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We present a fully ab initio calculations for attosecond transient absorption spectroscopy of atomic krypton
with overlapping pump and probe pulses. Within the time-dependent configuration interaction singles (TDCIS)
approach, we describe the pump step (strong-field ionization using a near-infrared pulse) as well as the probe
step (resonant electron excitation using an extreme-ultraviolet pulse) from first principles. We extend our TDCIS
model and account for the spin-orbit splitting of the occupied orbitals. We discuss the spectral features seen in a
recent attosecond transient absorption experiment [A. Wirth et al., Science 334, 195 (2011)]. Our results support
the concept that the transient absorption signal can be directly related to the instantaneous hole population even
during the ionizing pump pulse. Furthermore, we find strong deformations in the absorption lines when the
overlap of pump and probe pulses is maximum. These deformations can be described by relative phase shifts
in the oscillating ionic dipole. We discuss possible mechanisms contributing to these phase shifts. Our finding
suggests that the nonperturbative laser dressing of the entire N -electron wave function is the main contributor.
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I. INTRODUCTION

The interaction of matter with light is a key process
in physical systems on any length scale. The fundamentals
of matter-light interaction can be best studied in atomic
systems due to their relative simplicity. The absorption of
light promotes electrons into excited states. If enough energy
is absorbed by the system, one or more electrons can leave the
atom (i.e., ionization takes place) [1–3]. The most common
types of ionization are single-photon and few-photon ion-
izations [4–6], above-threshold ionization [7–11], and tunnel
ionization [12–17].

Recently, high-order-harmonic generation (HHG) has be-
come a major tool in attosecond physics, allowing one to
generate ultrashort light pulses with broad spectral bandwidths
[18,19]. From the ability to generate attosecond pulses [20],
an entire new research area has emerged [21] focusing on
electronic dynamics [22–28] and molecular motion [29–32] on
their fundamental time scale. A particularly interesting aspect
is the electron motion and the corresponding hole-creation
dynamics during the ionization process [33–35]. The high
pulse intensities used in these experiments distort significantly
the potential of the electrons such that it is possible for the
electron to tunnel through or even travel over the barrier out
of the system (i.e., tunnel-ionization or barrier-suppression
regime, respectively).

A well-known model to describe tunnel ionization in atomic
systems is the Ammosov, Delone, and Krainov (ADK) model
[36,37]. It applies to intense low-frequency fields, where a
quasistatic approximation can be made, meaning electrons
follow adiabatically the external field. In these kinds of
fields, tunneling rates and final ion populations can be well
reproduced by the ADK model [38]. Short, few-cycle pulses
give access to instantaneous rather than cycle-averaged quan-
tities and reveal the nonadiabatic behavior of the electronic
motion. In this case, an explicit time-dependent treatment of
the ionization process is advantageous. In combination with

a multichannel theory, the dynamics in the relative phases
between generated ionic states can be captured; something
that cannot be done by the ADK model. In the past, the state
of the ion (after ionization) has not been of high interest, since
it was not experimentally accessible.

Such a technique does now exist: attosecond transient
absorption spectroscopy [39–42]. Transient absorption spec-
troscopy has been used for years to study chemical reactions on
the femtosecond time scale [43]. However, just recently this
technique has been extended to the attosecond regime [39],
where it is possible to probe the diagonal and off-diagonal
elements of the ion density matrix (IDM) of the generated
ion. From the off-diagonal IDM elements, the relative phase
and the degree of coherence between the ionic states can
be extracted, which are highly sensitive to the multichannel
interactions occurring during the ionization process [44].
Attosecond transient absorption spectroscopy has also been
used to study the dynamics of autoionizing states [45–48]
and to study the motion of an electron wave packet during
ionization [49].

The rapid technical advances in synthesizing light pulses
made it possible to generate subcycle near-infrared (NIR)
pulses lasting no longer than a few femtoseconds and to
reduce the jitter (time-delay fluctuation) between the NIR
pump pulse and the extreme ultraviolet (XUV) probe pulse to
tens of attoseconds [35]. This time delay stability allows one
to reliably probe the NIR-driven tunnel ionization dynamics
within an optical cycle (approx. 2 fs) as a function of the pump-
probe delay. For nonoverlapping pump and probe pulses,
transient absorption spectroscopy can be used to determine
the instantaneous IDM at the time of the probe pulse [40].

The aim of this study is to investigate the ion population
dynamics in krypton within the pump pulse. We show that
the instantaneous ionic-state population can be well captured
by the transient absorption spectrum even for overlapping
pump and probe pulses. Furthermore, we observe strong
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modifications of the absorption lines in the transient absorption
spectroscopy when pump and probe pulses have the maximum
overlap.

We show that these deformations can be understood by
relative phase shifts in the ionic dipole. We identify that
the highly nonperturbative dressing of the N -electron states
(particularly with the neutral ground state) is responsible for
the phase shift. Also the dressing of the ionic [(N − 1)-
electron] states, which leads to energy shifts in the ionic
states, contributes to the phase shift. The latter, however, is
much weaker than the first dressing mechanism. Note that
these two dressing mechanisms are quite different in nature.
The first mechanism dresses N -electron states and the second
mechanism dresses (N − 1)-electron states.

To capture these dressing mechanisms during ionization,
a description of the entire N -electron system is required. We
describe the dynamics of the full N -body wave function with
a time-dependent configuration interaction singles (TDCIS)
approach [50]. The description of the pump and the probe
steps of Refs. [35,39] requires at least two active electrons,
since the pump pulse ionizes an outer-valence electron and the
probe pulse resonantly excites an inner-shell electron into the
generated hole. Therefore, it is crucial to use a multichannel
model, which goes beyond the single-active-electron (SAE)
approximation, to describe the pump-probe process.

The paper is structured as follows: In Sec. II, we give
an overview of our TDCIS method and describe the theory
of attosecond transient absorption for overlapping pump and
probe pulses. The results are discussed in detail in Sec. III.
In Sec. IV we draw our conclusions. Atomic units [51] are
employed throughout unless otherwise noted.

II. THEORETICAL METHODS

A. Equations of motion

The time-dependent Schrödinger equation of an N -electron
system exposed to linearly polarized electric fields is given by

i
∂

∂t
|�(t)〉 = Ĥ (t)|�(t)〉, (1a)

Ĥ (t) = Ĥ0 + Ĥ1 − E(t)ẑ, (1b)

where |�(t)〉 is the full N -electron wave function and
Ĥ (t) is the exact N -body Hamiltonian, which can be
partitioned into three main parts: (1) Ĥ0 = F̂ − iηŴ

is the sum of the time-independent Fock operator F̂

and a complex absorbing potential (CAP), which reads
W (r) = [r − rCAP]2�(r − rCAP), where r is the radius, and
�(r) is the Heaviside step function; (2) the electron-electron
interactions that cannot be captured by the mean-field
potential in Ĥ0 are captured by Ĥ1 (=V̂C − V̂HF − EHF; for a
detailed description of these quantities see Refs. [50,52]); and
(3) the term E(t)ẑ is the laser-matter interaction in the electric
dipole approximation using the length form. The CAP within
Ĥ0 prevents artificial reflections of the ionized photoelectron
from the radial grid boundary and is located far from the atom
such that all processes close to the atom are unaffected by the
CAP. This is controlled by the parameter rCAP.

