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Variable-phase S-matrix calculations for asymmetric potentials and dielectrics
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Motivated by recently developed techniques making it possible to compute Casimir energies for any object
whose scattering S matrix (or, equivalently, T matrix) is available, we develop a variable phase method to
compute the S matrix for localized but asymmetric sources. Starting from the case of scalar potential scattering,
we develop a combined inward-outward integration algorithm that is numerically efficient and extends robustly
to imaginary wave number. We then extend these results to electromagnetic scattering from a position-dependent
dielectric. This case requires additional modifications to disentangle the transverse and longitudinal modes.
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I. INTRODUCTION

Scattering theory [1,2] is an invaluable tool for investigating
a wide range of physical systems. Far away from a system that
is localized in space, one can express solutions to the wave
equation as free incoming and outgoing partial waves. In this
partial-wave basis, the scattering S matrix then gives the am-
plitude and phase of outgoing waves reflected from the system
in terms of a given amplitude and phase of incoming waves.

One of the many applications of scattering theory arises
in calculating Casimir forces. While the connection between
Casimir forces and scattering amplitudes has long been under-
stood in planar systems [3,4], only recently have techniques
been developed in which the Casimir force is expressed in
terms of the S matrix (or, equivalently, T matrix) for general
geometries [5–7]. In this approach, the S matrix encodes
the effects of quantum fluctuations on a single object, while
universal translation matrices, obtained from the free Green’s
function, encode the objects’ relative positions and orienta-
tions. This decomposition provides a concrete implementation
of the “TGTG” representation of the Casimir energy in terms of
scattering transition operators and free Green’s functions [8].
The S matrix is also a key ingredient in Casimir calculations of
quantum corrections to soliton energies and charges [9]. These
calculations take advantage of the relationship between the S

matrix and the change in the continuum density of states,

�ρ(k) = tr
1

π

d

dk

(
1

2i
ln Ŝk

)
, (1)

where the eigenvalues of the matrix in parentheses are the
scattering phase shifts.

A standard approach to finding the exact electromagnetic
S matrix for dielectric objects involves integrating the vector
solutions of the Helmholtz equation in dielectric media over the
object’s surface [10,11]. A variety of subsequent techniques
have obtained a wide range of analytic and numerical results
[12]. In many cases of practical interest, one can obtain
approximate results valid in appropriate limits, such as large
or small values of the wavelength or partial-wave number.
Because the Casimir calculation involves summing over all
fluctuating modes, however, suitable approximations are often
not available.
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In Casimir problems and other applications of scatter-
ing theory, one frequently considers objects with sufficient
symmetry that the problem separates and the S matrix is
diagonal. For cases where the resulting ordinary differential
equation cannot be solved analytically, the variable phase
method [9,13] provides an efficient numerical algorithm. In
particular, it allows one to solve for the S matrix as an
initial value ordinary differential equation (ODE), rather than
a boundary-value problem. Here we extend the variable phase
method to compute the S matrix in situations without any
symmetry assumptions. We begin with the case of a scalar
potential, as arises in quantum mechanical potential scattering,
which we then generalize to the case of electromagnetism with
a position-dependent dielectric. Our approach can provide
a middle ground between analytic results and fully general
numerical calculations [14]. For dielectrics, our work extends
the results found in Ref. [15], which treats the case of a
spherically symmetric but r-dependent dielectric. As we will
see, the asymmetric case introduces additional complications,
because one can no longer rely on the channel decomposition
to separate transverse and longitudinal modes. We also
introduce a combined inward-outward integration algorithm,
which makes use of the Wronskian of the regular and outgoing
solutions, to ensure the stability of the numerical calculation
for imaginary wave number k = iκ .

II. HELMHOLTZ SCATTERING

We begin by considering scattering of waves obeying
the scalar Helmholtz equation, as would arise in a typical
quantum mechanics problem. This calculation generalizes
straightforwardly to the vector Helmholtz equation, as we
show in this section. Additional formalism is needed for the
case of Maxwell scattering, however, so we postpone that case
to the next section.

