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Molecular spinning by a chiral train of short laser pulses
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We provide a detailed theoretical analysis of molecular rotational excitation by a chiral pulse train, a sequence
of linearly polarized pulses with the polarization direction rotating from pulse to pulse by a controllable angle.
Molecular rotation with a preferential rotational sense (clockwise or counterclockwise) can be excited by this
scheme. We show that the directionality of the rotation is caused by quantum interference of different excitation
pathways. The chiral pulse train is capable of selective excitation of molecular isotopologs and nuclear spin
isomers in a mixture. We demonstrate this using 14N2 and 15N2 as examples for isotopologs and para- and
ortho-nitrogen as examples for nuclear-spin isomers.
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I. INTRODUCTION

The control of rotational molecular dynamics by non-
resonant strong laser fields has proven to be a powerful
tool. It allows creating ensembles of aligned [1–5], oriented
[6,7], or planarly confined molecules [8–13]. The proposed
and realized applications are numerous, including control
of chemical reactions [2,14], high-order-harmonic generation
[15,16], control of molecular collisions with atoms [17] or
surfaces [18–22], and deflection [23–25] of molecules by
external fields.

An important challenge for strong-field rotational control is
selective excitation in a mixture of different molecular species.
Isotopolog selective control was demonstrated in Refs. [26–28]
using constructive and destructive interference induced by
a pair of delayed laser pulses [29]. With a similar scheme
also nuclear-spin isomer selective excitation was achieved
[27,30,31]. More recently, isotopolog selective rotational
excitation by periodic pulse trains has been demonstrated [32],
and the connection of this scheme to the problem of Anderson
localization was shown [33].

One current direction of strong-field rotational control
focuses on the excitation of molecular rotation with a preferred
sense of the rotation. In the “optical centrifuge” approach
[8,34–36], the molecules are subject to two counterrotating
circularly polarized fields, which are linearly chirped with
respect to each other. The resulting interaction potential creates
an accelerated rotating trap, bringing the molecules to a
fast-spinning state. The alternative “double-pulse” scheme
reaches the same goal by using two properly timed linearly
polarized pulses [9,10]. The first pulse induces molecular
alignment. When the alignment reaches its peak, the second
pulse, whose polarization is rotated by 45◦ with respect to
the first one, is applied and induces the directed rotation.
More recently, an approach using a “chiral pulse train” was
demonstrated [37], in which a train of pulses is used, where
the pulse polarization is changed by a constant angle from
pulse to pulse (see Fig. 1).

In this article, we provide a detailed theoretical analysis of
the rotational excitation by a chiral pulse train demonstrated
in Ref. [37]. A thorough description of the experimental
procedure is presented in a companion article [38].

For the present article, the structure is as follows. In Sec. II
we introduce the model for the laser-molecule interaction.

Then, we consider excitation scenarios for two kinds of
molecules. The first one is N2, representing a simple diatomic
molecule which is well described by the standard model of a
rigid rotor. The second molecule we consider is O2. Unlike the
nitrogen molecule, it has a nonzero electronic spin in its ground
state, leading to a more complex structure of the rotational
levels. Our analytical and numerical results are presented in
Sec. III. Here, we first show the results for the excitation of 14N2

by a chiral train of equally strong pulses. Next, we demonstrate
the prospects of selective excitation of nuclear-spin isomers
and isotopologs by such trains. Finally, the results for oxygen
molecules interacting with a train of unequal pulses are shown
and compared with the experiment [37]. In the last section, we
summarize the results and conclude.

II. MODEL AND NUMERICAL TREATMENT

A. Model

We consider the following scenario: A train of ultrashort
laser pulses interacts with a gas sample of linear molecules
such as N2 or O2. The pulses are applied with a constant
delay τ between them. Each pulse is linearly polarized, but
the polarization vector is rotated from one pulse to the next
one by the angle δ, such that the whole pulse train rotates with
a rotational period Ttrain = 2πτ/δ (see Fig. 1). Choosing the
laser propagation axis as the z axis, the electric field of the nth
pulse is given as

En(t) = En(t)ên cos(ωt + φ), (1)

where ên = (cos nδ, sin nδ,0) is the polarization vector, ω is
the carrier frequency, and φ is the phase. We consider a laser for
which the carrier frequency is far detuned from any electronic
or vibrational resonance. The laser pulses therefore interact
with the molecules via Raman-type excitations of the rotational
levels. The envelope of the electric field is given as

En(t) = En exp[−(t − nτ )2/(2σ 2)]. (2)

Here, σ determines the pulse duration.
The nonresonant laser pulse induces a dipole in the

molecule via its electric polarizability and then interacts with
this induced dipole. Averaging over the fast oscillations of the
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FIG. 1. (Color online) Sketch of the considered scenario: A train
of linearly polarized laser pulses interacts with linear molecules. The
polarization axis is rotated by an angle δ between each pulse, and the
time delay τ between the pulses is constant.

electric field, we arrive at the effective interaction potential [39]

V = −1

4

∑
n

E2
n (t)(�α cos2 βn + α⊥). (3)

Here, �α = α‖ − α⊥ is the polarizability anisotropy of the
molecule, where α‖ and α⊥ are the polarizabilities along
and perpendicular to the molecular axis, respectively. The
angle βn is the angle between the molecular axis and the
polarization direction of the nth pulse. The last term in Eq. (3),
α⊥, is independent of the molecular orientation and does not
influence the rotational dynamics. We will therefore omit it in
the following.