By allowing only one electron to get excited or ionized
out of the ground-state configuration, we strongly reduce the

complexity of solving Eq. (1a). A suitable way to achieve
this goal is by exploiting the configuration interaction (CI)
language and describing the N -body wave function in terms
of the Hartree-Fock ground state |�0〉 and singly excited
configurations |�a

i 〉. This approximation is known as CI
singles (CIS). The corresponding TDCIS N -electron wave
function reads

|�(t)〉 = α0(t)|�0〉 +
∑
i,a

αa
i (t)

∣∣�a
i

〉
, (2a)

∣∣�a
i

〉 = ĉ†aĉi |�0〉, (2b)

where i,j and a,b refer to occupied orbitals and unoccupied
(virtual) orbitals, respectively, in the Hartree-Fock ground
state |�0〉. Indices p,q are used when no distinction is made
between occupied and virtual orbitals. The operators ĉ

†
p and

ĉp create and annihilate, respectively, an electron in the
spin orbital |ϕp〉. The equations of motion (EOMs) for the
expansion coefficients α0(t) and αa

i (t) read

iα̇0(t) = −E(t)
∑
i,a

(
�0|ẑ|�a

i

)
αa

i (t), (3a)

iα̇a
i (t) = (εa − εi)α

a
i (t) +

∑
b,j

(
�a

i |Ĥ1|�b
j

)
αb

j (t)

− E(t)

⎛
⎝(

�a
i |ẑ|�0

)
α0(t) +

∑
b,j

(
�a

i |ẑ|�b
j

)
αb

j (t)

⎞
⎠ ,

(3b)

where εp are the orbital energies of the orbitals |ϕp〉,
which are eigenstates of the modified, time-independent Fock
operator (i.e., Ĥ0|ϕp〉 = εp|ϕp〉). The operator Ĥ1 is the
residual electron-electron interaction, which goes beyond the
mean-field potential. The parentheses |·) and (·| stand for
the vector and dual vector with respect to the symmetric
inner product required because of the non-Hermiticity of Ĥ0.
The dipole interaction between singly excited configurations
reduces to transitions between states of the excited electron
and transitions between ionic states:(

�a
i |ẑ|�b

j

) = (ϕa|ẑ|ϕb)δi,j − (ϕj |ẑ|ϕi)δa,b. (4)

A detailed description of our implementation of the TDCIS
method can be found in Refs. [50,53].

From the full N -body wave function one can construct the
ion density matrix (IDM) ρ̂IDM(t) by tracing over the excited
electron. The matrix elements are given by

ρIDM
i,j (t) =

∑
a,b

(
αa

i (t)
[
αb

j (t)
]∗

ob,a + 2η ei(εi−εj )t

×
∫ t

−∞
dt ′wb,a αa

i (t ′)
[
αb

j (t ′)
]∗

e−i(εi−εj )t ′
)

, (5)

where wb,a are the matrix elements of the CAP in the virtual
orbital basis, and ob,a are the overlap matrix elements between
virtual orbitals. The second term in Eq. (5) corrects the loss
of norm in the IDM due to the absorption of the excited
electron by the CAP. The CAP is placed far away from the
atom such that an electron so far out does not affect the ion,
specifically the ionic states. Therefore, the absorption of an
electron by the CAP results only in an artificial loss of norm
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that is compensated by the second term in Eq. (5). To keep the
notation compact, we use the notation ρIDM

i (t) := ρIDM
i,i (t) for

ionic state populations.

B. Spin-orbit splitting

In order to include the effect of spin-orbit splitting in
the occupied orbitals, we follow the logic of Ref. [54],
where we account for spin-orbit splitting with degenerate-state
perturbation theory within the (n,l) orbital manifold. The
occupied orbital i is, then, characterized by the quantum
numbers ni,li ,ji,m

J
i , where ni is the principal quantum

number, li is the orbital angular momentum, ji is the total
angular momentum, and mJ

i is the projection of the total
angular momentum onto the polarization direction of the
external laser field. The occupied spin orbitals read

|ϕi〉 =

⎛
⎜⎝ C

ji,m
J
i

li ,m
J
i − 1

2 ;si ,
1
2

∣∣ni,li ,m
J
i − 1

2

〉
C

ji,m
J
i

li ,m
J
i + 1

2 ;si ,− 1
2

∣∣ni,li ,m
J
i + 1

2

〉
⎞
⎟⎠, (6)

where the Clebsch-Gordan coefficient is given by C
l3,m3
l1,m1;l2,m2

=
〈l1,m1; l2,m2|l3,m3〉, si = 1

2 is the spin of the electron, and
|n,l,m〉 are the one-particle orbitals obtained from a non-
relativistic Hartree-Fock calculation. The orbital energies εi

are taken from experimental ionization potentials. For the
virtual orbitals, we can neglect spin-orbital splitting and use the
quantum numbers na,la,σa,m

L
a to classify the orbitals, where

σa is the spin component in the laser polarization direction and
mL

a is the projection of the orbital angular momentum onto the

laser polarization direction. The virtual orbitals read

|ϕa〉 = ∣∣na,la,m
L
a

〉( δσa,
1
2

δσa,− 1
2

)
. (7)

The use of linearly polarized light leads to the condition
mJ

i = mL
a + σa for each singly excited configuration |�a

i 〉,
which is conserved by Ĥ (t). After the introduction of spin-
orbit splitting for the occupied orbitals, we cannot make use
of the σ and mL symmetries independently to reduce the
number of singly excited configurations, |�a

i 〉, as done in
Ref. [53]. However, not all symmetries are lost and we find
that Eq. (3b) is (up to a global phase) invariant under the parity
transformation (mJ

i ,mL
a ,σa) → (−mJ

i , − mL
a , − σa). The new

parity-adapted, singly excited configurations |�a
i 〉π read∣∣�a

i

〉
π

= 1√
2

[∣∣�a
i

〉
+ + (−1)li+si−ji+π

∣∣�a
i

〉
−
]
, (8)

where the configurations |�a
i 〉± stand for singly excited

configurations with mJ
i ≷ 0, respectively. States with π = 0

are gerade parity state and π = 1 states are ungerade parity
state. All ungerade configurations |�a

i 〉π=1 will never get
populated and we can exclude them from our further inves-
tigations. Note that the factor (−1)li+si−ji comes from the
symmetry C

l3,m3
l1,m1;l2,m2

= (−1)l1+l2−l3C
l3,−m3
l1,−m1;l2,−m2

.

C. Matrix elements

The matrix elements, which are needed for Eqs. (3), must
be evaluated in the parity-adapted |�a

i 〉π configuration basis.
The dipole matrix elements with respect to the symmetric inner
product read

π1

(
�a

i |ẑ|�b
j

)
π2

=
(

δi,j δσa,σb
z
mL

a

(A,B) − δa,bδmJ
i ,mJ

j

∑
σ

z
mJ

i −σ

(J,I ) C
ji,m

J
i

li ,m
J
i −σ ;si ,σ

C
jj ,m

J
j

lj ,m
J
j −σ ;sj ,σ

)
δπ1,π2 , (9a)

(
�0|ẑ|�a

i

)
π

=
√

2 δπ,0δmJ
i ,mL

a +σa
z
mL

a

(A,I )C
ji,m

J
i

li ,m
J
i −σa ;si ,σa

, (9b)

where we used the notation i = (I,ji,m
J
i ) with I = (ni,li) and a = (A,mL

a ,σa) with A = (na,la). The dipole matrix elements in
the original, non-parity-adapted basis are given by zm

(P,Q) := (np,lp,m|ẑ|np,lq,m). The matrix elements of Ĥ1 read

π1

(
�a

i |Ĥ1|�b
j

)
π2

= 2δπ1,0δπ2,0C
ji,m

J
i

li ,m
J
i −σa ;si ,σa

C
jj ,m

J
j

lj ,m
J
j −σb ;sj ,σb

v
M1
(AJIB) − δπ1,π2δσa,σb

∑
σ

C
ji ,m

J
i

li ,m
J
i −σ ;si ,σ

C
jj ,m

J
j

lj ,m
J
j −σ ;sj ,σ

v
Mσ

1
(AJBI )

− (−1)π1δπ1,π2δσa,−σb

∑
σ

C
ji ,m

J
i

li ,m
J
i −σ ;si ,σ

C
jj ,m

J
j

lj ,m
J
j +σ ;sj ,−σ

v
Mσ

2
(AJBI ), (10)

where M1 = (mL
a ,mL

b ,mL
a ,mL

b ), Mσ
1 = (mL

a ,mL
j − σ,mL

b ,

mJ
i − σ ), and Mσ

2 = (mL
a , − mL

j − σ, − mL
b ,mJ

i − σ ). The
Coulomb matrix elements in the non-parity-adapted basis read
vM

(PQRS) := (np, lp,mp; nq, lq,mq |r̂−1
12 |nr, lr , mr ; ns, ls, ms)

with M = (mp,mq,mr,ms).