A. Variable phase approach: outgoing wave

We start from the Helmholtz equation in three dimensions:

−∇2ψk(r) + V (r)ψk(r) = k2ψk(r), (2)

where the potential V (r) is localized in a region around
the origin. This equation describes, for example, ordinary
quantum-mechanical scattering of the scalar wave function
ψk(r) from a localized potential. Since each k value is treated
separately, V (r) can also be k dependent, although we do
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not indicate this possibility explicitly. We expand both the
solution ψk(r) and the potential V (r) using a Fourier series in
the angular variables,

ψk(r) =
∞∑

�=0

�∑
m=−�

1

r
ψ�m,k(r)Ym

� (θ,φ) and

V (r) =
∞∑

�′=0

�′∑
m′=−�′

V�′m′ (r)Ym′
�′ (θ,φ), (3)

to obtain∑
�m

Ym
� (θ,φ)

(
− ∂2

∂r2
+ �(� + 1)

r2
− k2

)
ψ�m,k(r)

+
∑
�m

ψ�m,k(r)Ym
� (θ,φ)

∑
�′m′

V�′m′(r)Ym′
�′ (θ,φ) = 0. (4)

Next, we multiply both sides by Ym′′
�′′ (θ,φ)∗ =

(−1)m
′′
Y−m′′

�′′ (θ,φ) and integrate over solid angle. The
last term becomes a convolution, which mixes angular
momentum channels. We obtain(

− ∂2

∂r2
+ �′′(�′′ + 1)

r2
− k2

)
ψ�′′m′′,k(r)

+
∑
�m

(∑
�′m′

V�′m′ (r)Zmm′m′′
��′�′′

)
ψ�m,k(r) = 0, (5)

where the integral identity∫ π

0
sin θdθ

∫ 2π

0
dφYm

l (θ,φ)Ym′
l′ (θ,φ)Ym′′

l′′ (θ,φ)

=
√

(2� + 1)(2�′ + 1)(2�′′ + 1)

4π

(
� �′ �′′
0 0 0

)
×

(
� �′ �′′
m m′ m′′

)
(6)

allows us to express Zmm′m′′
��′�′′ in terms of 3j symbols as

Zmm′m′′
��′�′′ = (−1)m

′′
√

(2� + 1)(2�′ + 1)(2�′′ + 1)

4π

×
(

� �′ �′′
0 0 0

)(
� �′ �′′
m m′ −m′′

)
. (7)

In the absence of a potential, the regular and outgoing solutions
for ψ�m,k(r) are given in terms of spherical Bessel and spherical
Hankel functions by krj�(kr) and krh

(1)
� (kr), respectively.

Since the scattering channels will mix for a nonspherical
potential, we will want to consider all incoming waves
together. To do so, we rewrite Eq. (5) as a matrix differential
equation,(

− ∂2

∂r2
+ L̂2

r2
− k2

)
ψ̂k(r) + V̂ (r)ψ̂k(r) = 0, (8)

where hat indicates a matrix indexed by the angular momentum
indices � and m (so that both � and m are combined into a
single matrix index), L̂2 is a diagonal matrix with �(� + 1)
on the diagonal, and V̂ (r) is the matrix in parentheses in the
second term of Eq. (5).