It is convenient to introduce an effective pulse strength P ,
which corresponds to the typical amount of angular momentum
(in units of h̄) transferred to the molecule by the pulse. For a
single pulse, it is defined as

P = �α

4h̄

∫
dtE2(t) = �αIpeakσ

√
π

2cε0h̄
. (4)

Here, Ipeak is the peak intensity of the pulse, c is the speed of
light, and ε0 is the vacuum permittivity.

In this work, we consider two kinds of pulse trains. The
first one is a train of N equally strong pulses, such that the
effective interaction strength Pn of the nth pulse is given as

Pn = Ptot/N, (5)

where Ptot = ∑
Pn is the total strength of the whole pulse

train. Such a pulse train can be generated, e.g., by nested
interferometers [40,41]. The second kind is trains like the
ones used in the experiments [37,38], which were created by
pulse-shaping techniques. In this case, the effective interaction
strength of the nth pulse is given as

Pn = PtotJ
2
n (A), (6)

where Jn is the Bessel function of the first kind and A is a
parameter. Since Jn(x) � 1 for |n| > |x|, this train contains
about 2A + 1 nonzero pulses. In Fig. 2 we depict the intensity
envelope of the train for different values of A.

B. Numerical treatment

1. Nitrogen

At first we consider molecular nitrogen as an example of a
simple linear molecule. Since the laser pulses are assumed to
be far off-resonant from electronic or vibrational transitions,
it is sufficient to consider only the rotational excitation in
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FIG. 2. Effective interaction strengths for a train with modulated
intensities as described by Eq. (6). The total interaction strength is
Ptot = 1.

the vibronic ground state. The rotational eigenfunctions are
the spherical harmonics |J,M〉. Here, J is the total angular
momentum, and M is its projection on the Z axis, which we
have chosen to be along the laser propagation direction. Note
that for N2 in its electronic ground state, the total angular
momentum J is equal to the orbital angular momentum O of
the rotation of the nuclei. Although we are interested in the
latter, for simplicity we keep to the more common notation
using the total angular momentum J. The rotational levels
are given as EJ = BJ (J + 1) − DJ 2(J + 1)2, where B is the
rotational constant and D is the centrifugal distortion constant.

For the numerical treatment of the problem it is convenient
to express the wave function as a linear combination of the
rotational eigenfunctions:

|�(t)〉 =
∑
J,M

CJ,M (t)e−iEJ t/h̄|J,M〉. (7)

Inserting expansion (7) and interaction potential (3) into the
time-dependent Schrödinger equation,

ih̄
∂|�(t)〉

∂t
= Ĥ (t)|�(t)〉, (8)

we obtain

ih̄
∑
J ′,M ′

∂CJ ′M ′(t)

∂t
e−iEJ ′ t/h̄|J ′,M ′〉

=
∑
J ′,M ′

CJ ′M ′(t)e−iEJ ′ t/h̄V (t)|J ′,M ′〉. (9)

Multiplying from the left by 1
ih̄

〈J,M|eiEJ t/h̄, we obtain a set
of coupled differential equations for the expansion coefficients
CJ,M (t):

∂CJM (t)

∂t
= 1

ih̄

∑
J ′,M ′

CJ ′M ′(t)e−i(EJ ′−EJ )t/h̄〈J,M|V (t)|J ′,M ′〉

= i
�α

4h̄

+∞∑
n=−∞

E2
n (t)

∑
J ′,M ′

CJ ′M ′ (t)e−i(EJ ′−EJ )t/h̄

×〈J,M| cos2 βn|J ′,M ′〉. (10)
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Here, βn is the angle between the molecular axis and the
polarization direction of the nth pulse.

The matrix element 〈J,M| cos2 βn|J ′,M ′〉 is obtained as
follows. First, cos2 βn is expressed as

cos2 βn = cos2(nδ) sin2 θ cos2 φ + sin2(nδ) sin2 θ sin2 φ

+ 1
2 sin(2nδ) sin2 θ sin(2φ), (11)

where θ and φ are the polar and azimuthal angles of the
molecular axis, respectively. Then, we express cos2 βn in terms
of the Wigner rotation matrices [42] D

(J )
MN as

cos2 βn = 1

3
− 1

3
D

(2)∗
00 + 1√

6
ei2nδD

(2)∗
−20 + 1√

6
e−i2nδD

(2)∗
20 .

