motion are as follows:

˙φ12/h̄� = −�12(2N1 + N3 − 1) cos φ12√
N1(1 − N1 − N3)

− 


− �23N3 cos φ32√
N3(1 − N1 − N3)

+ g(2N1 + N3 − 1), (16)

Ṅ1/h̄� = 2�12

√
N1(1 − N1 − N3) sin φ12, (17)

˙φ32/h̄� = −�23(N1 + 2N3 − 1) cos φ32√
N3(1 − N1 − N2)

− 


− �12N1 cos φ12√
N1(1 − N1 − N3)

+ g(N1 + 2N3 − 1), (18)

Ṅ3/h̄� = 2�23

√
N3(1 − N1 − N3) sin φ32. (19)

1. Stationary states

CTAP, by definition, requires evolution along particular
eigenstates. In Sec. II B, we were able to understand sensing by
the accumulated phase shifting of the BEC into a superposition
of all three eigenstates. However, the nonlinearities in the
modal BEC approach invalidate the superposition principle.
Nevertheless, studying the states of the system still yields
useful insight into the structure of the resulting phase space.

The eigenvalues are given by the stationary solutions to
Eq. (19). To distinguish from the g = 0 case, we denote these
stationary states by D′ with the D′

0 coinciding with the D0

split state at t = tp/2,

D′
0(tp/2) = 1√

2
(�1 − �3) = �50:50. (20)

(a) (b)

(c) (d)

(
)

(
)

FIG. 3. (Color online) Eigenenergies for a range of interaction
strengths with 
 = 0.1 and tp → ∞. As the interaction strength is
increased, new eigenstates appear. When |g| ≈ 1.0, the D′

0 state at
t = 0 is no longer ψ1, precluding the possibility of a 50:50 split.

As mentioned above, for the interacting case, the number of
eigenvalues is no longer limited to 3 (see Ref. [45] for an in-
depth discussion). Figure 3 shows the eigenvalues for various
values of g, using the pulsing sequence defined by Eqs. (5) and
(6). At higher interaction strengths, new eigenstates appear.
The appearance of these new states marks a bifurcation near the
t = {0,tp} limits, which disconnects the D′

0 state from the fully
occupied states at the end points. Once these eigenstates appear
at g = gc = 
/2 ±

√
1 + 
2/4, 50:50 splitting is precluded,

even in principle.
The appearance of these additional nonlinear eigenstates

is a ubiquitous feature of nonlinear systems. However, their
effect on the dynamics depends on the pulse sequence that is
employed. In particular, Graefe et al. [28] showed that the extra
eigenstates are a permanent feature of the eigenspectrum for
all g
 � 0 and |g| > |
| using a Gaussian pulsing protocol,
precluding adiabatic transport. Conversely, �23 
= 0, at the
start of the protocol as used here, has the effect of suppressing
the emergence of these extra nonlinear eigenstates for low
values of |g| as seen in the window of robust evolution in
Fig. 6. This robustness is further considered in the stability
analysis below.

From Eq. (19), it is possible to calculate the wave-function
amplitudes in the three wells as a function of the tunneling
rates and nonlinear interaction. Figure 4 shows that, for
g = 0, ψ2 = 0 for all t . However, upon the introduction
of interactions, ψ2 will, in general, be nonzero. After the
appearance of the self-trapped mode, the 50:50 split state at
t/tp = 0.5 is no longer adiabatically connected to the fully
occupied well 1 state at t/tp = 0.

2. Stability

We now consider the stability of the D′
0 state in the regime of

|g| < |gc|. A stationary point is unstable if small perturbations
lead to large deviations from the point. These deviations make
adiabatic transport of the system impossible as keeping the
system near D′

0 requires that tp → ∞.
When |g| < |gc|, there are just the three eigenstates.

However, these differ from the noninteracting case, i.e., the D′
0
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FIG. 4. (Color online) Wave-function components for the D′
0 state

with nonzero g, 
 = 0.1, and tp → ∞. Upper (blue): ψ1; middle
(green): ψ2; and lower (red): ψ3. Solid curves: g = 0.2; long dashed
curves: g = −0.6; short dashed curves: g = 1.4; and dot-dashed
curves: g = 2.0. Interactions lead to occupation of the middle well
during transport as can be seen for g = 0.7 and g = 1.0. Note: ψi is
real.

state’s eigenenergy is no longer zero and, in general, ψ2(t) 
= 0,
as demonstrated in Fig. 4. The dynamics in the neighborhood
of stationary states can be studied by performing a linear
expansion of the equations of motion. Solutions are classified
by eigenvalues of the Jacobian at the stationary point,

Jij = ∂ẋi

∂xj

, (21)

where the xi’s are the system variables. If the eigenvalues are
purely imaginary, then the solutions are oscillatory around the
stationary point. An eigenvalue with a positive real part implies
the presence of a hyperbolic orbit around the eigenstate, which
is unstable.