We begin by considering the solution to this equation with
outgoing wave boundary conditions, which we parametrize as

F̂k(r) = Ĝk(r)Ŵ (kr), (9)

where Ŵ (x) is a diagonal matrix with the free outgoing wave
solutions xh

(1)
� (x) on the diagonal. The Helmholtz equation

for F̂k(r) then translates into an ordinary differential equation
for the matrix Ĝk(r),

−Ĝ′′
k (r) − 2Ĝ′

k(r)

(
∂

∂r
ln Ŵ (kr)

)
+ 1

r2
[L̂2, Ĝk(r)] + V̂ (r)Ĝk(r) = 0, (10)

where prime denotes derivative with respect to r and we have
used the fact that the free solution obeys

−Ŵ ′′(kr) + L̂2

r2
Ŵ (kr) = k2Ŵ (kr), (11)

and then multiplied from the right by Ŵ−1(kr). By the
outgoing wave boundary condition, we have Ĝk(∞) = 1̂ and
Ĝ′

k(∞) = 0̂, where 1̂ and 0̂ are the identity and zero matrices,
respectively. These results provide the necessary initial values
for integrating Eq. (10) inward from infinity to the origin.

To define the S matrix, we combine the solutions with k

and −k (or, equivalently, the outgoing wave solution and its
conjugate, the incoming wave solution) to form the physical
wave function

ψ̂k(r) = −Ĝ−k(r)Ŵ (−kr)M̂ + Ĝk(r)Ŵ (kr)Ŝk(k), (12)

where M̂ is a diagonal matrix with (−1)� on the diagonal. We
then find the S matrix by the regularity condition at the origin,
which yields

Ŝk = lim
r→0

Ŵ−1(kr)Ĝ−1
k (r)Ĝ−k(r)Ŵ (−kr)M̂. (13)

In many applications it is convenient to work with the T matrix,
which is given by T̂k = 1

2 (Ŝk − 1̂).
We can thus find the S matrix numerically, by integrating

Ĝk(r) in from r = ∞ to r = 0, and similarly for Ĝ−k(r). The
combination

Ŵ ′(x)Ŵ−1(x) = ∂

∂x
ln Ŵ (x)

is easy to calculate numerically, since it is just a diagonal
matrix with rational functions of x on the diagonal, which can
be obtained from a finite continued fraction expansion [16],
p. 241]. The inputs to the calculation are then the “multipole
moments” of the potential at each r , V�m(r). We could imagine
some simple nonspherical potentials for which these moments
might be particularly easy to find, or we could specify the
potential explicitly through its representation in this spherical
harmonic basis.

Note that, in the ordinary variable phase method, where the
channels separate (so here all matrices would be diagonal), it
is common to write Gk(r) = eiβk (r), which further simplifies
the calculation. This approach is problematic in the general
case, however, because then β̂k(r) doesn’t commute with its
derivatives.
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B. Variable phase approach: regular wave

In principle, one could carry out the calculation of the
previous subsection for k = iκ to obtain the S matrix on
the imaginary k axis, as is typically required in Casimir
calculations. In practice, however, this is not possible, because
in place of the oscillating spherical Bessel function h

(1)
� (kr),

we now have the exponentially decaying modified function
k�(κr), which then grows exponentially as we integrate in
from infinity. As a result, a direct application of the previous
results is hopelessly unstable numerically, and we will need
to introduce some additional formalism to obtain a useful
calculation.

To address this problem, we use an approach developed in
Ref. [17], in which we parametrize the regular solution in a
complementary way to what we did for the outgoing solution in
Eq. (9). Here it will be convenient to parametrize the transpose
of the regular solution as

�̂k(r)t = Ŵ (kr)−1Ĥk(r) (14)

(note the reversed order in this decomposition). We then have

−Ĥ ′′
k (r) + 2

∂

∂r

[(
∂

∂r
ln Ŵ (kr)

)
Ĥk(r)

]
− 1

r2
[L̂2, Ĥk(r)] + Ĥk(r)V̂ (r) = 0. (15)

By the regularity of �̂k(r)t at the origin, we have the
boundary condition Ĥk(0) = 0̂ and Ĥ ′

k(0) = 1̂, where again
prime denotes a derivative with respect to r . Starting from this
boundary condition, we can then integrate Eq. (15) outward
from the origin.