(12)
Here, we use the relations

sin2 θ cos2 φ = 1√
6

(
D

(2)∗
20 + D

(2)∗
−20

) − 1

3
D

(2)∗
00 + 1

3
,

(13a)

sin2 θ sin2 φ = − 1√
6

(
D

(2)∗
20 + D

(2)∗
−20

) − 1

3
D

(2)∗
00 + 1

3
,

(13b)

sin2 θ sin(2φ) = −i

√
2

3

(
D

(2)∗
20 − D

(2)∗
−20

)
. (13c)

Finally, by using [42]

〈J,M|D(2)∗
M00|J ′,M ′〉 = (−1)M

√
(2J + 1)(2J ′ + 1)

×
(

J 2 J ′

0 0 0

) (
J 2 J ′

−M M0 M ′

)
,

(14)

where the brackets denote the Wigner 3j symbol, we obtain
the matrix element 〈J,M| cos2 β|J ′,M ′〉. Note that only
levels with �J = 0,±2,±4, . . . and �M = 0,±2,±4, . . .

are coupled.
In our simulations, we solve Eq. (10) numerically. We do

ensemble averaging by solving Eq. (10) for different initial
states |�initial〉 = |J0,M0〉 and weighting the result by the
Boltzmann factor of the initial state. Note that the Boltzmann
factor includes a degeneracy factor arising from nuclear-spin
statistics [43]. For example, the nitrogen isotope 15N has a
nuclear spin of I = 1/2. Therefore, the diatomic molecule
15N2 can have a total nuclear spin of I = 1 (ortho-nitrogen)
or I = 0 (para-nitrogen). The former has three degenerate
nuclear-spin wave functions, which are symmetric with respect
to an exchange of the two nuclei, and the latter has one anti-
symmetric nuclear-spin wave function. Due to the fermionic
nature of 15N, the total wave function of the molecule has to
be antisymmetric with respect to the exchange of the nuclei.
Therefore, ortho- and para-nitrogen can be distinguished by
their rotational wave functions: Ortho-nitrogen is only found
with odd angular momentum J , para-nitrogen is only found
with even angular momentum J , and the ratio of even to
odd states is 1:3 due to the degeneracy of the nuclear-spin
wave functions of ortho-nitrogen. For 14N with a nuclear
spin of I = 1, there are three nuclear-spin isomers, two with
symmetric nuclear-spin wave functions (one of them fivefold
degenerate) and one with threefold degenerate antisymmetric
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FIG. 3. The lowest rotational levels of 16O2 in its electronic and
vibrational ground states. The energies are given in cm−1. Also shown
are the allowed transitions between these levels induced by the laser
pulse (3).

nuclear-spin wave functions. The resulting ratio of even to odd
rotational states is 2:1.

2. Oxygen

Molecular oxygen has a more complex rotational spectrum
than simple diatomic molecules such as nitrogen or hydrogen
[42,44]. The electronic ground state is a 3�−

g state, so the total
electronic spin S is nonzero. This gives rise to spin-spin and
spin-orbit coupling, and therefore the total angular momentum
J does not solely describe the nuclear rotational motion as for
N2, which has a 1�+

g electronic ground state. In particular,
J = N + S, where N is the orbital angular momentum; since
the electronic orbital angular momentum is zero, N is identical
to O, the nuclear orbital angular momentum. The rotational
quantum number J can take the values J = N + S,N + S −
1, . . . ,N − S. Therefore, for oxygen in its vibronic ground
state with S = 1, each level N is split into three levels with J =
N − 1,N,N + 1, as is shown in Fig. 3. The splitting is stronger
for low values of N . Additionally, for symmetry reasons, only
odd values are allowed for N [42].

For the numerical treatment, we express the wave function
as a linear combination of Hund’s case b basis states [42,44]:

|�〉 =
∑
JNM

CJNM (t)e−iEJN t/h̄|η�; N�; NSJM〉. (15)

Here, � is the projection of the electronic angular momentum
on the molecular axis, N is the orbital angular momentum, S is
the electronic spin, J is the total angular momentum, M is the
projection of the total angular momentum on the Z axis, and η

is a combined quantum number of the remaining vibronic
quantum numbers. EJN are the energies of the rotational
states; see Fig. 3. As before, we assume that the molecules are
initially in their vibronic ground state. Since the interaction
does not induce any vibronic transitions, it is independent of
η, and furthermore � = 0 and S = 1 are constant. For ease of
reading, in the following we denote the eigenstates in short as
|η�; N�; NSJM〉 ≡ |JNM〉.

As before, we insert the expanded wave function (15) into
the time-dependent Schrödinger equation and obtain a system
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of differential equations for the expansion coefficients CJNM :

∂CJNM (t)

∂t
= i

�α

4h̄

+∞∑
n=−∞

E2
n (t)

×
∑

J ′,N ′,M ′
CJ ′N ′M ′(t)e−i(EJ ′N ′−EJN )t/h̄

×〈J,N,M| cos2 βn|J ′,N ′,M ′〉. (16)

The matrix elements 〈JNM| cos2 β|J ′N ′M ′〉 are determined
as follows. First, we use Eq. (12) to replace cos2 β, which
yields

〈JNM| cos2 β|J ′N ′M ′〉
= 1

3
〈JNM|J ′N ′M ′〉 − 1

3
〈JNM|D(2)∗

00 |J ′N ′M ′〉

+ 1√
6
ei2nδ〈JNM|D(2)∗

−20|J ′N ′M ′〉

+ 1√
6
e−i2nδ〈JNM|D(2)∗

20 |J ′N ′M ′〉. (17)