Figure 5 shows how the stability of the D′
0 state changes

along the pulse sequence for −1 < g < 1 for (a) 
 = 0.0
and (b) 
 = 0.1. For 
 = 0, the D′

0 state is strictly only
stable for g = 0 throughout the pulse sequence. However,
the introduction of 
 stabilizes the D′

0 state throughout the
transport protocol. Specifically, for 
 = 0.1, transport is stable
in the range of |g| � 0.2, and as can be seen in Fig. 4, complete

(b)(a)

FIG. 5. (Color online) Real part of the eigenvalue of the Jacobian
at the D′

0 state. (a) 
 = 0.0. (b) 
 = 0.1. Transport through regions
with Re(λ) = 0 allows complete fidelity for the protocol. For 
 = 0,
the D′

0 state is unstable for all g 
= 0, albeit with small Re(λ).

fidelity for transport to a split state is possible for extended
pulse times. At higher |g|, transporting through regions of
instability leads to a loss of fidelity. For an intermediate
interaction strength, this instability is small, and it is possible
to find a balance between the adiabaticity requirement and the
slow divergence of the D′

0 state, which still allows high fidelity
for the splitting protocol. Hence, we have identified 
 = 0.1
as advantageous to stable transport. We adopt this parameter
in the following analysis.

B. Nonlinear fidelity of splitting

We now explore the robustness of the f-CTAP splitting
protocol by direct numerical evolution of the nonlinear
Hamiltonian. Specifically, we solve for ψj in the presence
of nonlinear interactions and finite pulsing times via

i

�

∂

∂t
� = H�. (22)

We are interested in the transportation of the BEC to the split
state. We, therefore, define the fidelity as the overlap between
the �50:50 state and the transported state �(tp/2) as determined
from Eq. (22),

ε = |〈�50:50|�(tp/2)〉|2. (23)

Figure 6 shows the fidelity of BEC splitting in the
presence of interactions. Qualitatively, for small values of
|g|, full adiabatic transport is still possible for tp/2 > 10�−1.
However, larger interaction strengths lead to oscillations and
complete loss of fidelity in the splitting procedure.

The regions of efficient splitting in Fig. 6 can be ex-
plained in terms of the stability of the D′

0 state (Fig. 5).
For the pulsing scheme given by Eqs. (5) and (6), stable
transport to the split state is achieved for |g| < 0.2 in the
adiabatic limit (long dashed lines in Fig. 6). This region is
characterized by its close-to-linear behavior where an increase
in total pulse time leads to a corresponding increase in
fidelity. The small instability that exists for positive g slightly
reduces the fidelity of transport for long pulse times. The
absence of extra nonlinear states (Fig. 3) and stability of
the D′

0 state in this range (Fig. 5) means that the fidelity of

FIG. 6. (Color online) Fidelity ε of split as defined in Eq. (23) as
a function of pulse time tp and interaction strength g at t = tp/2 with

 = 0.1. Regions of good fidelity ε ≈ 1 are denoted by dark red. The
short dashed lines denote g = gc where the bifurcation appears, and
the long dashed lines denote |g| = 0.2.
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FIG. 7. (Color online) Occupation of well 1 after ideal BEC splitting and recombination using reversal of f-CTAP protocol for
(a) tp = 200�−1, (b) tp = 500�−1, (c) tp = 1000�−1, and (d) tp = 2000�−1 with 
 = 0.1 as a function of the phase difference (φ) between
wells 1 and 3 at t = tp/2 and the strength of the interatomic interactions |g| � 1.

transport obeys the linear adiabatic law up to very long pulse
times.

For |g| > 0.2, transport for the D′
0 state becomes unstable

(Fig. 5) with the growth of this instability increasing with
|g|. To achieve good transport in this regime, the optimal
pulse time must be found. This comes from competition
between the adiabaticity of the transport protocol and the
instability time scale of the D′

0 state with shorter tp/2 being
favored for stronger interactions. At g = gc, the appearance
of extra nonlinear states near the D′

0 state, which only extend
partially along the pulsing scheme as shown in Fig. 3, prevent
stable splitting for any tp/2. Once these extra states extend to
t = tp/2, stability in transport is restored. However, the final
state does not overlap the �50:50 state.

