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Coherent intense resonant laser pulses lead to interference in the time domain seen in the
spectrum of the emitted particles
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The dynamics of atomic levels resonantly coupled by a coherent and intense short high-frequency laser pulse
is discussed and it is advocated that this dynamics is sensitively probed by measuring the spectra of the particles
emitted. It is demonstrated that the time envelope of this laser pulse gives rise to two waves emitted with a time
delay with respect to each other at the rising and falling sides of the pulse, which interfere in the time domain.
By computing numerically and analyzing explicitly analytically a showcase example of sequential two-photon
ionization of an atom by resonant laser pulses, we argue that this dynamic interference should be a general
phenomenon in the spectroscopy of strong laser fields. The emitted particles do not have to be photoelectrons.
Our results allow us also to interpret the already studied resonant Auger effect of an atom by intense free-electron
laser pulses, and also to envisage experiments in which photons are emitted.
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I. INTRODUCTION

The interaction of an atom with intense laser fields has been
widely studied. If the field is essentially monochromatic, the
physics is well described by a time-independent Hamiltonian
in the basis of “dressed” electronic states or Floquet states (see,
e.g., Refs. [1–4]). The inclusion of relaxation mechanisms,
such as autoionization or subsequent ionization, gives a
dressed state a finite width, and it becomes unstable [5]. The
concept of dressed states is applied in practically every branch
of spectroscopy of optical lasers operating in the nano- and
picosecond regimes. If the laser pulses are shorter, a Floquet
basis is still useful, but one has to take the time dependence of
the pulse explicitly into account. Many phenomena arise due
to the impact of this time dependence [6–10].

One class of such phenomena extends the well-known
stationary Rabi doublets existing in strong fields owing to
ac-Stark splitting or Autler-Townes effect [11]. Because of the
short optical pulse, the value of this splitting varies, resulting
in the appearance of a multiple-peak interference pattern in the
computed autoionization [12], resonant fluorescence [13], and
resonant multiphoton ionization [14,15] spectra. This pattern
is attributed to the temporal coherence of a pulse strong
enough to induce Rabi oscillations between resonantly coupled
states [12–15]. However, a physically simple explanation of
the phenomenon is still missing [16].

Although these theoretical predictions are of relevance and
were made a long time ago, they have not been verified
experimentally so far. To our opinion, this is due to the optical
regime. First, in this regime there are rarely well-separated
resonances and there is often a dense spectrum of close-by
Rydberg and doubly excited states which also participate in
the dynamics. Second, these states induce additional ac-Stark
shifts which vary in time [17]. Third, one is often in the vicinity
of ionization thresholds and ionization is particularly efficient
there. All of these additional states and effects strongly smear
out the pronounced interference pattern which would be

*philipp.demekhin@pci.uni-heidelberg.de

obtained if only two or three states were resonantly coupled
by the pulse.

The situation becomes particularly promising by the advent
of the new generation of light sources, like attosecond lasers
[7], high-order harmonic generation sources [18,19], and free-
electron lasers [20,21] to produce ultrashort and intense co-
herent laser pulses of high frequencies. The above-mentioned
shortcomings which impede experimental verifications by
optical pulses are absent at higher frequencies and one
can study the dynamics of a few well-separated electronic
states (e.g., core-excited states) resonantly coupled by a short
coherent pulse. Unless the intensity is very high, the resonant
dynamics will not be affected by ac-Stark shifts arising from
nonessential states, and the impact of direct ionizations is
not substantial since the photoionization probability usually
decreases with the photon energy. We thus concentrate in this
work on the high-frequency regime and discuss a fundamental
consequence of the nature of intense coherent laser pulses on
spectroscopic observables. Due to the high carrier frequencies,
much of the physics follows the evolution provided by the pulse
envelope nearly adiabatically up to rather short pulse durations.
This makes the underlying physics particularly transparent.