D. Transient absorption for overlapping pulses

The transient absorption signal is a direct measure of the
cross section of the system. In Ref. [40] the transient absorption

signal was derived for the case of nonoverlapping pump
and probe pulses. The probe pulse was treated in first-order
perturbation theory such that it was possible to give an analytic
expression for the transient absorption signal as a function
of the instantaneous IDM ρ̂IDM(t). The pump pulse, usually
a strong-field NIR pulse, which ionizes the atom by tunnel
ionization, was treated nonperturbatively.

For overlapping pump and probe pulses, the influence of
the probe pulse does not decouple from the impact of the
pump pulse. Therefore, it is not clear to which extent ρ̂IDM(t)
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can be extracted from the transition absorption spectrum
like for nonoverlapping pulses. In order to fully capture
the overall effect of pump and probe pulses, both pulses
are treated nonperturbatively, meaning the TDCIS equations
of motion [see Eq. (3)] are solved for an electric field
E(t) = Epump(t) + Eprobe(t). Note that the probe step could
also be treated perturbatively by introducing a two-time
IDM, which depends on two different time arguments. In
our nonperturbative approach only the one-time IDM ρ̂IDM(t)
needs to be constructed for each pump-probe configuration.
From ρ̂IDM(t) the ionic dipole moment,

〈z〉ion(t) = Tr[ẑρ̂IDM(t)] (11)

and the atomic cross section

σa(ω) = 4π
ω

c
Im

[ 〈z〉ion(ω)

Eprobe(ω)

]
(12)

can be calculated. By performing the trace over ρ̂IDM(t) and
not over the full N -body density matrix ρ̂(t), we consider only
dipole transitions between ionic states. Transitions between
virtual orbitals can be neglected, since the XUV probe pulse
interacts only weakly with the excited electron. Transitions
between occupied and virtual orbitals describe stimulated
emission and photoionization processes. Both mechanism do
not lead to sharp features in σa(ω) around the bound-bound
transition energies. Therefore, we ignore these contributions,
which lead to background signals we are not interested in.

The detector, where the transient absorption spectrum is
measured, does not record the atomic response but rather a
damped spectrum of the form

|Eprobe(L,ω)|2 = |Eprobe(0,ω)|2 e−LnATσa (ω), (13)

where Eprobe(0,ω) is the incoming probe electric field, L is the
length of the medium, Eprobe(L,ω) is the probe electric field at
the end of the medium, and nAT is the atomic number density.
In Eq. (13) Beer’s law is used, which assumes a homogeneous
medium and that the ratio 〈z〉ion(ω)/Eprobe(ω) is independent
of Eprobe(ω) := Eprobe(0,ω). In Sec. III B the validity of Beer’s
law is discussed.

Due to the finite energy resolution of the detector, the
transient absorption signal in Eq. (13) has to be convolved
with a Gaussian mask function, where the full width at half
maximum (FWHM) width is given by the energy resolution of
the detector. The cross section σm(ω) measured at the detector
can be related to the atomic cross section and is given by

σm(ω) = − 1

nATL
ln(e−nATLσa (ω) ∗ GδE(ω)), (14)

where GδE(ω) is the area-normalized Gaussian with the
FWHM width of δE, and the symbol ∗ stands for the
frequency convolution. The dependence on the pump-probe
configuration, specifically the pump-probe delay τ , enters
parametrically in Eqs. (11)–(14) such that the atomic and
the measured cross sections read σa(ω; τ ) and σm(ω; τ ),
respectively.

E. Oscillating dipole model

In the following, we develop a general expression for the
transient absorption spectrum, which is based on a simple

model. Later in Sec. III we use this generalized expression
to discuss the features of the transient absorption spectrum
for overlapping pulses obtained from our TDCIS calculations
described in Sec. II A-II C.

First, we reduce the description of the ion to a two-level
system. The ground state |g〉 can only be accessed by the
pump pulse via tunnel ionization and the excited state |e〉 can
only be accessed by the probe pulse via resonant excitation
out of |g〉. The probe pulse, which may be approximated by
a delta pulse [i.e., Eprobe(t ; τ ) = E0δ(t − τ )], creates a coher-
ent superposition |�(t > τ )〉 = a0|g〉 + a1e

−i(ω0−i�/2)(t−τ )|e〉,
where ω0 is the positive energy difference between the two
states, 1/� is the lifetime of the excited state, and a1 =
−iE0a0〈e|z|g〉 results from the excitation by the probe pulse.
This superposition leads to an oscillating dipole

〈z〉ion(t > τ ) = 〈�(t)|z|�(t)〉
= −2E0|〈e|z|g〉|2|a0|2 sin[ω0(t − τ )]e− �

2 (t−τ ).

(15)

Inserting Eq. (15) into Eq. (12) and using Eprobe(ω; τ ) =
E0e

−iωτ , the final expression for the cross section reads

σ (ω; τ ) = 4πω

c
z0

�/2

(ω − ω0)2 + �2

4

, (16)

where z0 = |a0|2|〈e|z|g〉|2 determines the transition strength.
We see that for a simple two-level system the cross section is
purely Lorentzian and directly proportional to the ground-state
population |a0|2 at the time of the probe step.

Adiabatic energy shifts in the ionic states during the intense
NIR pulse result in a phase shift in the oscillating ionic dipole
[i.e., 〈z〉ion ∝ sin[ω0(t − τ ) + φ(τ )]]. Here, we assume the
ionic state and the dipole oscillation live for a long time after
the NIR pulse is over such that the entire dipole dynamics can
be approximated by a phase-shifted oscillation. The phase shift
φ(τ ) has a dramatic influence on the shape of the transition
line, which reads

σ (ω; τ ) = 4πω

c
z0

�
2 cos[φ(τ )] + (ω − ω0) sin[φ(τ )]

(ω − ω0)2 + �2

4

. (17)

Note that the phase shift φ(τ ) affects only the shape of the
transition but not the strength z0.

In Fig. 1 σ (ω; τ ) is shown for specific values of φ. The
transition line is purely Lorentzian for φ = 0. In the case
φ = π/2, the cross section shows a dispersive behavior and has
equally negative and positive regions that lie symmetrically
around the field-free transition energy ω0(0). For all other
phases, the cross section is a sum of these two scenarios and
becomes asymmetric around ω0. A phase shift by π changes
the sign of the cross section. For −π/2 � φ � π/2, the system
shows an absorbing behavior whereas for π/2 � φ � 3/2π

the system is rather emitting. A similar scenario has been
discussed in atomic helium, where neutral excited states are
dressed by an IR pulse leading to emitting and absorbing
patterns depending on the pump-probe delay [55].