We now have to determine the value of
〈�NSJM|D(2)∗

M00|�N ′SJ ′M ′〉. Here we explicitly write
down all quantum numbers (apart from η). We use the
Wigner-Eckart theorem (see, e.g., [42]) to exclude the
dependence on the molecular orientation:

〈�NSJM|D(2)∗
M00|�N ′SJ ′M ′〉

= (−1)J−M

(
J 2 J ′

−M M0 M ′

)
×〈�NSJ ||D(2)∗

.0 ||�N ′SJ ′〉, (18)

where the parentheses are the Wigner 3j symbol. The dot in
the subscript of the rotation matrix indicates that this matrix
element is reduced regarding the orientation in the space-fixed
coordinate system [42]. Next, we use the fact that D

(2)∗
.0 does

not act on the electronic spin so that we can exclude S from
the matrix element as well and obtain [42]

〈�NSJ ||D(2)∗
.0 ||�N ′SJ ′〉

= (−1)J
′+N+2+S

√
(2J + 1)(2J ′ + 1)

×
{
N ′ J ′ S

J N 2

}
〈�N ||D(2)∗

.0 ||�N ′〉. (19)

Here, the curly brackets denote the Wigner 6j symbol. Finally,
the reduced matrix element in Eq. (19) is given as

〈�N ||D(2)∗
.0 ||�N ′〉

= (−1)N−�
√

(2N + 1)(2N ′ + 1)

(
N 2 N ′

−� 0 �

)
. (20)

Here, we used Eq. (5.186) in Ref. [42] and applied it for Hund’s
case b. We insert now S = 1 and � = 0 and obtain the matrix

elements of the rotation matrices as

〈�NSJM|D(2)∗
M00|�N ′SJ ′M ′〉

=
√

(2J + 1)(2J ′ + 1)(2N + 1)(2N ′ + 1)

×
(

J 2 J ′
−M M0 M ′

)(
N 2 N ′

0 0 0

)

×
{
N ′ J ′ 1

J N 2

}
(−1)J+J ′−M+1. (21)

Inserting Eq. (21) into (17) yields the matrix elements
〈JNM| cos2 β|J ′N ′M ′〉. In order to lower the numerical
effort, we treat the pulses as δ pulses (sudden approxima-
tion); i.e., we neglect the molecular rotation during each
pulse. Comparison with experiment [37] shows that this
approximation is well justified for pulses of a duration of
500 fs. Using the method of an artificial time parameter ξ

as described in Ref. [9], the differential equations for the
expansion coefficients for a single laser pulse become

∂CJNM (ξ )

∂ξ
= iPn

∑
J ′,N ′M ′

CJ ′N ′M ′(ξ )

×〈J,N,M| cos2 βn|J ′,N ′,M ′〉, (22)

where Pn is the effective interaction strength introduced above.
Setting CJNM (ξ = 0) to the values just before the pulse,
we obtain the expansion coefficients right after the pulse as
CJNM (ξ = 1) [9]. To obtain the final expansion coefficients
after the whole pulse train, we solve Eq. (22) for every pulse,
letting the wave packet (15) evolve freely between the pulses.
To account for thermal effects, we do ensemble averaging over
the initial state. Since 16O has a nuclear spin of I = 0, there
are no degeneracies due to the nuclear-spin wave functions.
However, only odd values are allowed for the orbital angular
momentum N .

III. RESULTS

We will first present the results for excitation of nitrogen
molecules by a train of equally strong pulses. We will then
demonstrate how such pulse trains can be used to selectively
excite isotopologs and nuclear-spin isomers in molecular
mixtures. Finally, we will show results for the excitation of
the more complex oxygen molecules by a train of unequal
pulses [given by Eq. (6)] in order to compare our results with
recent experiments [37,38].

We define the final population Q(J ) of a rotational level J

as

Q(J ) =
∑

i

gi

∑
M

|Ci,JM |2. (23)

Here, i denotes the initial state, and gi is its statistical weight.
We also define the directionality ε(J ) of the excited wave
packet as

ε(J ) = QL(J ) − QR(J )

QL(J ) + QR(J )
, (24)

where QL(J ) and QR(J ) are the counterclockwise-rotating
and the clockwise-rotating fractions of the population of the
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level J ,

QL(J ) =
∑

i

gi

(∑
M>0

|Ci,JM |2 + 1/2|Ci,J0|2
)

, (25a)

QR(J ) =
∑

i

gi

(∑
M<0

|Ci,JM |2 + 1/2|Ci,J0|2
)

. (25b)

Note that half of the population of the states with M = 0 is
apportioned to clockwise rotation and half to counterclockwise
rotation. A positive (negative) ε(J ) indicates a preferentially
counterclockwise (clockwise) rotation.