Let us consider two bound-electronic states of an atom
coupled resonantly by a strong laser pulse [22]. The two
initially degenerate dressed states repel each other by the
field-induced coupling and split in energy. If the pulse
envelope supports many optical cycles of high frequency,
the field-induced coupling between the two electronic states
adiabatically follows the pulse envelope [17]. Consequently,
the energy splitting will adiabatically increase when the pulse
arrives and then decrease when the pulse expires. If the atom
emits particles during its exposure to the pulse (photoelectrons,
Auger electrons, photons), it will become evident below that
the particles emitted when the pulse rises have the same
kinetic energy as those emitted when the pulse decreases. The
respective two waves emitted with a time delay with respect
to each other will interfere and their spectrum will exhibit a
pronounced interference pattern. We would like to call this
kind of interference dynamic interference.
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Although we concentrate here on high-frequency short
pulses coupling two bound states, we mention that bound-
continuum coupling by such pulses also leads to dynamic
interference in the ionization spectra of atoms [23] and model
anions [24]. Furthermore, oscillations in the total multiphoton
ionization yield as a function of laser intensity have been
observed for atoms exposed to optical lasers [25,26] and
interpreted as arising from interferences of electrons emitted at
different times [26]. We shall demonstrate here that dynamic
interference is a general consequence of the finite nature of
intense high-frequency laser pulses, and leads to pronounced
patterns observable in the spectrum of the emitted particles.
We first concentrate on a showcase example of sequential
two-photon ionization of an atom by strong pulses (Sec. II).
The example is of much interest by itself, since the coupled
two-level system is probed here by a second photon of the
same pump pulse. Our results pave the way for experiments
on dynamic interference by available laser-pulse sources. In
Sec. III, we also discuss the effect of dynamic interference in
other branches of laser spectroscopy.

II. SEQUENTIAL TWO-PHOTON IONIZATION

In this section, we consider an atom initially in its ground
electronic state |I 〉 of energy of EI = 0 chosen as the origin
of the energy scale, which is resonantly excited into the
intermediate state |R〉 of energy ER by absorption of a single
photon and subsequently ionized by a second photon into a
final electron continuum state |Fε〉 of energy EF + ε. Here,
EF is the energy of a final ionic state and ε is the kinetic energy
of the emitted photoelectron. We stress that since EI = 0, the
energy EF coincides with the ionization potential. Employing
a linearly polarized coherent laser pulse E(t) = E0g(t) cos ωt

with pulse envelope g(t), the total wave function as a function
of time reads [23,27–31]

�(t) = aI (t)|I 〉 + aR(t)e−iωt |R〉 +
∫

aε(t)e−2iωt |Fε〉dε.

(1)

where aI (t), aR(t), and aε(t) are the time-dependent ampli-
tudes for the population of the |I 〉, |R〉, and |Fε〉 levels,
respectively. The stationary states |R〉 and |Fε〉 have been
dressed by multiplying with the phase factors eiωt and e2iωt

[28] to simplify the equations of motion.
Inserting �(t) into the time-dependent Schrödinger equa-

tion for the total Hamiltonian, and implying also the rotating
wave [9,10] and local [28,32,33] approximations, we obtain
the following set of equations for the amplitudes (atomic units
are used throughout):

iȧI (t) = D†E0

2
g(t)aR(t), (2a)

iȧR(t) = DE0

2
g(t) aI (t) +

[
ER − i

2
�g2(t) − ω

]
aR(t), (2b)

iȧε(t) = dE0

2
g(t) aR(t) + (EF + ε − 2ω) aε(t). (2c)

Here, D = 〈R|ẑ|I 〉 and d = 〈Fε|ẑ|R〉 are the dipole transition
matrix elements for the excitation of the intermediate state and
for its subsequent ionization, respectively. The term − i