Similarly to the dressing of the ionic states, the influence
of the excited electron on the ion via the residual Coulomb
interaction and via the pump field can lead to additional phase
shifts in the oscillating dipole (see Sec. II F). Furthermore,
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FIG. 1. (Color online) Cross section σ (ω) of Eq. (17) for several
values of φ(τ ). The transition energy is ω0 = 3 a.u., � = 3.2 ×
10−3 a.u., and the transition strength is given by z0 = 0.01.

corrections to the transition strength z0 can occur, which
may cause z0 to be no longer directly proportional to the
instantaneous hole population. In order to capture these effects,
we parametrize not only the phase φ(τ ) but also the transition
strengths z0 → z0(τ ). Our generalized version of Eq. (17) for
a multilevel ion reads

σdipole(ω; τ )

= 4πω

c

∑
T

zT (τ )
�T

2 cos[φT (τ )] + (ω − ωT ) sin[φT (τ )]

(ω − ωT )2 + �2
T

4

,

(18)

where we sum over all possible ionic transitions T . Note that
Eq. (18) is designed to capture the influence of all these effects
that go beyond our simple two-level model [see Eq. (16)].
However, Eq. (18) cannot explain why these changes occur
and where they come from.

F. Mechanisms leading to phase shift

As discussed in Sec. II E, the dressing of the ion can induce
a phase shift in the ionic dipole. In the following, we discuss
in the language of TDCIS how the dressing by the field and
the coupling of the excited electron to the ionic subsystem can
influence the phases φT (τ ) of Eq. (18). First, we analyze the
scenario where the time evolutions of the excited electron (a
index) and the ionic states (i index) are decoupled. This is the
case when the terms (�a

i |Ĥ1|�b
j ) and (�a

i |ẑ|�0) are switched
off in Eq. (3b). The resulting EOM can be written as

iα̇a
i (t) =

∑
b

H elec
(a,b)(t)α

b
i (t) +

∑
j

H ion
(i,j )(t)α

a
j (t), (19)

where H elec
(a,b)(t) := εbδa,b + E(t)(ϕa|ẑ|ϕb) affects only the ex-

cited electron, and H ion
(i,j )(t) := −εj δi,j − E(t)(ϕj |ẑ|ϕi) affects

only the ionic states. Ĥ elec and Ĥ ion can be viewed as Hamil-
tonians of the two subsystems. Note that the Hamiltonians of
both subsystems commute; that is, [Ĥ elec(t),Ĥ ion(t)] = 0. To
confirm that Eq. (19) leads to decoupled EOMs for the excited
electron and the ion, we make the product ansatz αa

i (t) =

χa(t)κi(t), where the EOMs of the separated electronic and
ionic wave functions are given by

iχ̇a(t) =
∑

b

H elec
(a,b)(t)χb(t), (20a)

iκ̇i(t) =
∑

j

H ion
(i,j )(t)κj (t). (20b)

We find that the product ansatz with the decoupled EOMs
of Eqs. (20) solves Eq. (19). This shows that Eq. (19) is the
overall EOM of the full N -electron system, which consists of
two totally separated subsystems. Note that the term (�a

i |ẑ|�b
j )

[cf. Eq. (4)] does affect the excited electron and the ion but
it does not lead to interactions between the two. Enforcing a
normalized electron wave function, we find from Eq. (20b)
that the IDM is given by

ρIDM
i,j (t) = κ∗

j (t)κi(t) = eiωT (t−τ )ρIDM
i,j (τ )eiφion

T (t,τ ), (21)

where T = i → j denotes the ionic transition. If E(t) =
0 for all times t , we find φion

T (t,τ ) = 0 for all t and τ .
Hence, the additional phase φion

T (t,τ ) enters only due to the
term −E(t)(ϕj |ẑ|ϕi) in Ĥ ion. This is exactly the field-driven
dressing of the ionic system. After the pulse is over [E(t) = 0],
the phase φion

T (t,τ ) becomes independent of t and depends only
on the probe time τ [i.e., φion

T (t,τ ) → φion
T (τ )]. In Sec. III D1,

we show how the field-driven dressing of the ionic system
can be analytically analyzed with the help of the polarizability
of the ion. It is interesting to note that the influence of the
electric field on the excited electron [i.e., E(t)(ϕa|ẑ|ϕb)] does
not influence the IDM and subsequently the ionic dipole
oscillation.

Additional phase shifts similar to φion
T (τ ) can also occur

due to the coupling between the ion and the excited elec-
tron. There exist two kinds of mechanism that can couple
these two subsystems: (1) the residual Coulomb interaction
[the (�a

i |Ĥ1|�b
j ) in Eq. (3b) are the corresponding matrix

elements], and (2) the field-driven mixing of the excited
N -electron states with the neutral ground state [the (�a

i |ẑ|�0)
in Eq. (3b) are the corresponding matrix elements]. Both
terms were ignored in Eq. (19), which led to two decoupled
subsystems. To distinguish the phase shifts induced by the two
different mechanisms, we introduce φresidual

T (τ ) and φ
ground
T (τ ).

The phase shift due to the residual Coulomb interaction is
denoted by φresidual

T (τ ), and φ
ground
T (τ ) denotes the phase shift

due to the field-driven mixing to the neutral ground state.
Adding up all three phase shifts we find that the total phase

shift for the transition T is given by

φT (τ ) = φion
T (τ ) + φresidual

T (τ ) + φ
ground
T (τ ). (22)

In Sec. III D we discuss which of the three phase shifts gives
the dominant contribution.

III. RESULTS

A. System, pulse, and numerical parameters

All presented results were calculated with the XCID package
[56]. All calculations were performed with 600 radial grid
points, a maximum radius rmax = 150, and a nonlinear grid
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FIG. 2. (Color online) NIR pump (solid red line) and XUV probe
pulses (green dashed line) used for transient absorption spectroscopy
are shown separately. The peaks of both pulses are centered at t = 0.

mapping parameter ζ = 1.0. The CAP starts at a radius
rCAP = 130 and has a strength η = 0.003. The maximum
angular momentum employed was lmax = 30. Furthermore,
if the orbital angular momentum of any one-particle orbital
|ϕp〉 appearing in the matrix elements of Ĥ1 exceeded 4, then
only the monopole term of Ĥ1 was considered. With these
parameters, our results are converged. A detailed explanation
about the parameters of the grid, of the CAP, and of the residual
Coulomb interaction can be found in Ref. [50].

The NIR pulse profile measured in Ref. [35] is used as
the pump pulse in all the following results and is shown in
Fig. 2. The pump pulse is approximately 2 fs long with one
main peak and two side peaks. The maximum electric field
strength of the pump pulse is ≈0.08 a.u. (corresponding to an
instantaneous intensity of 4.8 × 1014 W/cm2). For the probe
pulse (also shown in Fig. 2) a Gaussian pulse profile is used
with a central frequency of 3 a.u. (≈81 eV), a FWHM width
of the intensity profile of 10 a.u.(≈240 as), a carrier envelope
phase of zero, and a maximum field strength of 10−2 a.u.
(≈3.4 TW/cm2).

As in Refs. [35,39], we choose atomic krypton as our system
of interest. The spin-orbit coupling within the occupied orbitals
is accounted for in first-order perturbation theory, as described
in Sec. II B. The energies of the singly ionized ionic states
[NLM

J ]−1 with respect to the Hartree-Fock ground-state energy
are given by the negative orbital energies (i.e., Koopmans’
theorem). Here, N is the principal quantum number, L is the
orbital angular momentum, J is the total angular momentum,
and M is the projection of J . Since we are using linearly
polarized light, the values for M and −M states are always
the same. Therefore, we refer always to a sum of both |M|
contributions (i.e., [NLM

J ]−1 = [NL+M
J ]−1 + [NL−M

J ]−1).
The orbital energies of the 4p orbitals are replaced by

experimental values taken from Ref. [57] in order to match
the experimental ionization potentials. The orbital energies of
the 4p shell are given by ε4p1/2 = −0.5389 (= − 14.67eV) and
ε4p3/2 = −0.5148 (= − 14.00eV). The orbital energies of the
3d shell are taken from Ref. [58]. In addition, we account for
the finite lifetime of all 3d−1 configurations of 7.5 fs (� =
88 meV) [39]. Hence, the 3d orbital energies become complex

and read ε3d3/2 = −3.5 − i�/2 (= − 95.24 − i0.044 eV) and
ε3d5/2 = −3.4525 − i�/2 (= − 93.95 − i0.044 eV).