The evolution shown in Fig. 6 is the first stage of
this interferometric process, and reversal of the protocol,
for recombination, naturally leads to high-fidelity transport
analogous to full CTAP transport. The full sensing protocol is
the subject of the next section.

C. Phase interferometry in the presence of interactions

As shown in Sec. II B, the reversal of the f-CTAP splitting
process gives a phase-sensitive population in well 1, Eq. (11).
Here, we quantify the effect of interactions on this phase
measurement by numerically integrating Eq. (22) to determine
the population of well 1 at the end of the protocol N1(tp + τ ).
We assume an ideal splitting with N1(tp/2 + τ ) = N3(tp/2 +
τ ) = 0.5, E0

1 = E0
3 = 0, and E0

2 = 
 = 0.1 in Eq. (2) and
allow the BECs to accrue an initial relative phase difference
of φ as in Eq. (8). This investigation of the phase response
focuses on the behavior for time scales longer than the linear
adiabatic pulse time where the transport is well behaved.
Shorter recombination time scales result in a significant loss
in sensitivity and are not pertinent to the current investigation.

The final population of well 1 for tp = 200�−1, tp =
500�−1, tp = 1000�−1, and tp = 2000�−1 (Fig. 7) exhibit
large variations that prevent a robust phase measurement for
|g| � |gc|. For |g| < 0.2, the phase response is similar to the
noninteracting limit [Eq. (11)] and coincides with the region
of stability for the D′

0 state (Fig. 5).
We have computed first-order corrections for the periodic

orbits using classical perturbation theory [46]. For small
|g|, the deviation in the final population well 1 from the
noninteracting case 
N1 is given by


N1 = N1 − N1(g = 0) = −g�2 sin2 (φ)

4
(2 + 
2)
, (24)

which agrees with the numerical simulations in Fig. 8.
The nonzero 
N1 implies an increased phase sensitivity
due to the interactions, which is robust with respect to the
pulse time.

Consistent with Eq. (24), we numerically find that 
N1 is
zero for φ = {0,π} (Fig. 8). For long pulse times, Fig. 8(b),
the longer time spent traversing the unstable regions of
phase space leads to a larger deviation near φ = {0,π}. For
small attractive interactions, Fig. 8 shows that, for φ ≈ 0,
the interferometer is stable. Conversely, for small repulsive
interactions, Fig. 8 shows that, for φ ≈ π , the interferometer is
stable.

Even though bifurcations do not emerge until |g| >

|gc| ≈ 1.0, Fig. 7 demonstrates that, for interaction strengths
|g| > 0.5, the instability of the symmetric and antisymmetric
stationary states at φ = {0,π} leads to large variations in
density. Large density fluctuations reduce the possibility of
recovering any phase information across all of φ for g > 0.7.

In Fig. 9, we show the regions where phase-sensitive
measurements can be performed in the presence of non-
linear interactions, i.e., |g| � 0.35. Since nonlinear atom-
atom interactions can introduce unwanted density-dependent
fluctuations, which compromise phase sensitivity, atomic
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(a) (b)

FIG. 8. (Color online) Deviation in the population of well 1 from the noninteracting expected value N1(|g| � 0.1) − N1(g = 0) as a function
of the phase difference (φ) between wells 1 and 3 at t = tp/2 for (a) tp = 100�−1 and (b) tp = 2000�−1 where N1(g = 0) = cos2(φ/2). The
classical first-order perturbation, Eq. (24), is plotted for dashed curves: |g| = 0.05 and solid black curves: |g| = 0.1.

interferometry experiments often reduce these interactions via
a Feshbach resonance [47,48].

In the small interaction limit with |g| < 0.1, a robust phase-
sensitive measurement of N1 can be performed by accounting
for the correction given by Eq. (24). In this regime, Fig. 9 shows
a smooth response of N1 with respect to phase with deviations

for the noninteracting result shown in Fig. 8. The instability of
the φ = π state for attractive interactions, seen as a deviation
from the first-order correction in Fig. 8, does decrease the
pulse-time sensitivity relative to the stable regions. However,
the f-CTAP interferometer should be robust for a broader range
of interactions.
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(a) (b)

(c) (d)

FIG. 9. (Color online) Phase-sensitive measurement of the occupation of well 1 N1(tp) for interatomic interaction strengths |g| � 0.35 after
recombination times of (a) and (b) tp = 100�−1 and (c) and (d) tp = 3000�−1. Ideal splitting of a BEC as defined in Eq. (8) is assumed.
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1. Enhanced phase sensing

Here, we highlight how a f-CTAP-based interferometer has
two distinct regimes of enhanced phase-sensitive operation,
facilitated by control of the interaction strength via a Feshbach
resonance. Regime 1 is characterized by sensing around φ =
{0,π} for short pulse times, whereas, regime 2 requires much
longer pulse times but allows for tunable sensing.