2�g2(t)
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FIG. 1. (Color online) Sequential two-photon ionization of H
by a Gaussian-shaped pulse of 30 fs duration and resonant carrier
frequency of ω = 3/8 a.u. = 10.20 eV, which fits to the energy of
the H(1s)–H(2p) excitation. Shown are the populations of the ground
state H(1s) and of the resonant state H(2p) as functions of the
peak intensity after the laser pulse has expired. The vertical lines
indicate the peak intensities at which the spectra depicted in Fig. 2
are computed.

in Eq. (2b) is the time-dependent ionization rate of the
intermediate state responsible for the leakage of its population
by the ionization into all final continuum states |Fε〉, turning
this state into a resonance. Explicitly, � = 2π |dE0/2|2 [28,34].

To exemplify the present theory, we study the sequential
two-photon ionization of the hydrogen atom. In the process,
H(1s) is resonantly excited to H(2p) state, which is then
ionized. The photon energy was set to fit the excitation
energy ω = ER = 3/8 a.u. = 10.20 eV. The computed dipole
transition matrix elements for the excitation and ionization are
D = 0.744 a.u. and d = 0.377 a.u., respectively. The system
of Eqs. (2) was solved numerically employing a Gaussian
pulse g(t) = e−t2/τ 2

of τ = 30 fs duration. Figure 1 shows the
populations of the ground state H(1s) and of the resonant state
H(2p) after the laser pulse has expired as a function of the peak
intensity I0 = E2

0 /8πα. The populations exhibit pronounced
Rabi oscillations. To be noticed is that at the highest intensity
considered in Fig. 1, the total photoelectron yield reaches just
7% indicating that the ionization by the second photon is far
from saturation.

We now turn to the photoelectron spectra. For the calcu-
lations we have chosen the peak intensities at the maxima
of the ground-state population indicated in Fig. 1 by vertical
lines. At these intensities the atom manages to complete an
integer number of Rabi cycles during the pulse duration. The
spectra computed via Eqs. (2) are shown in Fig. 2. The spec-
trum computed for the lowest considered intensity of 5.2 ×
1011 W/cm2 is rather close to that expected in the weak-field
case, i.e., a Gaussian curve centered around ε0 = 2ω − EF =
0.25 a.u. = 6.80 eV. As the field intensity increases and the
atom manages to complete two Rabi cycles while the pulse is
on (second spectrum from the bottom), the spectral distribution
bifurcates, and is now minimal at ε0. At the intensity 4.7 ×
1012 W/cm2 when the atom has completed three Rabi cycles,
the spectrum bifurcates again and possesses now three maxima
(third spectrum from the bottom). As the pulse intensity grows
further, the spectrum continues to bifurcate again and again,
exhibiting thereby distinct multiple-peak structures. Below we
identify dynamic interference as the physical origin of these
patterns.
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FIG. 2. Sequential two-photon ionization of H by a Gaussian-
shaped pulse of 30 fs duration and resonant carrier frequency of ω =
ER = 3/8 a.u. = 10.20 eV, which fits to the energy of the H(1s)–
H(2p) excitation. Shown are the photoelectron spectra computed
via Eqs. (2) for different peak intensities indicated in the figure near
each curve. The central electron energy ε0 = 2ω − EF = 0.25 a.u. =
6.80 eV at which the photoelectron spectrum has its maximum in the
weak-field case is indicated by a vertical line.

To start the discussion, we notice that the resonantly
(ω = ER − EI ) coupled dynamics of the |I 〉 and |R〉 states in
Eqs. (2a) and (2b) is governed by the 2 × 2 Hamiltonian,

H(t) =
[

0 	† g(t)
	g(t) − i

2�g2(t)

]
, (3)

where 	 = DE0
2 . The ionization of the intermediate state

by a second photon from the same pulse is described in
Eq. (3) by the − i

2�g2(t) term, and actually probes this
Hamiltonian. We may now follow the time evolution of the
eigenvalues and eigenvectors of this Hamiltonian.

