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Attosecond time-delay spectroscopy of the hydrogen molecule
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We apply the concept of photoemission time delay to the process of single-photon one-electron ionization of
the H2 molecule. We demonstrate that, by resolving the photoelectron detection in time on the attosecond scale,
one can extract differential photoionization cross sections for particular field and molecule orientations from the
measurement on a randomly oriented molecule
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I. INTRODUCTION

Attosecond science has extended experimental studies of
atomic and molecular photoionization into a new dimension.
In atoms, a time delay between absorption of an attosecond
XUV pulse and subsequent emission of a photoelectron has
been measured [1–3]. In molecules, electron localization and
attosecond control have been demonstrated in pump-probe
photoionization experiments [4,5]. Experimental time-delay
studies in molecules are yet to be performed either by using
the attosecond streaking [1] or by the interferometric sideband
oscillation technique [2]. In the meantime, molecules offer
a very rich and complex photoionization picture in which the
cross section and angular distribution of photoelectrons depend
sensitively on the molecular orientation relative to the polar-
ization axis of VUV radiation. Thus the attosecond time delay
studies can be very beneficial to molecular photoionization
by defining the phase of the ionization amplitude and thus
achieving the complete photoionization experiment [6].

In the simplest case of a homonuclear diatomic molecule,
its orientation is defined by the mutual angle θN of the
molecular and polarization axes. Photoionization cross section
and angular distribution of photoelectrons in H2 and D2 depend
strongly on this angle varying between the limits of � (θN = 0)
and � (θN = 90◦) orientations. In single photoionization, the
amplitude and cross section of the � orientated H2 display a
deep minimum [7] which can be attributed to the two-center
electron interference [8]. In double photoionization (DPI), the
angular correlation pattern in two-electron continuum shows
strong variation with the angle θN . Because of the Coulomb
explosion of the doubly ionized H2 molecule, its orientation
at the moment of ionization can be measured experimentally
[9,10]. In principle, neutral polarizable molecules can also be
aligned by a strong laser field [11]. However, reports of single
photoionization of aligned molecules are not known to the
authors.

In the present paper, we offer an alternative strategy of
attosecond studies of randomly oriented molecules. Within the
framework of the time delay theory [12,13] and by employing
the saddle-point method, we figure out that the phase of the
electron wave packet, emanated from the randomly oriented
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molecule, carries information about the angle differential
photoionization cross section specific to certain molecular
orientations. By extracting this information, one can effec-
tively measure the orientation specific cross sections without
actually aligning the molecule. In the following, we illustrate
our findings by using a process of single-photon one-electron
ionization of the H2 molecule as a convenient example.

II. THEORY AND RESULTS

We shall be interested in the probability density distribution
P (t) to detect an electron at the moment of time t using a
detector placed at a point r far away from the ionized molecule.
The time-dependent wave function of the ejected electron after
the end of the laser pulse can be written as

�(r,t) =
∫

dq f (q)�−
q (r)e−iEt , (1)

where �−
q (r) are the (ingoing) scattering states in the field of

the molecular ion and f (q) is the photoionization amplitude.
A complete expansion of the wave function should include
bound states as well but they do not propagate to large distances
and hence do not affect the asymptotic behavior of the wave
packet, so we omit them. For large t and r , the integral in
Eq. (1) can be evaluated using the saddle-point method. For
the wave packet, describing an electron escaping with the
asymptotic momentum k, the amplitude |f (q)| in Eq. (1)
can be represented near its maximum as f (q) � exp[−a(q|| −
k)2 + iδ(q) − bq2

⊥] , where q || and q⊥ are the components
of the vector q in the direction of asymptotic momentum k
and perpendicular direction, respectively. The quantity δ(q)
is the phase of the ionization amplitude. The parameter b

characterizes the spread of the wave packet in the lateral
direction, and it is determined ultimately by the experimental
geometry. The parameter a characterizes the spread of the wave
packet in the direction of the momentum vector k towards
the detector. If the wave packet is well collimated and the
parameter b is large, so that b � a, then the energy spread of
the wave packet is approximately �E ≈ k/

√
a which, in turn,

is equal approximately to the bandwidth of the driving laser
pulse.