A. Excitation of nitrogen molecules with a train
of equally strong pulses

In the following, we show the results for 14N2 molecules
interacting with a train of eight equally strong pulses with
durations of σ = 30 fs [see Eq. (2)] and a total interaction
strength of Ptot = 5. The peak intensity of a single pulse is
therefore approximately 3 × 1012 W/cm2. The pulse duration
is well below the rotational periods of the highest expected
excitations (remember that P corresponds to the typical
angular momentum in the units of h̄ transferred by the pulse).
The molecules are considered to be initially at a temperature
of T = 8 K. At this temperature there is a considerable initial
(thermal) population in the level J = 2, with Qth(2) = 0.25.
Also in J = 3 there is some initial population, Qth(3) = 0.02.
The levels J = 4 and J = 5 are not populated (note that due to
nuclear-spin statistics, two-thirds of the population are found
in the even levels and one-third is found in the odd ones).

In Fig. 4 the population Q(J ) is shown for the rotational
levels J = 2,3,4,5 for 14N2 molecules, and Fig. 5 displays
the directionality ε(J ) for the same levels. The plots show the
population and the directionality as a function of the pulse-train
period τ and the pulse-to-pulse polarization angle shift δ.

The population plots for all levels show a distinct pattern
of diagonal and horizontal lines. These lines are described by
the equation

τ = texc(J )

(
m + �M

δ

2π

)
. (26)

Here, m is an integer and �M = 0, ± 2 (0 yields the horizontal
lines, +2 corresponds to the diagonal lines with a positive
slope, and −2 yields the diagonal lines with a negative slope).
Furthermore, texc is the period corresponding to the excitation
from level J − 2 to level J and is given as

texc(J ) = 2πh̄/(EJ − EJ−2) = trev/(2J − 1), (27)

where trev = h̄π/B is the rotational revival time (8.38 ps for
14N2 in its vibronic ground state).

The directionality plots in Fig. 5 show in general the same
structure as the population plots, although now the horizontal
lines are missing. Furthermore, we can see that the diagonals
with a positive slope correspond to a counterclockwise
rotational sense [ε(J ) > 0], and the diagonals with a negative
slope correspond to a clockwise rotation. Also, next to the main
diagonals, there is a chessboard pattern visible, especially for
higher levels.

The general structure of the population and directionality
plots is very similar to experimental observations (Figs. 5
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FIG. 4. (Color online) Population Q(J ) [see Eq. (23)] of different
rotational levels J for 14N2 at T = 8 K, after interacting with a train
of eight equal pulses. The total interaction strength is Ptot = 5, and
the pulse duration is σ = 30 fs. The minimum of the color-coding is
zero for all panels, and the maximum is 0.6 for (a), 0.25 for (b) and
(c), and 0.1 for (d).

and 6 in Ref. [38]), although the latter do not resolve the fine
chessboard pattern. It should be noted that in the experiments
[38] a train of unequal pulses described by (6) was used,
whereas the results presented here are for a train of equally
strong pulses.

The structures seen in Figs. 4 and 5 can be explained as
the result of the quantum interference of different excitation
pathways, as we will show now. For simplicity, we will treat
the pulses as δ pulses in the following analysis. This is
well justified as the utilized pulse duration of σ = 30 fs is
much shorter than the relevant rotational periods of 14N2. The
evolution of the wave packet over one period of the pulse train
is given by

|�(t+n )〉 = eiP cos2 βne−iĴ 2τ/(2Ih̄)|�(t+n−1)〉, (28)
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FIG. 5. (Color online) Directionality ε(J ) [see Eq. (24)] of
different rotational levels J for 14N2 at T = 8 K after interacting
with a train of eight equal pulses. The total interaction strength is
Ptot = 5, and the pulse duration is σ = 30 fs. Positive ε corresponds
to counterclockwise rotation; negative ε corresponds to clockwise
rotation.

where t+n is the time instant right after the nth pulse, Ĵ is the
angular momentum operator, and I is the moment of inertia.
The interaction term can be expressed as

eiP cos2 βn = R̂(nδ,π/2,0)eiP cos2 θ R̂−1(0,−π/2,−nδ)

= e−inδĴz/h̄ e−iĴyπ/(2h̄)eiP cos2 θ eiĴyπ/(2h̄)︸ ︷︷ ︸
Ŵ

einδĴz/h̄.

(29)

Here, R̂−1 rotates the basis from the space-fixed system (quan-
tization axis along the laser propagation) to a “pulse-fixed”
system (quantization axis along the electric-field polarization
of the nth pulse). The operator Ŵ is the same for every pulse.
Using (29), we can express the evolution operator that brings

the system from its initial state to the final state after the last
pulse as

Û =
N∏

n=1

e−inδĴz/h̄Ŵ einδĴz/h̄e−i Ĵ2

2Ih̄
τ . (30)

The probability of the transition from |J ′M ′〉 to |JM〉 is given
as |〈JM|Û |J ′M ′〉|2. Using the expansion

eiP cos2 θ = 1 + iP cos2 θ − P 2

2
cos4 θ + · · · (31)

we can express the evolution operator as

Û =
N∏

n=1

e−inδĴz/h̄e−iĴyπ/(2h̄)
(
1 + iP cos2 θ + · · · )