When the pulse is on, the solution of Eq. (3) yields two
decoupled resonances, which are superpositions of the initial
|I 〉 and intermediate |R〉 states:

E±(t) � ±	g(t) − i

4
�g2(t), |±〉 � |I 〉√

2
± |R〉√

2
. (4)

This result is well justified if the pulse is not too strong and the
ionization is far from saturation, i.e., when 	g(t) � 1

2�g2(t).
These solutions describe two decoupled time-independent
resonances with time-dependent energies ±	g(t) induced by
the field. Importantly, their energies move apart as the pulse
arrives, and then move towards each other as the pulse expires.
Both resonances are subject to the same leakage − i

4�g2(t),
populating thereby the continuum states |Fε〉 via the ionization
by a second photon.

The decoupled resonances scenario enables one to uncover
the origin of oscillations in the spectra in Fig. 2. Using
Eqs. (4) we can rewrite the original Eqs. (2) in terms of the
decoupled resonances |+〉 and |−〉 and obtain the equations
for the amplitudes a+(t) and a−(t) of these resonances which

can be solved analytically. Employing the initial conditions
a±(−∞) = 1/

√
2, we find

a±(t) = 1√
2
e[∓i	F (t)−�/4J (t)], (5)

where F (t) = ∫ t

−∞ g(t ′)dt ′ and J (t) = ∫ t

−∞ g2(t ′)dt ′ are time
integrals over the pulse envelope and its square.

The population amplitudes aε(t) in Eq. (2c) can be
expressed as an integral of aR(t) [28] and, after employing
Eqs. (4), as an integral of a+(t) − a−(t). Using the explicit
expressions (5) makes the computation of aε(t) and of the
spectrum σ (ε) = |aε(∞)|2 rather straightforward,

σ (ε) =
∣∣∣∣dE0

4

∫ ∞

−∞
g(t)e−�/4J (t){−ei[δt+	F (t)]

+ ei[δt−	F (t)]}dt

∣∣∣∣
2

, (6)

where we introduced the abbreviation δ = EF + ε − 2ω =
ε − ε0, which is the electron energy detuning from the center
of the photoelectron spectrum ε0 = 2ω − EF .

Interestingly, this expression for the spectrum can further be
evaluated analytically. To this end we notice that the integrand
in Eq. (6) contains the sum of two rapidly oscillating factors
which is multiplied by a smoothly varying function of time.
The main contributions to the integral stem from the times
at which two phases �±(t) = δt ± 	F (t) are stationary [35],
i.e., �̇±(ts) = 0. The two resulting stationary time conditions,
δ = ∓	g(ts), have a transparent physical meaning. They de-
fine the time ts(ε) at which an energy of a decoupled resonance,
continuously shifted by the time-dependent coupling ±	g(t),
moves across the energy position δ = ε − ε0 of the continuum
state under inspection. These times and the electron energy
ε are connected via the simple expression ε = 2ω − EF ∓
	g(ts). During the pulse resonance |−〉 covers the lower
kinetic electron energy side of the spectrum, ε − ε0 ∈ [−	,0],
and resonance |+〉 the higher-energy side, ε − ε0 ∈ [0, +	].
For any pulse there are at least two stationary points for each
value of ε: one, t1(ε), when the pulse is growing, and another,
t2(ε), when it decreases. For a Gaussian pulse there are exactly
two times, t1(ε) = −t2(ε) = τ

√
ln[	/(ε − ε0)].