The large t asymptotic behavior of the wave function (1)
is determined by the q|| integration. The scattering states in
Eq. (1) are asymptotically Coulomb waves �−

q ∝ eiq·r+iγ (r,q)
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with γ (r,q) = q−1 ln(rq + r · q) [1,14,15]. Therefore, the
saddle point, that determines the large t behavior of the integral
in Eq. (1), is a critical point of the expression

S(q ||,t) = −a(q|| − k)2 + iδ(q||) − iq2
||t/2 + iq ||r

+ iγ (r,q ||) . (2)

This critical point determines the asymptotic electron trajec-
tory

r(t) 	 k(t − t0) + r ′(t) . (3)

Here t0(E) = k−1dδ/dq|| is the time delay and r ′(t) =
−dγ (r,q ||)/dq || is a known function varying logarithmically
slow with t . All the derivatives here are assumed to be taken
at the point q || = k.

To find the probability of the electron detection as a function
of time, we have to evaluate the integral in Eq. (1). By using
the saddle-point method, expanding Eq. (2) around the critical
point, and retaining the quadratic terms, we arrive at the
following expression:

�(r,t) ∝ exp

{
− [r − k(t − t0) − r ′(t)]2

4a

}
. (4)

The squared modulus of the wave function (4) defines the
probability P (t,R,θN ) for an electron to arrive at the moment
of time t at the detector placed at the point R = nR:

P (t,R,θN ) = A(n,θN ) exp

{
−k2[t − t0(n,θN ) − τ ]2

2a

}
. (5)

Here we introduced the arrival time τ defined as a root of the
equation:

R = kτ + r ′(τ ). (6)

From Eq. (6) and the definition of the function r ′(t) above, it
is clear that the arrival time depends only on the experimental
geometry and does not depend on the field and molecule
orientation. The physical meaning of the arrival time is
obvious. It corresponds to the moment of time at which the
distribution of the electrons, arriving at the detector, as a
function of time would have peaked in the absence of any
time delay. When deriving Eq. (5), we also took account of
the fact that both the preexponential factor and the time delay
t0 depend on the unit vector n = R/R in the direction of the
detector and the mutual field and molecule orientation, defined
by the angle θN . The preexponential factor can be found by
noting that the integration of P (t,R,θN ) over time should give
us the total probability to detect an electron escaping in a
given direction. The latter can be expressed in terms of the
differential cross section and the total energy carried by the
laser pulse [16]. For the coefficient in Eq. (5) we thus obtain

A(n,θN ) = k0c

8π
3
2 ω

dσ (n,θN )

d


∫
F 2(t) dt . (7)

Here c ≈ 137 is the speed of light in atomic units. The integral
of the squared electric field intensity F (t) is taken over the
duration of the pulse. This integral is related to the total energy
of the laser pulse which is usually known in the experiment.
The signal measured at the detector is an average over all

possible molecular orientations:

Pavg(t) =
∫ π

2

0
P (t,θN ) sin θN dθN . (8)

As a numerical example, we consider here the process of
single-photon one-electron ionization of H2 for the photon
energy ω = 21.5 eV. We consider the geometry in which pho-
toelectrons are detected in the z direction of the polarization
vector of the laser field. Numerical data, that are required to
evaluate Eqs. (5) and (8), are computed using the exterior
complex scaling method in prolate spheroidal coordinates
(PSECS) [17]. These data are the angle differential cross
section in the direction of the photoelectron detection and the
time delay corresponding to the given photoelectron energy
E. The latter is computed as

t0(n,θN ) = Im

[
df (n,θN )

dE

1

f (n,θN )

]
, (9)