×eiĴyπ/(2h̄)einδĴz/h̄e−i Ĵ2

2Ih̄
τ

≈ e−i Ĵ2

2Ih̄
τN + iP

N∑
n=1

e−i Ĵ2

2Ih̄
τ (N−n)e−inδĴz/h̄

×e−iĴyπ/(2h̄) cos2 θeiĴyπ/(2h̄)einδĴz/h̄e−i Ĵ2

2Ih̄
τn. (32)

The approximation in the last line is valid in the limit of
weak pulses (P < 1). In the following, we will only consider
this limit. Using Eq. (32) as the evolution operator, the total
probability for a transition from state |J ′M ′〉 to another state,
|JM〉, is given as

|〈JM|Û |J ′M ′〉|2

= P 2

∣∣∣∣∣
N∑

n=1

e−i(N−n)EJ τ/h̄〈JM|V̂ |J ′M ′〉

× e−i(M−M ′)nδe−inEJ ′ τ/h̄

∣∣∣∣∣
2

= P 2|〈JM|V̂ |J ′M ′〉|2

×
N∑

n,n′=1

cos

[(
�Eτ

h̄
− �Mδ

)
(n − n′)

]
︸ ︷︷ ︸

≡�

. (33)

Here, V̂ = e−iĴyπ/(2h̄) cos2(θ )eiĴyπ/(2h̄) and �E = EJ − EJ ′ .
The term �, and therefore the transition amplitude, is max-
imized if the first factor in the argument of the cosine is a
multiple of 2π , which yields

τ = 2πh̄

�E

(
m + �M

δ

2π

)
, (34)

where m is an integer. This condition is equivalent to (26) and
exactly describes the lines in Figs. 4 and 5.

Using these insights, we can now explain the results seen
in Figs. 4 and 5. The patterns are the result of quantum inter-
ferences of different excitation pathways. These interferences
are constructive when condition (34) is fulfilled, causing the
lines seen in Figs. 4 and 5. With the help of Eq. (34) we
can also see that the horizontal lines are due to transitions
with no change of the projection M , i.e., �M = 0. There are
no horizontal lines in the directionality plots since �M = 0
means that there is no change in the sense of the rotation.
The diagonals with a positive slope are due to transitions
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FIG. 6. (Color online) Sum |�| of the interference terms in
Eq. (33) as a function of the detuning x from condition (34). The
plot shows � for three different numbers N of pulses, and the result
is normalized to N 2.

with �M = 2. The increase of M shifts the rotational sense
towards a counterclockwise direction and therefore increases
the directionality ε(J ). The opposite is found for the diagonals
with a negative slope, which correspond to �M = −2.

The chessboard pattern seen in the directionality plot can
be explained by looking at the sum � when τ is detuned from
condition (34):

τ = texc�M
δ

2π
+ x. (35)

Here, texc = 2πh̄/�E. In Fig. 6 we plot � as a function of
the detuning x. It can be seen that next to the main peaks at
integer x/texc, there are weak oscillatory beats in between. The
minima of those beats are found at x/texc = m/N , where N is
the number of pulses and m and N are mutually prime. These
“sidebands” are weak, and therefore they cannot be seen in the
population plots in Fig. 4. On the other hand, the directionality
measures the relative difference of the populations, so these
weak sidebands become visible if the thermal population of
the rotational level is sufficiently small.

From Fig. 6 we can see that an increase of the number of
pulses leads not only to an increase in the number of sidebands
but also to a narrowing of the main peak of �(x). Therefore,
we expect a narrowing of the lines seen in the population plots
for larger N . This can be seen in Fig. 7 for the population of
the levels J = 2 and J = 3. Here, we use the same parameter
values as in Fig. 4 but twice as many pulses while keeping
the total interaction strength Ptot constant. A similar effect of
the narrowing of the resonance when increasing the number
of pulses was already found for the quantum resonance at the
full rotational revival [33].

B. Selective excitation

1. Nuclear-spin isomer-selective excitation

The nitrogen isotopolog 15N2 can be found as ortho-
nitrogen with a total nuclear spin of I = 1 or as para-
nitrogen with a total nuclear spin of I = 0. These spin
isomers can be distinguished by their rotational wave func-
tions [43]: Ortho-nitrogen is only found with odd angular
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FIG. 7. (Color online) Population Q(J ) [see Eq. (23)] of the
rotational levels J = 2 and J = 3 for 14N2 at T = 8 K after interacting
with a train of 16 equal pulses. The total interaction strength is
Ptot = 5, and the pulse duration is σ = 30 fs.

momentum J ; para-nitrogen is only found with even angular
momentum J .