By collecting in the integral (6) the two stationary phase
contributions at ts = ±t1(ε), we obtain the following explicit
approximate expression for the spectrum:

σ (ε) �
∣∣∣∣∣∣
dE0

4

∑
ts=±t1(ε)

g(ts)e
−�/4J (ts )

{−ei[�+(ts )∓ π
4 ]

+ ei[�−(ts )± π
4 ]

}
∣∣∣∣∣∣
2

. (7)

The additional phase factors π
4 result from higher terms

in the expansion of the phase �±(t) around the stationary
points ±t1(ε) computed for the Gaussian pulse [23]. The
photoelectron spectrum Eq. (7) is easily evaluated. The result
is depicted in Fig. 3 by a solid curve. It is illuminating
to see that an explicit simple expression reproduces nicely
the numerically determined spectrum (open circles). The
individual contributions of the two times ts = ±t1(ε) to the
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FIG. 3. (Color online) Sequential two-photon ionization of H by
a Gaussian-shaped pulse of 30 fs duration, carrier frequency of ω =
3/8 a.u. = 10.20 eV, and peak intensity of 1.3 × 1013 W/cm2. Shown
are the photoelectron spectrum computed numerically (open circles;
taken from Fig. 2) and the spectrum obtained in the stationary phase
approximation via the explicit expression (7) (solid curve). The two
individual contributions to the spectrum, describing in Eq. (7) the
separate distributions of photoelectrons emitted at times when the
pulse arrives and expires, are shown by broken curves.

spectrum in Eq. (7) are rather smooth and do not show any
interference effects (broken curves).

Equation (7) uncovers the physical origin of the strong
modulations in the electron spectrum. These are the results
of the coherent superposition of two photoelectron waves
emitted with the same kinetic energy at two different times. A
schematic visualization of the dynamic interference is given
in Fig. 4. The dynamic interference spectacularly modifies the
sequential two-photon ionization process and causes enormous
qualitative changes in the spectrum, which can be verified by
available high-frequency laser-pulse sources.

The predicted effect is not constrained to sequential two-
photon ionization. We are convinced that dynamic interference
is a very general and fundamental effect which is best
manifested in the observable spectrum of the emitted particles
by prominent multiple-peak patterns. Often, the dynamics
of states coupled by intense laser pulses is governed by a
Hamiltonian like that in Eq. (3) and this dynamics is in turn
probed by emitted particles, either by employing an additional
probe pulse, or by the same pulse. The emitted particles do not
have to be photoelectrons. They can be, e.g., Auger electrons
or photons. They all serve as a probe of the few-level system
coupled by the pump pulse. In the next section, we explicitly
demonstrate that the multiple-peak structure found in resonant
Auger decay spectra of atoms in intense coherent laser pulses
of high frequency [28,36] is due to dynamic interference.

III. RESONANT AUGER DECAY

In the case of resonant Auger decay of an atom in a
free-electron laser field studied in Refs. [28,36,37], a coherent
high-energy laser pulse of resonant carrier frequency couples
the ground state and a core-excited electronic state. The latter
state decays by emitting an Auger electron populating thereby
final ionic states. The dynamics of resonant Auger decay can
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FIG. 4. (Color online) Intense laser pulse of resonant carrier
frequency induces a time-dependent coupling 	g(t) between the
ground and intermediate states. The energies of the resulting two
decoupled resonances follow adiabatically the pulse envelope g(t) in
two opposite directions (dashed curves). As a result, the photoelectron
emitted by a second photon along the pulse envelope has at every
moment t predominantly a specific kinetic energy ε. These are
the times at which the energies of the decoupled resonances move
across the energy position δ = ε − ε0 of the continuum state. These
passage times and the kinetic electron energy are simply connected
via ε = 2ω − EF ∓ 	g(ts). The pulse envelope first grows and then
falls, and for a Gaussian pulse there are exactly two times at which the
emitted electron wave has the same energy ε. These two waves emitted
with a time delay with respect to each other interfere, giving rise to
the strongly modulated distribution of the photoelectrons shown on
the energy axis. Resonance |−〉 is responsible for the low-energy part
of the spectrum, and resonance |+〉 for the high-energy part.