where f (n,θN ) is the photoionization amplitude. The energy
derivative is evaluated using the finite difference formula by
running PSECS calculations for two closely spaced energies.
For the parameter a in Eq. (5) we used the value a = 20 a.u.
For the carrier pulse frequency of 21.5 eV (an example we
consider below) this gives us the characteristic spread of the
electron wave packet of 3 eV. We emphasize that the exact
shape of the pulse is not relevant to our analysis, as long
as the electric field of the pulse can be represented as E(t) =
f (t) cos ωt (which is the form we employed in the calculation),
or E(t) = f (t) sin ωt , where pulse envelope f (t) is an even
function on the interval (−T1,T1) of the pulse duration. The
phase of the amplitude in this case is not sensitive to the laser
pulse shape as can be readily seen from the perturbation theory
expression for the ionization amplitude. Therefore, as long as
we consider the pulses of not very high intensity and shape
described above, all we need for the saddle point derivation is a
quadratic expansion of the modulus of the ionization amplitude
near the critical point, which is always valid. In case of the
pulse shape different from the shapes described above (which
is the case of the chirped pulse, for example), we have to
introduce an additional energy dependent phase factor in the
expression for the amplitude. This will lead to replacement of
the phase δ(q||) in Eq. (2) with modified phase δ(q||) + �(q||).
Important point to note here is that �(q||) does not depend on
the molecular orientation. In the expression for the electron
trajectory (3), introduction of this factor will, therefore, result
only in the replacement of the time delay t0 with modified
delay t0 + T , where T = k−1d�/dq||, and is independent of
the molecular orientation. Net effect of the introduction of the
additional phase shift �(q||), is, thus, equivalent to shift of the
time zero in all the subsequent equations.

Our numerical results are presented on the Fig. 1 in the
form of the photoelectron detection probability distribution
Pavg(t) as a function of time measured from the moment of
arrival τ . On the same figure, we also display the probability
distribution P 0

avg(t), obtained if in Eq. (5) we put time delays
to zero. The difference between the time delayed and zero
delayed probabilities is highlighted on the right panel of
Fig. 1 where we display the normalized difference signal
[Pavg(t) − P 0

avg(t)]/P 0
avg(t). As can be seen from Eq. (5) and
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FIG. 1. (Color online) Left panel: angular averaged probability
distribution Pavg(t) computed according to Eqs. (5) and (8) is shown
by the solid (red) line. The dash (green) line: results of the fitting
procedure. The (blue) dots: distribution P 0

avg(t) computed assuming
zero time delays in Eq. (5). Right panel: normalized difference signal
[Pavg(t) − P 0

avg(t)]/P 0
avg(t). Photon energy ω = 21.5 eV.

Fig. 1, the probability P 0
avg(t) is an even function of t = τ

peaked at t − τ = 0. The time delays t0(n,θN ), which are
different for different orientations θN , are responsible for the
asymmetry of the averaged distribution visible on both panels
of Fig. 1.

The computational procedure, that we described above,
solves the direct problem of evaluating the probability distribu-
tion of the counts on the detector as a function of time. Now we
demonstrate that the inverse problem can also be solved, i.e.,
one can extract information about the cross sections and time
delays for particular values of field and molecule orientation
using the averaged signal Pavg(t). The amplitude f (θN ) and
its energy derivative can be parametrized as functions of the
angle θN [18]

f (θN ) = β1 cos θN + β2 sin θN,
(10)

df (θN )

dE
= β3 cos θN + β4 sin θN,

where βi are some complex parameters. With these parameters,
we can find the differential cross section and the time delay
entering Eqs. (5) and (7) [for the time delay we use Eq. (9)].
The parameter a, which describes the momentum distribution
of the electrons near the crest of the wave packet, is rarely,
if ever, known in the experiment. We treat it, therefore, as
an additional fitting parameter. This gives us a set of fitting
parameters β,a. With this set of parameters, we compute the
trial distribution Ptrial(t) using Eqs. (5), (8), and (10). With
Ptrial(t) thus computed, and Pavg(t) presumed to be known, we
form a functional

d(β,a) =
∫ ∞

−∞
[Ptrial(t) − Pavg(t)]2 dt. (11)

By minimizing d(β,a) with respect to the fitting parameters,
we find the amplitude as a function of the angle θN . The result
of such a fit for the probability distribution is shown in Fig. 1
for the photon energy ω = 21.5 eV. The fitted curve is almost
indistinguishable from the original calculation.

By knowing the optimal set of fitting parameters β, we can
compute the cross section and the time delay as functions
of the angle θN . These results are shown in Fig. 2 for
three fixed photon energies ω = 21.5, 64, and 79 eV along
with the original data computed by the PSECS method. One
can see that our fitting procedure reproduces the PSECS
cross-section data quite reasonably except for the angles
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FIG. 2. (Color online) Differential cross sections of detecting the
photoelectron in the z direction (left column) and corresponding time
delays (right column) as functions of angle between molecular axis
and field direction for photon energies of 21.5 eV (first row), 64 eV
(second row), and 79 eV (lower row). Solid (red) line: data obtained
using the fitting procedure; dash (green): calculated results.