B. Transient absorption spectrum

In a recent experiment [35] attosecond transient absorption
spectroscopy has been used to investigate the hole production
dynamics in atomic krypton during a subcycle NIR pump
pulse. The theory described in Ref. [40] was used to analyze
the transient absorption spectrum and to connect the spectrum
to the instantaneous IDM ρIDM

i,j (t). Propagation effects and the
finite energy resolution of the detector were accounted for as
described in Eq. (14). The macroscopic propagation is captured
by Beer’s law. Previous studies [40] have shown that Beer’s law
is valid for the pump-probe scenario investigated here. Similar
conclusions have been found in Ref. [41] when the probe
pulse is much shorter than the pump pulse (as in our case).
For probe pulses longer than the pump pulse, the macroscopic
propagation can quite strongly deviate from Beer’s law.

The theory developed in Ref. [40] is, strictly speaking,
only valid when pump and probe pulses do not overlap and
the tunnel-ionized electron is far from the parent ion. In
this case, the ionic subsystem [i.e., ρ̂IDM(t)] reduces to a
simple multilevel system without any kinds of interactions
with the environment and between levels. Hence, the entire
dynamics of the ion is analytically known and reads ρIDM

i,j (t) =
ρIDM

i,j (t0)ei(εi−εj )(t−t0). For overlapping pulses, the dynamics of
ρ̂IDM(t) becomes more complex. Therefore, it is not clear to
which extent the transient absorption spectrum for a given
pump-probe delay can be related to ρIDM

i,j (t) when pump and
probe pulses do overlap.

In Fig. 3 the calculated transient absorption spectrum
σm(ω; τ ) is shown as a function of photon energy ω and
pump-probe delay τ . The three main transition lines [i.e.,
4p−1

3/2 → 3d−1
5/2 (79.95 eV), 4p−1

1/2 → 3d−1
3/2 (80.57 eV), and

4p−1
3/2 → 3d−1

3/2 (81.24 eV)] are clearly visible. To shorten the
notation we refer to these three transition lines as T1,T2, and
T3, respectively.

The cross section shown in Fig. 3 is in agreement with ex-
perimental observations [35]. The transition strengths increase
mainly around τ ≈ 0, when the krypton atom is being probed
within the main peak of the pump pulse. It is also during
this main peak of the pump pulse where the atom gets mainly
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FIG. 3. (Color online) Attosecond XUV transient absorption
spectrum σm(ω; τ ) [see Eq. (14)] of krypton as a function of energy
ω and pump-probe delay τ .
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FIG. 4. (Color online) Transient absorption spectra for the pump-
probe delay τ = 0 and τ = 70 (≈1.7 fs) are shown in panels (a) and
(b), respectively. The atomic cross section σa (solid red line), the
measured cross section σm (green dashed line), and σdipole (blue dotted
line) are shown for each τ .

ionized. Simultaneously during the hole creation, the transition
lines in the transient absorption spectrum change dramatically
their shapes, resulting in negative cross sections for energies
just below the field-free transition energies. Negative cross
sections can be only seen here for the T1 transition, because a
detector resolution of ≈300 meV let these features disappear
for the transitions T2 and T3 (cf. Fig. 4).

Similar to τ ≈ 0, line deformations and negative cross
sections do also occur at ω ≈ 80 eV for τ ≈ ±1 fs, where
the probe pulse coincide with the side peaks of the pump pulse
(cf. Fig. 2). The side peaks of the pump pulse are strong enough
to lead to tunnel ionization as well (cf. Fig. 5). In particular, the
ionization and the deformation caused by the first side peak of
the pump pulse (τ ≈ −1 fs) can be nicely seen in Fig. 3 for
the transition line T1. As will become clear in the discussion in
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FIG. 5. (Color online) Instantaneous hole population ρIDM
eff (τ )

(solid red line) together with reconstructed populations ρ
dipole
eff (τ ) (blue

dotted line) and ρfit
eff (green dashed line). The experimental population

(grey dashed line) is taken from Ref. [35]. The reconstructed and
experimental populations are scaled such that all have the same value
at t = 2.4 fs. The NIR pulse intensity is highlighted (gray area) in the
background.

Sec. III D, the mechanism behind the deformations in all three
cases (τ ≈ 0, ± 1 fs) is the same.

For τ > 2 fs, the dynamics of the hole populations is barely
affected by the pump pulse and behaves as if they were field-
free. At these time delays, the intensity of the pump pulse is
also strongly reduced (by more than a factor 10) compared to
the peak intensity at τ = 0, thus supporting the observation
of field-free behavior for larger pump-probe delays. Field-free
behavior means, for the main transition line T1, that it becomes
stationary and does not change anymore in shape and strength.
The other two transition lines show interference effects from
the coherent superposition of 4p−1

3/2 and 4p−1
1/2 [39,40].

Large negative time delays (τ < −2 fs) are not of interest
and, therefore, they are not shown in Fig. 3 for two reasons:
First, the ionic cross section [see Eqs. (12) and (14)] is zero for
large negative time delays because only neutral krypton atoms
exist prior to the NIR pulse. Second, no electronic dynamics
can be probed before the NIR pulse, since the neutral krypton
atoms are in the electronic ground state.

In Fig. 4 the transient absorption spectra σa(ω; τ ), σm(ω; τ ),
and σdipole(ω; τ ) are shown for τ = 0 and τ = 70(≈1.7 fs). The
transition lines in σm(ω; τ ) are broadened with respect to the
atomic cross section σa(ω; τ ) due to the propagation effect and
the finite detector resolution (≈300 meV), which is wider than
the natural transition widths (�i = 88 meV). The cross section
σdipole(ω; τ ) is obtained by fitting Eq. (18) to σa(ω; τ ) obtained
from the TDCIS calculations. The energies ωTi

and the natural
widths �Ti

of all transition lines Ti are kept fixed (see Sec. III A)
and only the magnitudes zTi

(τ ) and the phases φTi
(τ ) are fit

to σa(ω; τ ). The features of σa(ω; τ ) are well captured by
σdipole(ω; τ ) for all τ . At τ = 70, the two strongest transition
lines are Lorentzian shaped as expected for nonoverlapping
pump and probe pulses. The second (T2) and especially the
third (T3) transition lines do not have a Lorentzian shape due
to the coherent superposition of 4p−1

3/2 and 4p−1
1/2.

The success of σdipole(ω; τ ) in capturing all features of
σa(ω; τ ) shows that the influence of all terms in Eq. (3), which
go beyond a simple two-level model (see Sec. II F), can be
understood by phase shifts φTi

(τ ) and changes in the oscillating
dipole strengths zTi

(τ ).
However, the oscillating dipole model cannot explain what

is the physical origin of φTi
(τ ) or whether or not zTi

(τ ) can
be related to ρIDM(τ ). The answers to these questions are
discussed in the following.