In Fig. 8 we show the final population for the lowest
rotational levels after excitation by a pulse train with δ = 0 and
period τ close to one quarter of the revival time (marked by the
dashed line). By tuning the time delay between the pulses one
can choose which state is excited the strongest. Moreover, for
τ < trev/4 only odd levels are significantly excited, whereas for
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FIG. 8. (Color online) Final population of the rotational levels of
15N2 after interaction with 8 equal pulses with a duration of σ = 30 fs
and a nonrotating polarization (δ = 0) and Ptot = 5 at T = 8 K. Each
curve is normalized to its maximum. The dashed line indicates the
quarter revival time trev/4. For τ slightly smaller than trev/4, only odd
states are excited; for τ slightly larger, only even states are excited.
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FIG. 9. (Color online) Selective excitation of the nuclear-spin
isomers of 15N2 by interaction with a periodic pulse train of eight
equally strong pulses with a duration of σ = 30 fs. The molecules
are initially at T = 8 K. The total interaction strength is Ptot = 5.
The results are shown as a function of the pulse-train period τ .
(a) Absorbed rotational energy for a nonrotating (δ = 0) pulse train.
(b) Projection of the molecular angular momentum on Z for a rotating
(δ = π/4) pulse train. The angular momentum is given in units of h̄.
The dashed vertical lines indicate quarter, half, three-quarter, and full
rotational revival times.

τ > trev/4 only even levels are significantly excited. Therefore,
by choosing τ slightly smaller (slightly larger) than trev/4, one
selectively excites ortho-nitrogen (para-nitrogen). This effect
is shown in Fig. 9(a), which displays the absorbed energy for
both spin isomers. One can see separate peaks for both isomers,
in particular close to τ = trev/4 and τ = 3trev/4. This selective
excitation of spin isomers around a quarter of the revival time
was demonstrated in a recent experiment [32].

At δ �= 0, one may use chiral pulse trains to bring different
spin isomers to a rotation of opposite sense. The best selectivity
is achieved for δ = π/4. In particular, at δ = π/4 and τ =
trev/4 all excited even states have a positive directionality, and
all excited odd states have a negative directionality. The reverse
is found at τ = 3trev/4. The opposite directionality of even and
odd rotational states at τ = trev/4 and τ = 3trev/4 was also
demonstrated experimentally (see Fig. 7 in Ref. [38]). This
effect allows for spin isomer-selective excitation, as shown in
Fig. 9(b). Here, the projection of the angular momentum on
the z axis is shown for both spin isomers. For τ = trev/4,
ortho-nitrogen exhibits counterclockwise rotation, whereas
para-nitrogen rotates clockwise. The opposite is found at
τ = 3trev/4.
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FIG. 10. (Color online) Selective excitation of the nitrogen
isotopologs 14N2 and 15N2 by interaction with a periodic pulse train
of eight equally strong pulses with a duration of σ = 30 fs. The
molecules are initially at T = 8 K. The total interaction strength is
Ptot = 5. The results are shown as a function of the pulse-train period
τ . (a) Absorbed rotational energy for a nonrotating (δ = 0) pulse
train. (b) Projection of the molecular angular momentum on Z for
a rotating (δ = π/4) pulse train. The angular momentum is given in
units of h̄. The shaded areas mark time delays for which the two
isotopologs rotate in opposite directions after the excitation.

2. Isotopolog-selective excitation

Isotopologs are chemically identical molecules with a
different isotopic composition, e.g., 14N2 and 15N2. Due to
the different moments of inertia, isotopologs have different
rotational time scales. For example, 14N2 has a rotational
revival time of trev = 8.38 ps, whereas for 15N2 the revival time
is trev = 8.98 ps. Using the fact that the rotational excitation
is strongest if the pulse-train period τ equals the rotational
revival time, we can selectively excite 14N2 and 15N2 by tuning
the train period to τ = 8.38 ps and τ = 8.98 ps, respectively
[33,38]. In Fig. 10(a) we show the absorbed rotational energy
of the two nitrogen isotopologs after interaction with a
nonrotating (δ = 0) pulse train, and one can clearly see the
selective excitation at the respective revival times.

Inducing counterrotation of different isotopologs is more
challenging. For spin isomers the time scales were identical,
and one could use the different directionality of even and odd
states for τ = trev/4 to induce counterrotation. For isotopologs
the time scales are different. Counterrotation can only be
excited if for some set of parameters the pulse train accidentally
excites rotation of opposite direction in the isotopologs. For
14N2 and 15N2 three such regions can be seen in Fig. 10(b) (see
shaded region): At τ ≈ 2.2 ps and τ ≈ 7.65 ps the heavier
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isotopolog rotates predominantly counterclockwise (〈Jz〉 >

0), and the lighter isotopolog rotates mainly clockwise; at
τ ≈ 8.65 ps the opposite is found.

C. Oxygen molecules in a chiral pulse train

As a special example, we now consider the excitation of
oxygen molecules by a chiral pulse train. Instead of identical
pulses we consider the more complex pulse sequence (6),
corresponding to the one used in experiment [37] (see Fig. 2).
We also use parameters corresponding to this experiment:
The total interaction strength is Ptot = 7.5, and A = 2 [see
Eq. (6)]. Therefore, the strongest pulse in the train has an
effective interaction strength of P = 2.5, which corresponds
to a peak intensity of approximately 8 × 1012 W/cm2. Due
to the higher numerical complexity of the problem, we only
considered δ pulses. Comparison with experiments [37] shows
that this approximation is well justified.