θN , where this cross section becomes small. That could be
expected as the preexponential factor in Eq. (5) dampens
heavily the probability making the fitting procedure insensitive
to the contribution from these angles. Since the time delay is
generally large when the cross section is small, the agreement
of the fitted and exact time delays in Fig. 2 is not nearly as
good as for the cross sections.

The interval of the photon energies that we considered
includes the deep minimum at approximately 75 eV for the
� orientation. The ratio of the cross sections σ�/σ� shows
a prominent maximum at this photon energy [7], where it is
approximately an order of magnitude larger than for the photon
energies far from the minimum. This means that, for the photon
energies near 75 eV, the cross section as a function of the angle
θN varies much more on the interval θN ∈ (0,π/2) than for
the photon energies away from the minimum. Reproducing
correctly a widely varying function using a fitting procedure
is a more difficult task than reproducing a function which is
nearly constant. We have, therefore, tested our procedure for
the most challenging interval of the photon energies.

For practical implementations the technique we described
must be robust in the sense that inaccuracies in the measured
data, unavoidable in the experiment, do not alter significantly
the results our procedure yields for the cross sections. In Fig. 3
we show results our procedure gives for the case when we
introduce a random perturbation to the signal Pavg(t) (we
may call it the “experimental” signal). We also shifted the
experimental signal along the time axis by the amount of
T = 200 as to model the uncertainty in the time zero moment
which is hard to avoid in the experiment. To account for this
overall shift along the time axis we added an additional fitting
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FIG. 3. (Color online) Left panel: crosses (red), experimental
distribution Pavg(t); dash (green) line, results of the fitting procedure.
Right panel: differential cross section of detecting the photoelectron
in the z direction as function of the angle between molecular axis and
field direction for photon energy of 21.5 eV.

parameter to the set of fitting parameters β,a. As we noted
above, the same effect [overall shift of the distribution Pavg(t)
along the time axis] can be produced by the pulse with carrier
form different from sine or cosine forms.

Fitting procedure using the experimental signal as an input
produces quite accurate results for the cross section.

Implementation of the above described procedure necessi-
tates measuring development of the experimental signal in time
with the resolution of the order of a few tens of attoseconds.
To achieve that in practice one can employ the attosecond
streaking technique by using the ionizing XUV pump and a
streaking infrared (IR) probe [19,20]. This technique converts
short intervals of time of the order of several attoseconds
into more easily measurable physical characteristics such as
photoelectron spectra. In the context of the present work this
technique could be implemented using the procedure described
in [21], or in our earlier work [22]. Let us apply to the system
the IR pulse polarized in the z direction, and arriving with delay
� with respect to the driving laser pulse. Clearly, the IR field
will modify the velocity distribution of the electrons arriving at
the detector. We shall be interested in the distribution Pavg(vz)
of the z component of electron velocity. In the absence of
the IR field, this distribution is an average over all molecular
orientations analogous to the one in Eq. (8):

Pavg(vz) =
∫ π

2

0
|f (qz,θN )|2dθN . (12)

Presence of the IR field modifies this distribution. Quanti-
tatively, this effect can be described using the so-called soft-
photon approximation [23] as follows. Using the Coulomb-
Volkov (CVA) approximation to describe the effect of the IR
field on the molecule, one can obtain [21–23] the relation

f 1(qz,θN ) =
∞∑

−∞
f (qzm,θN )(−1)me−im
�Jm

(
kE0

IR


2

)
, (13)

where f (qz,θN ) is the amplitude of photoionization in z

direction for a particular field and molecule orientation in the
presence of XUV pulse only, f 1(qz,θN ) is the amplitude in
the presence of both XUV and IR pulses, and k is the on-shell
electron momentum. In Eq. (13) Jm(x) is the Bessel function,
qzm is defined so as to satisfy q2

zm = q2
z − 2m
, and E0

IR and 


are amplitude and frequency of the IR field. We shall assume
IR field intensity to be 3.5 × 1010 W/cm2, 
IR = 1 eV. Terms
with different m in Eq. (13) describe absorption or emission of
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FIG. 4. (Color online) Distribution Pavg(vz) in the presence of IR
field with intensity 3.5 × 1010 W/cm2 and frequency 
IR = 1 eV for
different values of the delay � between UV and IR pulses. Solid (red)
line: � = 0; long dash (green): � = 0.25TIR; dash (blue) � = 0.5TIR;
dots (magenta): velocity distribution without IR pulse scaled by a
factor 0.5 for better visibility. TIR is an optical cycle of the IR field.
XUV photon energy ω = 64 eV.