C. Population dynamics

First, we turn our focus to the population dynamics of
the ionic states. In particular, we investigate the hole-creation
dynamics in the 4p3/2 orbitals during the pump pulse. In order
to do so, we need to focus only on the main transition T1. For
nonoverlapping pulses, the transition strength is proportional
to the instantaneous population

ρIDM
eff (τ ) := ρIDM

4p
1/2
3/2

(τ ) + 2
3ρIDM

4p
3/2
3/2

(τ ),

where ρIDM
i (τ ) are the hole populations of the ionic states

i = [4p
1/2
3/2]−1 and i = [4p

3/2
3/2]−1 (for details on the notation

see Sec. III A), respectively. In Fig. 5, we compare ρIDM
eff (τ )

(solid red line) with the transition strength ρ
dipole
eff := zT1 (τ )
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(blue dotted line), with the reconstructed population ρfit
eff (green

dashed line) obtained by applying the same fitting procedure
as in Ref. [35] to σm(ω; τ ), and with the experimental data of
Ref. [35].

In all three theoretical curves, oscillatory behavior can be
seen during buildup of the hole populations. The features of
ρIDM

eff (τ ) are well captured by ρ
dipole
eff (τ ) and by ρfit

eff(τ ). It shows
that ρIDM

eff (τ ) can be quite well reconstructed from the transient
absorption spectrum even though pump and probe pulses do
strongly overlap. Note, however, that at the major peak (τ ≈ 0)
a delay of about ≈200 as occurs in ρfit

eff(τ ). The deviations from
ρIDM

eff (τ ) are a measure of the influence of the excited electron
on the ionic states, since the adiabatic dressing of the ionic
states does not affect the transition strength. As described in
Sec. II E, if the evolution of the excited electron decouples
directly after the probe step from the evolution of the ion,
ρ

dipole
eff (τ ) coincides with ρIDM

eff (τ ).
In the experiment, this oscillatory behavior was not seen and

the transition strengths increased monotonically with τ . The
reason for this discrepancy might lie in the strong restriction
of the CIS space for the ionic degree of freedom. Within the
CIS space generated from the neutral ground state of the atom,
the ion is described exclusively by one-hole configurations.

D. Line deformations and phase shifts

As we have seen in Sec. III B the oscillating dipole model
is able to describe all features of the transient absorption
spectra by only adjusting the strengths zT (τ ) and the phases
φT (τ ) of the three transitions. The strengths zT (τ ) are in close
connection to the instantaneous populations of the ionic states
even for overlapping pulses [cf. Sec. III C]. The correct values
of φT (τ ) are important to capture the shapes of the transition
lines, which can change significantly during the pump pulse
[cf. Fig. 4].

In Fig. 6, φT1 (τ ) and φT3 (τ ) are shown. The phase φT (τ )
is chosen such that the strengths zT are always positive. The
region τ < −1.5 fs is not shown, since the strengths of the
transitions are of the same order as the numerical background
noise, which leads to large uncertainties in φT . The last peak
of the pump field at τ = 1 fs has only a small effect on φT
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FIG. 6. (Color online) Phase shift φT1 (τ ) of strongest transition
line and phase shift φT3 (τ ) of weakest transition line.

whereas the first peak at τ = −1 fs has a strong influence on
the phases. This is an interesting observation, since both peaks
have the same intensity.

As mentioned earlier, the coherent superposition of the
ionic states 4p−1

1/2 and 4p−1
3/2 results in a phase shift (ε4p3/2 −

ε4p1/2 )τ , which is particularly dominant in transition T3 [40]
and has been observed in previous experiments [39]. This
coherence-induced phase shift is also visible in φT3 (τ ) for τ >

1 fs (see Fig. 6). The slope of φT3 (τ ) is approx. 0.023 a.u., which
is in good agreement with ε4p3/2 − ε4p1/2 = 0.024. The main
transition line T1 is not affected by this coherent superposition
and, therefore, goes over into a Lorentzian shape (i.e., φT1 = 0)
for large τ (cf. Fig. 6).

We have seen in Fig. 6 that the phase shift φT can
be quite large. However, what has not been answered yet
is the origin of φT . As discussed in Sec. II F, there are
three main contributions to φT (τ ) [cf. Eq. (22)]: (1) φion

T (τ )
induced by the NIR-driven dressing of the ionic system
[the (ϕj |ẑ|ϕi) are the corresponding matrix elements]; (2)
φresidual

T (τ ) induced by the residual Coulomb interaction; and
(3) φ

ground
T (τ ) induced by the NIR-driven mixing of the excited

N -electron system with the neutral ground state [the (�a
i |ẑ|�0)

are the corresponding matrix elements]. Particularly, in order
to account for φresidual

T (τ ) and φ
ground
T (τ ), it is important to

have a multielectron picture which can describe the degrees of
freedom of the ionized electron and of the ion.

The strong line deformations, if only the positive part of the
cross section is considered, appear as if the transition energies
have moved. This energy shift we call apparent energy shift. In
Fig. 7, we make a direct comparison between calculated (red
and green lines) and experimentally obtained (blue dashed
line) [35] energy shifts of the strongest transition line, T1.
In the calculations yielding the red line (with crosses), no
approximation is made in the TDCIS calculations. For the
green line (with asterisks), all couplings to the 4s orbital are
turned off. The procedure used to extract the apparent energy
shift is described in Ref. [35].
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FIG. 7. (Color online) Apparent energy shifts of strongest transi-
tion line T1 for calculated cross sections with (red line with crosses)
and without (green line with asterisks) the 4s orbital active, and for
the experimentally obtained cross sections (blue dotted line). The
experimental values are taken from Ref. [35].
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The magnitude of the apparent energy shifts are correctly
reproduced by the calculations. Ignoring the 4s orbitals makes
no significant difference. Particularly in the theoretical results,
the second pump peak is clearly visible. For τ > 1.4 fs, the
energy shifts go as expected to zero, indicating that influence
of the pulse decreases and the krypton ion can be treated as
a field-free ion. Negative pump-probe delays are not shown
because the transition strengths are too weak to obtain reliable
results.

In the following, we discuss each mechanism which can
lead to the strong line deformations seen in Fig. 3. We discuss
each mechanism in terms of φT (τ ), since the oscillating dipole
model showed that these deformations can be fully understood
by a phase shift.

1. Field dressing of ionic system and polarizability of Kr+

In the presence of a strong external field, the energies
of the ionic state become modified [i.e., εi → εi(E)]. If the
photon energy is much smaller than the ionization potential,
the influence of the field on the ionic state can be described
adiabatically. This is the case for Kr+, where the ionization
potential is 24 eV [59] and the photon energy of the pump
pulse is 1.4 eV and, therefore, far off-resonance with any
ionic transition. Hence, the energy corrections �εi(E) =
εi(E) − εi(0) of the dressed ionic states i are well captured
by the quadratic Stark effect

�εi[Epump(t)] = α(i)

2
E2

pump(t), (23)

where α(i) is the polarizability of the ionic state i, and the
pump electric field is linearly polarized. Note that the energy
of the ionic state i is −εi . After the pulse is over, �εi(0) = 0
and the ion is back in its field-free state with the ionic energies
εi(0). If an oscillating dipole (coherent superposition of two
states i and j ) is present while the energy of the ionic states get
shifted, the dipole oscillates after the pulse with the field-free
transition energy ωi→j (0) = εi(0) − εj (0) but phase shifted
by [35]

φion
i→j (t) =

∫ ∞

t

dt ′�ωi→j [Epump(t ′)], (24a)

�ωi→j (E) = �εi(E) − �εj (E) = α(i) − α(j )

2
E2, (24b)

where �ωi→j [Epump(t)] is the instantaneous shift in the
transition energy between the states i and j . The phase
shift φion

i→j (t) is exactly the ionic phase shift φion
T (τ ) with

T = i → j , which originates from the field-dressing of the
ionic system.