Unlike molecular nitrogen, oxygen has a nonzero total
electronic spin in its ground state. There is a coupling between
the electronic spin and the orbital angular momentum, leading
to splitting of the rotational levels, as shown in Fig. 3. Also,
the orbital angular momentum N is not identical to the total
angular momentum J any longer, but J = N − 1,N,N + 1.
Note that due to the symmetry of the molecule, only odd values
are permitted for N .

For oxygen, we define the population Q(N ) of a rotational
level N as

Q(N ) =
∑

i

gi

N+1∑
J=N−1

J∑
M=−J

|ci,JNM |2. (36)

Here, i denotes the initial state, and gi is the correspond-
ing statistical weight. The populations of counterclockwise-
rotating states QL(N ) and clockwise-rotating states QR(N ) are
given as

QL(N ) =
∑

i

gi

( ∑
J,M>0

|ci,JNM |2 + 1/2|ci,JN0|2
)

, (37a)

QR(N ) =
∑

i

gi

( ∑
J,M<0

|ci,JNM |2 + 1/2|ci,JN0|2
)

. (37b)

The directionality of the states with given N is defined as

ε(N ) = QL(N ) − QR(N )

QL(N ) + QR(N )
. (38)

In Fig. 11 we show the final population of the rotational
levels N = 3 and N = 5 after interaction with the pulse train.
In Fig. 12 the directionality of these levels is shown. We can
see the same basic line structure as before for the nitrogen
molecules. However, due to the different pulse train and
because of the level splitting, the lines are broader, and the
pattern becomes more complex, especially for larger values
of τ . On the other hand, the chessboard pattern seen in the
directionality plots for molecular nitrogen is not found for
molecular oxygen. This is due to the fact that the chessboard
pattern is caused by very weak sidebands, which do not exist
for molecular oxygen due to the level splitting. One can also
see that the plots for level N = 3 look more complex than
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FIG. 11. (Color online) Population Q(N ) [see Eq. (36)] of the
rotational levels N = 3 and N = 5 for 16O2 at T = 8 K after
interacting with a train of δ pulses with the intensity envelope given
by (6) (A = 2). The total interaction strength is Ptot = 7.5. Note the
different scales for the ordinates.

the plots for level N = 5. This is caused by the relatively
stronger splitting for lower rotational levels. Our calculated
results resemble the ones from experiment [37] very well.
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FIG. 12. (Color online) Directionality ε(N ) [see Eq. (38)] of
the rotational levels N = 3 and N = 5 for 16O2 at T = 8 K after
interacting with a train of δ pulses with the intensity envelope given
by (6) (A = 2). The total interaction strength is Ptot = 7.5. Note the
different scales for the ordinates.

063414-9



JOHANNES FLOß AND ILYA SH. AVERBUKH PHYSICAL REVIEW A 86, 063414 (2012)

IV. CONCLUSIONS

In this paper, we provided a detailed theoretical analysis
of molecular rotational excitation by a chiral pulse train,
which was introduced in Ref. [37] and is presented in more
detail in the accompanying experimental paper [38]. The
chiral pulse train is formed by linearly polarized pulses,
uniformly separated in time by a time delay τ , with a constant
pulse-to-pulse angular shift δ of the polarization direction. We
showed that for certain combinations of τ and δ molecular
rotation with a strong preferential rotational sense (clockwise
or counterclockwise) can be excited. In two-dimensional plots
of the excited population and the rotational directionality as
a function of the pulse-train period and the pulse-to-pulse
polarization shift, a distinct pattern is found. It is made out
of diagonal lines along which a strong preferential rotational
sense is achieved. Our analysis shows that this pattern is caused
by quantum interferences of different excitation pathways,
which interfere constructively along the above-mentioned
lines.

We demonstrated the feasibility for selective excitation
of nuclear-spin isomers and isotopologs in a mixture by
the chiral pulse train. We demonstrated the selectivity using
para-nitrogen and ortho-nitrogen as an example. By choosing
the parameters of the chiral pulse train such that they address
only the states of certain parity, one can selectively excite one
of the isomers. Since for the chiral pulse train one can also
influence the direction of the molecular rotation, it is even
possible to induce counterrotation of different nuclear-spin

isomers. Selective excitation of isotopologs can be reached by
making use of the different rotational time scales of different
isotopologs. The pulse-train parameters can be chosen such
that they lead to strong excitation of a preferable isotopolog.
For other isotopologs in the mixture, the same pulse train most
likely leads to a destructive interference of different excitation
pathways, so these isotopologs are at best only weakly excited.
Spin isomer- and isotopolog-selective excitation using the
chiral pulse train was recently shown in experiments [32,38],
demonstrating a good agreement with our theoretical analysis.

Finally, we investigated the excitation of the more complex
16O2 molecule by the chiral pulse train. For this molecule,
the rotational levels are split due to spin-spin and spin-orbit
interactions. We also used a slightly more complex pulse
train as employed in experiment [37]. In spite of these
complications, our main conclusions remain valid also for the
oxygen molecule.
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