be described by the time evolution of the amplitudes for
the population of the ground electronic state, aI (t), of the
dressed resonance, aR(t), and of the dressed final continuum
states, aε(t). The system of equations for these amplitudes
was derived before [28,36]. With the notations of Sec. II these
equations read

iȧI (t) = D†E0

2
g(t)aR(t), (8a)

iȧR(t) = DE0

2
g(t)aI (t) +

(
ER − i

2
�A − ω

)
aR(t), (8b)

iȧε(t) =
√

�A

2π
aR(t) + (EF + ε − ω) aε(t). (8c)

Here, again, the energy of the ground state is chosen as
the origin of the energy scale, EI = 0, and �A is the time-
independent total rate for the Auger decay of the resonance. By
comparing with Eqs. (2) in the preceding section, we see that
the Auger decay has substituted the ionization of the resonance
state by a second photon.

Similar to the preceding section, the dynamics of the
resonantly (ω = ER − EI ) coupled |I 〉 and |R〉 states in
Eqs. (8a) and (8b) is governed by a 2 × 2 Hamiltonian which
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now reads

H(t) =
[

0 	†g(t)
	g(t) − i

2�A

]
. (9)

The main difference to the Hamiltonian (3) is the presence of
a time-independent Auger rate �A of the core-excited state,
which now probes the Hamiltonian (9), instead of the time-
dependent leakage by ionization �g2(t) present in Eq. (3).
The Auger rate �A can be substantial [28,36,37] and is then not
negligible compared to 	g(t) at least at the very beginning and
very end of an intense pulse. However, whenever during the
pulse the field-induced coupling 	g(t) between the two states
becomes larger than the width �A, the scenario of decoupled
resonances discussed in the preceding section can be applied.
In this case, solution of Eq. (9) yields two decoupled time-
independent resonances with time-dependent energies:

E±(t) � ±	g(t) − i

4
�A, |±〉 � |I 〉√

2
± |R〉√

2
. (10)

The original Eqs. (8) for the dynamics of the resonant Auger
effect can now be rewritten in terms of these decoupled
resonances |+〉 and |−〉 via the transformation (10) and
the equations for the amplitudes a+(t) and a−(t) of these
resonances can be solved analytically,

a±(t) = 1√
2
e[∓i	F (t)− 1

4 �At]. (11)

The formal solution of Eq. (8c) expresses the population
amplitude aε(t) as an integral of aR(t) = [a+(t) − a−(t)]/

√
2.

Together with the explicit solutions (11), this makes the
computation of the spectrum σ (ε) = |aε(∞)|2 straightforward,

σ (ε) =
∣∣∣∣∣
1

2

√
�A

2π

∫ ∞

−∞
e− 1

4 �At {−ei[δt+	F (t)] + ei[δt−	F (t)]}dt

∣∣∣∣∣
2

,

(12)

where we introduced the abbreviation δ = EF + ε − ω =
ε − ε0, which is the electron energy detuning from the center
of the Auger electron spectrum ε0 = ω − EF . We notice
again that the integrand in Eq. (12) contains the sum of
two rapidly oscillating factors which is multiplied by a
smoothly varying function of time. The main contributions
to the integral stem from the times at which two phases
�±(t) = δ t ± 	F (t) are stationary [35], i.e., �̇±(ts) = 0. The
resulting stationary time conditions, δ = ∓	g(ts), define the
times ts(ε) at which an energy of a decoupled resonance moves
across the energy position δ = ε − ε0 of the continuum state
under inspection, and Auger electrons of this specific kinetic
energy ε = ω − EF ∓ 	g(ts) are predominantly emitted. For
any pulse it happens at least twice, when the pulse grows
and when it decreases. The situation is analogous to the one
shown in Fig. 4, except that 2ω ± 	g(t) relevant there must
be replaced by ω ± 	g(t) because the electrons are emitted
spontaneously via the Auger decay and not via ionization by
a second photon. By collecting in the integral (12) the two
stationary phase contributions at ts = ±t1(ε) obtained for a
Gaussian pulse, we arrive at the following explicit approximate
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FIG. 5. (Color online) Resonant Auger electron spectrum of Ne
computed for a Gaussian-shaped pulse of 5 fs duration, carrier
frequency of 867.12 eV, and peak intensity of 2 × 1018 W/cm2.
Shown are the spectrum computed numerically via Eq. (8)) as
described in Refs. [28,36] (open circles) and the spectrum obtained
in the stationary phase approximation via the explicit expression (13)
(solid curve). The two individual contributions to the spectrum, from
times when the pulse arrives and expires, are shown by broken curves.