This integration also contains instabilities for k imaginary,
but what will be useful to us is that they show up in a
complementary region: The integration of Ĝk(r) blows up for
r → 0, while the integration of Ĥk(r) blows up for r → ∞.
We can make use of this complementarity by considering the
Wronskian of our two solutions [1], p. 465],

Wk|r = W[�̂k(r)t , F̂k(r)]

= �̂k(r)t
(

∂

∂r
F̂k(r)

)
−

(
∂

∂r
�̂k(r)t

)
F̂k(r)

= [Ŵ (kr)−1Ĥk(r)][Ĝk(r)Ŵ ′(kr) + Ĝ′
k(r)Ŵ (kr)]

−
{

∂

∂r
[Ŵ (kr)−1]Ĥk(r) + Ŵ (kr)−1Ĥ ′

k(r)

}
× [Ĝk(r)Ŵ (kr)]

= Ŵ (kr)−1

{
Ĥk(r)

[
Ĝk(r)

(
∂

∂r
ln Ŵ (kr)

)
+ Ĝ′

k(r)

]
−

[
Ĥ ′

k(r) −
(

∂

∂r
ln Ŵ (kr)

)
Ĥk(r)

]
Ĝk(r)

}
Ŵ (kr),

(16)

which is independent of r . By the boundary conditions on
Ĝk(r) and Ĥk(r), we also have

lim
r→0

W[�̂k(r)t , F̂k(r)] = lim
r→0

[−Ŵ (kr)−1Ĝk(r)Ŵ (kr)].

(17)

Thus, at any r ,

W[�̂k(r)t , F̂k(r)] = lim
r→0

[−Ŵ (kr)−1Ĝk(r)Ŵ (kr)]. (18)

But the right-hand side of this equation gives the quantity we
need to calculate the S matrix from Eq. (13). So our strategy
will be to pick an intermediate radius r0 and integrate both
Ĝk(r) in from r = ∞ to r = r0 and Ĥk(r) out from r = 0 to
r = r0. Then we can evaluate the Wronskian in Eq. (16) at
r = r0 and use it to obtain the right-hand side of Eq. (18),
which is what we need to find the S matrix. This procedure
will continue to be stable even when k is imaginary (with
either sign of its imaginary part—and we will need both signs
to compute the S matrix).

We thus obtain

Ŝk = W[�̂k(r)t , F̂k(r)]−1|r=r0Ŵ (kr)−1Ŵ (−kr)|r→0

×W[�̂−k(r)t , F̂−k(r)]|r=r0M̂. (19)

This expression is now suitable for numerical evaluation.

C. Vector Helmholtz equation

We next generalize this calculation to the vector Helmholtz
equation,

−∇2ψk(r) + V (r)ψk(r) = k2ψk(r), (20)

where our wave function is now a three-component vector
ψk(r). Our eventual goal is to study electromagnetic scattering,
which will require significant additional modifications of this
approach to disentangle the transverse and longitudinal modes.
In contrast, the generalization to the vector Helmholtz equation
is relatively straightforward, requiring only that we establish
corresponding definitions and identities appropriate to the
vector case, which we take from Ref. [18].

We begin by defining the three vector spherical harmonics
for each value of j = 0, 1, 2, 3, . . . and m = −j, . . . , j ,

Y �
jm =

+1∑
σ=−1

�∑
m′=−�

C
jm

�m′1σ Ym′
� (θ,φ)eσ , (21)

where � = j, j ± 1 for our three vector spherical harmonics,
C

jm

�m1σ is a Clebsch-Gordan coefficient, and the spherical basis
vectors are

e1 = − eiφ

√
2

(sin θ r̂ + cos θ θ̂ + i φ̂) = − 1√
2

(x̂ + i ŷ) ,

e0 = cos θ r̂ − sin θ θ̂ = ẑ, (22)

e−1 = e−iφ

√
2

(sin θ r̂ + cos θ θ̂ − i φ̂) = 1√
2

(x̂ − i ŷ).