m IR photons (only terms with m = 0,±1 need to be retained
in this equation for the weak IR field we consider).

An alternative way to describe the effect of the IR field for
the weak IR field might be the time-dependent perturbation
theory treatment. It has been shown [24] that, for the IR
field intensities of the order we consider, the second-order
perturbation theory treatment produces results which are very
close to the soft-photon approximation results. From the other
hand, one can show [22,23] that the soft-photon approximation
agrees very well with the results of the full TDSE calculation
of the photoionization process in He atom. We have reasons
to believe, therefore, that Eq. (13) describes accurately the
effect of the IR field on the system. This effect can be quite
significant, and its proper account is necessary for the correct
determination of the time delays [25].

In Fig. 4 we show results for the distribution Pavg(vz)
computed using amplitudes modified by the IR field as
prescribed by Eq. (13).

We can reformulate now the fitting procedure we described
above as follows. If we assume that frequency of the IR field
is less than the characteristic spread of the wave packet, i.e.,

 
 k/

√
a, and if we are interested in the electron energies

in the vicinity of the on-shell value k2/2, then we can compute
the right-hand side of Eq. (13) for a particular field and
molecule orientation using on-shell values of the amplitude
and its energy derivative. These are precisely the ingredients
we used in Eq. (10) for the fitting procedure we described
above. We can, therefore, reformulate the fitting procedure
for the distribution Pavg(vz) computed as in Eq. (12) with
amplitudes modified by the IR field, using the same set of
fitting parameters.

III. CONCLUSIONS

To summarize, we applied the time delay theory to describe
evolution of the signal (the probability to record an electron
at the detector) in time. We have shown that, knowing the
signal as a function of time, one can devise a procedure which
allows one to extract information about the differential cross
sections for particular field and molecule orientations from
measurements performed on randomly oriented molecules.
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To measure the resolved in time probability we suggest
the use of the attosecond streaking technique allowing one to
convert the temporal distribution into a velocity distribution.

The description of the ionization in the presence of the
IR field relying on the soft-photon approximation gives us
a means of allowing reformulation of the fitting procedure
we devised for the temporal distribution into an equiva-
lent procedure for the velocity distribution of the ionized
electrons.
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[8] L. Nagy, S. Borbély, and K. Póra, Phys. Lett. A 327, 481 (2004).
[9] T. Weber, A. Czasch, O. Jagutzki, A. Müller, V. Mergel,

A. Kheifets, J. Feagin, E. Rotenberg, G. Meigs, M. H. Prior
et al., Phys. Rev. Lett. 92, 163001 (2004).

[10] T. Weber, A. Czasch, O. Jagutzki, A. Müller, V. Mergel,
A. Kheifets, E. Rothenberg, G. Meigs, M. Prior, S. Daveau
et al., Nature (London) 431, 437 (2004).

[11] B. Friedrich and D. Herschbach, Phys. Rev. Lett. 74, 4623
(1995).

[12] E. P. Wigner, Phys. Rev. 98, 145 (1955).
[13] C. A. A. de Carvalho and H. M. Nussenzveig, Phys. Rep. 364,

83 (2002).
[14] A. S. Kheifets and I. A. Ivanov, Phys. Rev. Lett. 105, 233002

(2010).
[15] I. A. Ivanov, Phys. Rev. A 83, 023421 (2011).
[16] R. G. Newton, in Scattering Theory of Waves and Particles

(McGraw-Hill, New York, 1966).
[17] V. V. Serov and B. B. Joulakian, Phys. Rev. A 80, 062713 (2009).
[18] J. M. Feagin, J. Phys. B 31, L729 (1998).
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