In regime 1: For shorter pulse times [see Figs. 7(a) and 7(b)]
around φ = {0,π}, an enhanced phase-sensitive measurement
of N1 can be performed. For small |g|, the first-order
corrections to the final population in well 1 [Eq. (24)] are
small, and there is very little sensing enhancement. However,
for greater |g|, large but stable oscillations appear in these
regions, leading to enhanced sensing. This occurs for 0.2 <

g < 0.6 (φ ≈ 0) and −0.2 > g > −0.6 (φ ≈ π ) [Fig. 7(a)].
The emergence of these oscillations can be seen in Fig. 8(a)
where φ = {0,π} for g < 0 and g > 0, respectively. As can
be seen in Figs. 7(a)–7(d), the range of interaction strengths
where the φ = {0,π} states return to N1 = {1,0} reduces with
increasing pulse times.

In regime 2: A highly enhanced phase-sensitive measure-
ment of N1 can be performed at the point indicated by the
dashed line in Figs. 9(c) and 9(d). This stems from the large
gradient in the population phase response in the vicinity of the
dashed lines. The position of this boundary could be controlled
by tuning the interaction strength via a Feshbach resonance.
This would, for instance, allow the position of maximum
sensitivity for a given phase to be changed depending on the
application. This opens up the possibility for using a feedback-
based phase measurement to ensure maximum sensitivity to
particular phase changes.

2. Robustness

As shown in Sec. III A2, the adiabaticity criteria, Eq. (7), is
invalidated by the introduction of the nonlinear interaction
term. Hence, here, we associate a robust phase-sensitive
measurement with a high sensitivity to changes in relative
phase ∂N/∂φ and a low sensitivity to changes in pulse time
∂N/∂tp.

For the small interaction limit where the divergence due
to the instability is relatively slow, Figs. 10(a) and 10(b)
show that, as we increase the pulse time from tp = 100�−1

to tp = 2000�−1, the pulse-time sensitivity decreases by a
factor of 10−4. However, this deviation is small with respect
to phase sensitivity. Although this regime exhibits minimal
enhancement of phase sensitivity, it has the robustness and
stability of a noninteracting f-CTAP interferometer.

In regime 1: There is some reduction in pulse-time sensi-
tivity relative to the small interaction limit [Fig. 10], however,
the pulse-time sensitivity is still a factor of 10 less than the
phase sensitivity for tp = 100�−1 and is further reduced by a
factor of 103 for tp = 2000�−1 [Figs. 10(c) and 10(d)]. The
nonlinear interaction also leads to a smaller enhancement of the
phase measurement for g < 0.3 and g > 0.3 for φ = {0,π},
which is more robust to changes in pulse time due to the
reduced instability. Despite this, Fig. 10(d) shows that the
phase enhancement persists for longer pulse times.

In regime 2: Surprisingly, the robustness of sensing for this
range of phase shifts is increased for longer pulse times where
peaks in phase sensitivity no longer align with peaks in pulse-
time sensitivity [Fig. 10(d)]. The presence of regions in the
parameter space, that are insensitive to total pulse time, implies
that robust interferometry is possible for the interacting BECs.

(a) (b)

(c) (d)

FIG. 10. (Color online) Sensitivity of the density measurements for interaction strengths of (a) and (b) g = −0.06 and (c) and (d) g = 0.3
with respect to changes in phase and total pulse time. The dashed lines correspond to the phase sensitivity ∂N/∂φ, and the solid lines correspond
to the pulse-time sensitivity ∂N/∂tp between 90�−1 � tp � 110�−1 for (a) and (c) and 1800�−1 � tp � 2200�−1 for (b) and (d).
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IV. CONCLUSION

We have demonstrated that the f-CTAP protocol is a
valid methodology for the coherent spatial splitting of a
BEC in the presence of interactions. Reversal of the f-CTAP
protocol provides a robust phase-sensitive measurement as an
alternative to traditional methods. This interferometric process
is robust to changes in pulse time once in the adiabatic
regime for the small interaction limit. Also, even though
the adiabatic principle is not strictly valid in this nonlinear
system, it is possible to find splitting and recombination time
scales that achieve the balance between maintaining the system

in the D′
0 stationary state and divergence due to instability.

Phase-sensitive measurements in the presence of nonlinear
atomic interactions can lead to an enhancement in sensitivity
without significant loss in robustness with respect to changes
in pulse time.
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