expression for the Auger electron spectrum:

σ (ε) �
∣∣∣∣∣∣
√

�A

8π

∑
ts=±t1(ε)

e− 1
4 �Ats

{−ei[�+(ts )∓ π
4 ]

+ ei[�−(ts )± π
4 ]}

∣∣∣∣∣∣
2

. (13)

Equation (13) suggests that two electron waves of the
same kinetic energy emitted during the pulse by Auger decay
with a time delay with respect to each other superimpose
and, thus, dynamic interference takes place. Indeed, multiple-
peak patterns in the Auger electron spectrum of an atom in
strong coherent free-electron laser pulses were predicted in
Refs. [28,36], but hitherto not interpreted. In view of the
present results, these patterns can be understood in terms of
dynamic interference. In order to exemplify our findings, we
have computed the Auger decay spectrum of the Ne(1s → 3p)
resonance via Eq. (8). The calculations were performed for a
Gaussian-shaped pulse of τ = 5 fs duration, carrier frequency
of ω = 867.12 eV, and peak intensity of I0 = 2 × 1018 W/cm2

as described in detail in Refs. [28,36]. The results of our nu-
merical calculations are depicted in Fig. 5 by open circles. The
spectrum evaluated in the stationary phase approximation via
Eq. (13) with the parameters �A = 0.27 eV and 	 = 1.13 eV is
also depicted in the figure for comparison by a solid curve. One
can see that this explicit simple expression nicely reproduces
the interference pattern found in the numerical spectrum. The
individual contributions to the spectrum arising from the two
times ts = ±t1(ε) when the pulse arrives and expires (broken
curves in Fig. 5) do not show any interference effects.

The main difference between the resonant Auger electron
spectrum in Fig. 5 and the sequential two-photon ionization
spectrum in Fig. 3 is the presence of a pronounced central
peak in the Auger spectrum around ε ∼ ε0 (δ ∼ 0). This is
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because the rate for sequential two-photon ionization �g2(t)
depends on time and is thus rather small at the beginning
and at the end of the pulse when this central peak is formed.
Correspondingly, the central peak is strongly suppressed in the
photoelectron spectrum in Fig. 3 (see also Fig. 2) and enhanced
on its shoulders which are formed at times around the peak
of the pulse. In contrast, the Auger effect is governed by the
time-independent decay rate �A. Therefore, Auger electrons
are emitted with equal probability during the whole pulse even
at the beginning and at the end of the pulse when the central
peak is formed. In the present example the pulse duration is
longer than the Auger lifetime τA = 1/�A. The coherence
of the pulse can be further exploited to produce interesting
physics if the pulse is much shorter than the Auger decay
lifetime, as Auger electrons are also emitted after this short
pulse has already expired. These electrons will, of course,
contribute to the formation of the central peak around ε ∼ ε0,
and will superimpose coherently with those Auger electrons
emitted during the pulse. This will lead to variations of the
central peak in the Auger spectrum which depend on the pulse
properties and on the atomic levels investigated.