For j = 0, we have only the case � = 1. This representation
effectively couples the orbital angular momentum � to the s =
1 spin angular momentum associated with the vector index.
We can then decompose ψ(r) as

ψk(r) =
∞∑

j=0

j+1∑
�=|j−1|

j∑
m=−j

1

r
ψj�m,k(r)Y �

jm(θ,φ). (23)

The free outgoing wave solutions to the vector Helmholtz
equation are then krh

(1)
� (kr)Y �

jm(θ,φ). The vector spherical
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harmonics are orthonormal in the usual way,∫ π

0
sin θdθ

∫ 2π

0
dφ Y �1

j1m1
(θ,φ)∗ · Y �2

j2m2
(θ,φ)

= δj1j2δ�1�2δm1m2 , (24)

and under complex conjugation they transform as
Y �

jm(θ,φ)∗ = (−1)j+�+m+1Y �
j−m(θ,φ).

We can now use the basis of free spherical vector waves
to set up the variable phase calculation in the same way as in
the scalar case. In place of Eq. (6), we will need the integral
over solid angle of the dot product of two vector spherical
harmonics multiplied by a third ordinary spherical harmonic
(since the potential is still expanded in terms of ordinary
spherical harmonics), which is given in terms of the 6j symbol
and Clebsch-Gordan coefficients as∫ π

0
sin θdθ

∫ 2π

0
dφY �1

j1m1
(θ,φ) · Y �2

j2m2
(θ,φ)Ym

� (θ,φ)

= (−1)j2+�1+�(−1)m
√

(2j1 + 1)(2j2 + 1)(2�1 + 1)(2�2 + 1)

4π (2�+ 1)

×
{
�1 �2 �

j2 j1 1

}
C�0

�10�20C
�−m
j1m1j2m2

. (25)

In place of Eq. (7), we then have the coupling between channels

Zmm′m′′
j��′j ′′�′′ = (−1)�

′′+�′+�+m′′+m′+1

×
√

(2j + 1)(2j ′′ + 1)(2� + 1)(2�′′ + 1)

4π (2�′ + 1)

×
{

� �′′ �′
j ′′ j 1

}
C�′0

�0�′′0C
�′−m′
jmj ′′−m′′ . (26)

With this modification, the calculation of the S matrix for the
vector Helmholtz equation proceeds analogously to the scalar
case.

III. GENERALIZATION TO MAXWELL’S EQUATIONS

To generalize to the case of electromagnetic scattering, we
consider a linear, spatially dependent dielectric with no free
charge. The permittivity ε(r) goes to one at large distances.
We will treat each frequency ω = c

√
k2 separately, so our

formalism can easily incorporate frequency dependence in
ε(r), although as in the scalar case we do not indicate this
possibility explicitly. The permittivity can also include an
imaginary part, representing dissipation. We are interested in
solutions to the Maxwell wave equation

∇ × ∇ × Ek(r) = k2ε(r)Ek(r), (27)

for k �= 0. Such solutions automatically obey Gauss’s law ∇ ·
Dk(r) = 0, where Dk(r) = ε(r)Ek(r). However, the solutions
to this equation do not span the full space of vector functions,
because in addition to these transverse solutions there also exist
longitudinal solutions, which can be written as the gradient of
a scalar function and therefore solve Eq. (27) with k = 0. This
situation is problematic for the variable phase approach (in
which we consider each k separately), because it implies that
the matrix coefficient of the second derivative operator for
fixed nonzero k will not be invertible, leading to an implicit

differential-algebraic equation. We thus consider a modified
equation that allows us to find the S matrix for the transverse
modes while avoiding this problem.