In order to estimate φion
T (t) we use the quantum chemistry

code DALTON [60] to calculate exact polarizabilities of the ionic
states. Furthermore, we can clarify to which extent our TDCIS
calculation can correctly describe the polarizability of the ion
and subsequently φion

i→j (t). The polarizabilities were calculated
with a complete active space self-consistent field (CASSCF)
wave function and with a CIS wave function. Here, CIS means
that Kr+ is described in the space of one-hole configurations,
which is consistent without TDCIS configuration space. In
CASSCF calculations, spatial deformations of the ionic states
are included that would require CISD and higher-order config-

TABLE I. Static dipole polarizabilities αx,x = αy,y and αz,z of
several states of Kr+ are shown. Polarizabilities obtained by the
CIS and CASSCF methods are compared. The CIS and CASSCF
calculations are done with DALTON. All values are given in atomic
units and with a precision up to the second digit.

CIS CASSCF

αx,x αz,z αx,x αz,z

[4p
3/2
3/2]−1 1.57 0.01 10.62 10.77

[4p
1/2
3/2]−1 0.53 2.09 10.72 10.57

[4p
1/2
1/2]−1 1.05 1.05 10.67 10.67

[3d
5/2
5/2 ]−1 −0.01 0.00 9.57 9.71

[3d
3/2
5/2 ]−1 0.00 0.00 9.63 9.60

[3d
1/2
5/2 ]−1 0.00 −0.01 9.65 9.54

[3d
3/2
3/2 ]−1 0.00 0.00 9.58 9.68

[3d
1/2
3/2 ]−1 0.00 −0.01 9.65 9.55

uration excitations with respect to the ground configuration of
the neutral atom. These deformations are not included in CIS.

In Table I, we summarize the results of the static dipole
polarizabilities for several states of Kr+ with holes in the
4p or the 3d orbital manifolds. For more details about
the polarizability calculations see Appendix. The CASSCF
calculations are in good agreement (±2% accuracy) with the
static polarizabilities in Ref. [61]. Polarizabilities obtained
with the CASSCF method are in very good agreement (<2%)
with experimental results [62,63] for neutral krypton atoms.
For ionic krypton the correlation effects are reduced in
comparison to neutral krypton, thus making the CASSCF
calculations even more accurate. Hence, we may assume that
the CASSCF results for Kr+ are practically exact.

The polarizabilities obtained with CASSCF have values
around 10.7 for 4p−1

j ionic states and values around 9.6 for

3d−1
j ionic states. In both cases, the anisotropy (αz,z − αx,x)

is small. This stands in contrast to the CIS results, where
a high anisotropy in the polarizabilities of 4p−1 is found.
Furthermore, the polarizabilities of the ionic states 3d−1 are
basically zero with the CIS basis set. The only contribution
to α(3d−1) comes from the weak coupling between the 3d

and 4p orbitals. Within CIS, the polarizabilities for 4p−1 are
determined by the coupling to the 4s−1 state. Ionic states with
two or more holes in the initially occupied orbitals do not exist
in CIS and, therefore, cannot contribute to the polarizabilities.
This restriction in the CIS space limits the ability of the ionic
states to respond to the external field and leads to much smaller
polarizabilities (as seen in Table I).

The quantity that determines φion
T (t) is the difference in

the polarizabilities, not the polarizabilities themselves [see
Eq. (24)]. We are only interested in the αzz component, since
we use light linearly polarized along the z axis. For the
strongest transition line 4p−1

3/2 → 3d−1
5/2, we need to look at

the differences α([4pm
3/2]−1) − α([3dm

5/2]−1) for the ionic states
with m = 1/2 and m = 3/2.

In Table II theses differences are shown. The strong m

dependence of the CIS results is due to the high anisotropy of
the polarizabilities. The accurate CASSCF results show almost

063411-9



STEFAN PABST et al. PHYSICAL REVIEW A 86, 063411 (2012)

TABLE II. Differences between static dipole polarizabilities αz,z

of states involved in the main transition line 4p−1
3/2 → 3d−1

5/2. The
values are given in atomic units.

α([4pm
3/2]−1) − α([3dm

5/2]−1) CIS CASSCF

m = 1
2 2.10 1.03

m = 3
2 0.01 1.17

no dependence on m. Since the [4p
m=3/2
3/2 ]−1 population is, in

our calculation, much smaller than the [4p
1/2
3/2]−1 population,

we focus only on the m = 1
2 results. Contrary to the results

of the polarizabilities, where the CIS approach underestimates
the values, the difference α([4p

1/2
3/2]−1) − α([3d

1/2
5/2 ]−1) is over-

estimated by CIS. The maximum energy shifts in the transition
for the given pump parameters [cf. Fig. 2] are 183 meV
(CIS) and 102 meV (CASSCF), respectively. Assuming the
maximum energy shifts persist over 2 fs, the resulting phase
shifts are 0.56 rad (CIS) and 0.31 rad (CASSCF), respectively.
This approximation can be nicely verified by a three-level
Bloch model describing only the (N − 1)-electron ionic states
3d−1,4s−1, and 4p−1.

The phase shift φion
T1

is, however, much smaller than φT1

[see Fig. 8]. Hence, φion
T1

(t) cannot be the main contribution to
φT1 (t). Furthermore, when the coupling to the 4s−1 ionic state
is switched off and α(i) ≈ 0 within TDCIS, the phase shift
φT1 (t) is almost unchanged. Note that in this case, the ionic
states cannot be dressed and φion

T1
= 0.

2. Residual Coulomb interaction

Here, we discuss the influence of the residual Coulomb
interaction—specifically φresidual

T (τ ). First, we simplify the
krypton atom to a two-level system with the states [4p

1/2
3/2]−1

and [3d
1/2
5/2 ]−1 such that no dressing of the ionic states can
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3-ionic-state system

FIG. 8. (Color online) The phase shifts φT1 (τ ) of the transition
line T1(4p−1

3/2 → 3d−1
5/2) are shown for TDCIS calculations with (solid

red line) and without (green dashed line) the ionic state 4s−1.
Additionally, the phase shift φion

T1
(τ ) (blue dotted line) is shown for a

Bloch model describing three ionic states (see text for details). Here,
φion

T1
(τ ) originates solely from the dressing of the ionic state [4p

1/2
3/2]−1

through the coupling to 4s−1.

0

π

2π

3π

-1 0 1 2

ph
as

e 
φ 

[r
ad

]
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FIG. 9. (Color online) Phase shifts φT1 (τ ). The TDCIS calcu-
lations were done on the one side (solid red line) with the full
electron-ion interaction and all 3d−1,4s−1,4p−1 ionic states active,
and on the other side (green dashed line) with a simplified two-level
TDCIS model without residual Coulomb interaction (Ĥ1 = 0).

occur (φion
T = 0). The total phase shift reads now φT (τ ) =

φresidual
T (τ ) + φ

ground
T (τ ). Second, we also ignore Ĥ1 such that

the ionized electron can have no influence on the remaining ion
via Ĥ1—this means we set φresidual

T = 0. In Fig. 9, we compare
φT1 (τ ) obtained from the full TDCIS model including Ĥ1 and
all ionic states of Kr+ (solid red line) and that obtained from the
simplified two-channel TDCIS model (green dashed line) just
described. Whether or not Ĥ1 is included makes no significant
difference in the behavior of φT1 (τ ). Hence, residual Coulomb
interaction between the ionized electron and the ion has almost
no effect [i.e., φresidual

T (τ ) ≈ 0].