For very strong pulse intensities, the direct ionization of the
ground state starts to play an important role [28,34,37]. This re-
sults in additional leakage of the corresponding population into
all possible final ionic states. These states are thus populated
coherently by both the direct photoionization from the ground
state and the resonant Auger decay which induces strong
interference effects with distinct patterns in the Auger electron
spectra of atoms [28]. These effects can be incorporated in
the present analytical theory. We start with the equation of
motion for the amplitudes derived in our previous work [28]
[see Eqs. (24) there] and apply the decoupled resonances
scenario as described above. Straightforwardly, we arrive at
the following explicit approximate expression for the Auger
electron spectrum in the stationary phase approximation:

σ (ε) �
∣∣∣∣∣∣

∑
ts=±t1(ε)

e− 1
4 [�Ats+�J (ts )]

×
{[√

�

8π
g(ts) −

√
�A

8π

]
ei[�+(ts )∓ π

4 ]

+
[√

�

8π
g(ts) +

√
�A

8π

]
ei[�−(ts )± π

4 ]

}∣∣∣∣∣∣
2

. (14)

Here, � = 2π |dE0/2|2 is the total rate for the direct ionization
of the ground state [28]. By comparing Eqs. (13) and (14),
one can see that the two decoupled resonances |+〉 and |−〉
are now subject to the total leakage − i

4 [�A + �g2(t)], pop-
ulating thereby the final continuum states via both the direct
photoionization from the ground state and the resonant Auger
decay. As usual, the resonance |−〉 is represented in Eq. (14)
by the first term in braces, and the resonance |+〉 by the second
term, and they are responsible, respectively, for the lower and

higher electron energy side of the spectrum. By comparing the
square brackets in front of the two exponential phase factors in
Eq. (14), one can see that the two amplitudes for the direct and
resonant population of the electron continuum state subtract
for the |−〉 and add up for the |+〉 resonances. This results
in destructive and constructive interferences on the low- and
high-energy sides of the Auger electron spectrum, respectively,
and gives rise to the asymmetry of the spectra found in the full
numerical calculations [28].

IV. SUMMARY AND OUTLOOK

The dynamics of electronic states of an atom coupled
resonantly by a coherent high-frequency laser pulse is studied
theoretically. The short intense laser pulse of resonant carrier
frequency induces a time-dependent coupling between the two
electronic states, which in turn results in an energy splitting
between them. If the pulse envelope supports many optical
cycles of high frequency, this energy splitting adiabatically
follows the pulse envelope and, consequently, increases when
the pulse arrives and decreases when the pulse expires (see
Fig. 4). The underlying dynamics is probed by the emitted
particles. The particles emitted when the pulse rises have the
same kinetic energy as those emitted when the pulse decreases.
The respective two-particle waves emitted with a time delay
with respect to each other interfere and their spectrum exhibits
a pronounced dynamic interference pattern.

Dynamic interference is a very general phenomenon arising
as a consequence of the nature of intense coherent short laser
pulses of high carrier frequency. As soon as the field-induced
couplings between the electronic states of a system possess
the time dependence provided by the pulse envelope g(t)
and the system emits particles during its exposure to the
pulse, dynamic interference takes place. Dynamic interference
spectacularly modifies the sequential two-photon ionization
and resonant Auger decay processes and causes enormous
qualitative changes in the photoelectron and Auger electron
spectra. It is clear from the present theory that x-ray emission
spectra of atoms exposed to coherent intense pulses reso-
nantly coupling electronic states will also exhibit dynamic
interference effects. The only differences will be that a term
− i

2�X will have to be added to Hamiltonian (9) to account
for the relaxation of the intermediate state via spontaneous
x-ray emission, and Eqs. (8) will have to be augmented by an
equation analogous to Eq. (8c) collecting the photons.

The new generation of high-frequency laser-pulse
sources, like free-electron lasers, allows one to access a few
well-separated electronic states of a system (e.g., core-excited
states) and to experimentally study their resonantly coupled
dynamics. Our explicit analytical model developed in
the present work allows one to describe multiple-peak
interference patterns in the spectra of observable particles and
to easily make predictions for future experiments on dynamic
interference by coherent pulses.
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