A. Transverse and longitudinal modes

To motivate our approach, we review a common method
for solving the Maxwell wave equation in free space (or
within a dielectric with constant permittivity), which is to
replace the curl-curl operator ∇ × ∇× by minus the Helmholtz
operator −∇2. These operators commute, so they share the
same eigenstates, and when acting on the transverse states,
they share the same eigenvalues. [Recall that −∇2 Ek(r) =
∇ × ∇ × Ek(r) − ∇[∇ · Ek(r)], where for transverse modes
in empty space ∇ · Ek(r) = 0 by Gauss’s Law.] However,
when acting on the longitudinal modes, the eigenvalue of
−∇2 is the usual value of k2 associated with a mode with
wave number k, rather than zero. Once all the solutions to
the Helmholtz equation have been identified, it then is usually
straightforward to discard the longitudinal modes and keep
only the transverse modes.

We now generalize this procedure for the case of a position-
dependent dielectric. We first rewrite Eq. (27) in operator
form as (

1

ε(r)
∇ × ∇ × · · ·

)
Ek(r) = k2 Ek(r), (28)

where · · · represents the argument of the operator. We then
define the generalized Helmholtz operator as(

1

ε(r)
∇ × ∇ × · · · − ∇{∇ · [ε(r) · · · ·]}

)
Ek(r) = k2 Ek(r),

(29)

which gives the same situation as in the free case: The operators
in Eqs. (28) and (29) commute and share the same eigenstates.
For the transverse modes, they share the same eigenvalues as
well, but for the longitudinal modes, the eigenvalue of Eq. (28)
is k2 = 0, while the eigenvalue of Eq. (29) is the usual nonzero
value of k2 associated with a mode of wave number k. We note
that this approach would continue to work in the presence of a
nontrivial permeability μ(r), with the only change being that
∇ × ∇× is replaced by ∇ × 1

μ(r)∇×.
We will thus solve for the S matrix associated with the wave

equation

∇ × ∇ × Ek(r) − ε(r)∇{∇ · [ε(r) · Ek(r)]} = k2ε(r)Ek(r).

(30)

Again, we decompose both the solution and the source in the
appropriate spherical harmonic basis,

Ek(r) =
∞∑

j=0

j+1∑
�=|j−1|

j∑
m=−j

1

r
Ej�m,k(r)Y �

jm(θ,φ),

(31)

ε(r) =
∞∑

�′=0

�′∑
m′=−�′

ε�′m′ (r)Ym′
�′ (θ,φ),

where ε�m(r) goes to
√

4πδ�0δm0 at large r . As above, we
denote the matrix outgoing wave solution, written in the vector
spherical harmonic basis, by F̂k(r). We then substitute this
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expression into Eq. (30) and carry out the vector spherical
harmonic algebra symbolically in MATHEMATICA, using the
identities in Appendix A to implement the differential oper-
ators and Eq. (25) to carry out the convolution involved in
multiplying by ε(r).

The result is an equation of the form

−d̂2(k,r)F̂ ′′
k (r) + d̂1(k,r)F̂ ′

k(r) + d̂0(k,r)F̂k(r) = 0, (32)

where the matrices d̂0(k,r), d̂1(k,r), and d̂2(k,r) can depend
on the dielectric profile and its derivatives, and prime de-
notes a derivative with respect to r . The replacement of
Eq. (28) by Eq. (29) ensures that d2(k,r) is an invertible
matrix, so we let D̂1(k,r) = [d̂2(k,r)]−1d̂1(k,r) and D̂0(k,r) =
[d̂2(k,r)]−1d̂0(k,r) to obtain

−F̂ ′′
k (r) + D̂1(k,r)F̂ ′

k(r) + D̂0(k,r)F̂k(r) = 0. (33)

Furthermore, since the generalized Helmholtz operator in
Eq. (29) approaches the ordinary Helmholtz operator as ε →
1, for large r this equation approaches the ordinary Helmholtz
equation, with D̂1(k,r) = 0 and D̂0(k,r) = L̂2

r2 − k2. Again
using MATHEMATICA to carry out the symbolic algebra, we
parametrize the outgoing solution by F̂k(r) = Ĝk(r)Ŵ (kr)
and, taking advantage of the simplifications arising from
Eq. (11), obtain an ordinary matrix differential equation for
Ĝk(r):

0 = −Ĝ′′
k (r) + [D̂1(k,r)Ĝk(r) − 2Ĝ′

k(r)]

[
∂

∂r
ln Ŵ (kr)

]
+ D̂1(k,r)Ĝ′

k(r) + [D̂0(k,r) + k2]Ĝk(r) − Ĝk(r)
L̂2

r2
,

(34)

with the boundary conditions Ĝk(∞) = 1̂ and Ĝ′
k(∞) = 0̂.