3. Field-induced mixing with the neutral ground state

The discussions in Secs. III D1 and III D2 have shown
that φion

T � φT and φresidual
T � φT . Hence, we must conclude

that the main reason for the phase shift comes from the
field-driven mixing with neutral ground state [i.e., φT (τ ) ≈
φ

ground
T (τ ); cf. Eq. (22)]. Remember that the mixing to the

ground state is captured by the terms (�0|ẑ|�a
i ), (�a

i |ẑ|�0)
[cf. Eq. (3)]. These terms are also responsible for describing
tunnel ionization. To verify that the field-induced mixing of the
excited N -electron states �a

i with �0 is indeed the main reason
for the observed phase shift, we perform calculations where we
once switch off the field-driven mixing to �0 after the probe
step and once where we leave it on. The probe pulse is here
delta like [i.e., Eprobe(t) ∝ δ(t − τ )]. We again reduce krypton
to a two-level atom (excluding the 4s orbital) as described in
Sec. III D2. In this two-level system φion

T (τ ) = φresidual
T (τ ) = 0

such that the only phase shift that can occur is φ
ground
T (τ ).

In Fig. 10, the phase φT (τ ) is shown with and without the
mixing to the neutral ground state. If we set (�0|ẑ|�a

i ) = 0
(i.e., φ

ground
T = 0) after the probe step, the phase shift totally

disappears for all pump-probe delays. When including the
ground-state mixing, we obtain again the usual behavior of
φT (τ ). Hence, we conclude that the main source of φT (τ ),
which deforms the transition lines in the transient absorption
spectrum (cf. Fig. 3), is the field-induced dressing of the entire

063411-10



THEORY OF ATTOSECOND TRANSIENT-ABSORPTION . . . PHYSICAL REVIEW A 86, 063411 (2012)

0

π

2π

-0.5 0  0.5 1

ph
as

e 
φ 

[r
ad

]

pump-probe delay τ [fs]

0

π

2π

-0.5 0  0.5 1

ph
as

e 
φ 

[r
ad

]

pump-probe delay τ [fs]

ground state dressing

no ground state dressing

FIG. 10. (Color online) Phase shifts φT (τ ) for transition T =
[4p

1/2
3/2]−1 → [3d

1/2
5/2 ]−1. The TDCIS calculations were done once with

(solid red line) and once without (green dashed line) field-driving
mixing with the neutral ground state �0 after the probe pulse. In both
cases, no dressing of the ionic states can occur (see text for details).

N -electron system—particularly the mixing with the neutral
ground state.

IV. CONCLUSION

We have described our theoretical model, namely a
time-dependent configuration-interaction singles (TDCIS) ap-
proach, which has been implemented in the software package
XCID. We extended our method and included spin-orbit
splitting for the occupied orbitals. This extension leads to new
symmetry classes and, therefore, new matrix elements. With
the help of this multielectron approach, we are able to study
attosecond transient absorption experiments for overlapping
pump and probe pulses from first principles. The pump pulse
as well as the probe pulse are treated nonperturbatively.

Transient absorption spectroscopy with overlapping pulses
makes it possible to study the tunnel ionization dynamics
with subcycle resolution. We find that the hole populations
extracted from the transient absorption spectrum are in
close connection to the instantaneous hole populations even
though this relationship is, strictly speaking, only true for
nonoverlapping pump and probe pulses.

The strong deformations in the transient absorption lines,
which appear during the ionization process, can be fully
understood by phase shifts in the induced ionic dipole
oscillations. We find that the phase shift due to the dressing of
the ion by the pump pulse is not sufficient to account for the
observed line deformations. We also excluded the residual
Coulomb interaction between the ionized electron and the
remaining ion as a possible source.

The main contribution to the phase shift comes from
field-induced mixing of the excited N -electron states with
the neutral ground state, which is highly nonperturbative.
This dressing mechanism creates a coupling between the
ionized electron and the ion, which makes the ionic subsystem
dependent on the state of the ionized electron and vice versa.
This dressing mechanism is quite peculiar, since the ionized

electron was believed to be a spectator, since the probe pulse
does only affect the ionic states.

The nonperturbative mixing to the neutral ground state
affects also the phase relations between ionic states. These
phase relations are particularly important for the hole dynamics
in an atom or molecule [64]. By varying the pump-probe delay,
the phases between ionic states can be influenced, and transient
absorption spectroscopy provides a way to “read out” these
phases.
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APPENDIX: DIPOLE POLARIZABILITY

The dipole polarizability of a system that is in state S can
be obtained within perturbation theory and reads [65]

αm,n(S) = 2
∑

I

〈S|xm|I 〉〈I |xn|S〉
EI − ES

, (A1)

where ES and EI are the energies of the states S and I ,
respectively, and

∑
I stands for the sum over all intermediate

states. If S is an eigenstate with magnetic quantum number
MJ , the polarizability entries αx,x(S) and αy,y(S) are equal
[αx,x(S) = αy,y(S)] [66]. The formulas for αx,x(S) and αz,z(S)
read [66]

αx,x(S) = AJ

[
J (J − 1) + M2

J

] + BJ

[
J (J + 1) − M2

J

]
+ CJ

[
(J + 1)(J + 2) + M2

J

]
, (A2a)

αz,z(S) = 2AJ

[
J 2 − M2

J

]+ 2BJ M2
J + 2CJ

[
(J + 1)2 −M2

J

]
,

(A2b)

where the constants AJ ,BJ ,and CJ stand for specific sums
over intermediate states I with JI = JS − 1, JI = JS,, and
JI = JS + 1, respectively.

For singly ionized atomic krypton, we are interested in
the polarizabilities for ionic states with a hole in the 4p

or the 3d orbital manifolds. Using DALTON, we calculated
polarizabilities that do not include spin-orbit coupling. In order
to obtain polarizabilities for the spin-orbit-coupled ionic states
[4p

mj

j ]−1 and [3d
mj

j ]−1 we perform first-order perturbation
theory for degenerate states. The diagonal polarizability entries
of the spin-orbit-coupled ionic states [NL

MJ

J ]−1 expressed
with the polarizabilities of the nonrelativistic states [NLML

]−1

TABLE III. Static dipole polarizabilities αx,x and αz,z are shown
for two Kr+ states. All other polarizabilities can be deduced from
these values. Polarizabilities obtained by the CIS and CASSCF
methods are compared. All values are given in atomic units with
a precision up to the second digit.

CIS CASSCF

αx,x αz,z αx,x αz,z

[4p0]−1 0.01 3.13 10.77 10.46

[3d0]−1 0.00 0.00 9.66 9.52
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read

αn,n

([
NL

MJ

J

]−1)=
∑
σ,ML

[
C

J,MJ

L,ML;1/2,σ

]2
αn,n([NLML

]−1). (A3)

With the help of Eqs. (A2) and (A3) only two polarizability
entries αn,n(S),n ∈ {x,y,z} from states with the same N

and L quantum numbers are needed and all other diagonal

polarizability entries of any state S ′ can be obtained as
long as S ′ has the same N and L quantum numbers. In
Table III the calculated polarizabilities are shown that are
used to obtain all polarizabilities in Table I. For the CASSCF
and CIS calculations we obtained converged results with
the augmented correlation-consistent quintuple-zeta basis set
including polarization functions (aug-cc-pV5Z) [67].
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U. Saalmann, J.-M. Rost, L. Gallmann, and U. Keller,
arXiv:1206.6208.

[56] S. Pabst, L. Greenman, and R. Santra, XCID program package for
multichannel ionization dynamics, DESY, Hamburg, Germany
(2011), Rev. 534, with contributions from P. J. Ho.

[57] National Institute of Standards and Technology, http://www.
nist.gov/pml/data/atomspec.cfm

[58] A. Thompson, X-Ray Data Booklet, http://xdb.lbl.gov
[59] J. Sugar and A. Musgrove, J. Phys. Chem. Ref. Data 20, 859

(1991).
[60] DALTON—A Molecular Electronic Structure Program, Release

Dalton2011 (2011); http://daltonprogram.org
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