The solutions to Eq. (30) include both the transverse
solutions to the Maxwell equation that we are looking for and
the longitudinal modes that we wish to discard. Because the S

matrix is defined in terms of incoming and outgoing asymptotic
waves, it is straightforward to project out the transverse modes.
In the free case, the transverse solutions are given by [19]

Mjm,k(r,θ,φ) = zj (kr)Y �=j

jm (θ,φ), (35)

Njm,k(r,θ,φ) = −
√

j + 1

2j + 1
zj−1(kr)Y �=j−1

jm (θ,φ)

+
√

j

2j + 1
zj+1(kr)Y �=j+1

jm (θ,φ), (36)

for j = 1, 2, 3, . . ., where z�(kr) is the appropriate spherical
Bessel or Hankel function of order �. Since we have free
electromagnetic waves far away from the dielectric, by simply
projecting the S matrix onto the subspace spanned by these
transverse solutions at large distances, we obtain the full
electromagnetic S matrix.

B. Inward-outward integration in Maxwell case

The presence of first-derivative terms in Eq. (33) necessi-
tates some modifications of the Wronskian analysis that we
used in Sec. II B to obtain the S matrix by combining the

outgoing and regular solutions at an intermediate fitting point.
We consider the transpose of the regular solution, obeying

−�̂′′
k (r)t − [�̂k(r)t D̂1(k,r)]′ + �̂k(r)t D̂0(k,r) = 0, (37)

which we again parametrize by �̂k(r)t = Ŵ (kr)−1Ĥk(r). We
obtain the differential equation

0 = −Ĥ ′′
k (r) +

[
∂

∂r
ln Ŵ (kr)

]
[Ĥk(r)D̂1(k,r) + 2Ĥ ′

k(r)]

+ 2

[
∂2

∂r2
ln Ŵ (kr)

]
Ĥk(r) − Ĥ ′

k(r)D̂1(k,r)

− Ĥk(r)D̂′
1(k,r) + Ĥk(r)[D̂0(k,r) + k2] − L̂2

r2
Ĥk(r),

(38)

with the boundary conditions Ĥk(0) = 0̂ and Ĥ ′
k(0) = 1̂. Now

the quantity that is independent of r is not the Wronskian but
instead

W̃k|r = W̃[�̂k(r)t , F̂k(r)]

= W[�̂k(r)t , F̂k(r)] − �k(r)t D̂1(k,r)F̂k(r). (39)

Because the additional term in Eq. (39) vanishes at r = 0, the
expression for the electromagnetic S matrix in terms of W̃ is
the same as in Eq. (19), with Wk|r=r0 replaced by W̃k|r=r0 .

IV. NUMERICAL RESULTS

We have constructed “proof of concept” implementations
of these calculations using MATHEMATICA, which are available
from http://community.middlebury.edu/∼ngraham. This high-
level code provides a convenient illustration of our approach
for small- to moderate-scale problems; more extensive calcu-
lations are likely to require lower-level code making use of
parallel linear algebra packages. In this section we describe
sample calculations that use this code to verify and illustrate
our approach.

A. Consistency checks

Because some of the calculations we have described are
the first of their kind, not all of our results can be compared
with previous work. Nonetheless, we can verify a variety
of complementary aspects of our calculations against known
results or consistency conditions. In particular, we can check
the following:

(i) For potential scattering with real V (r) and electromag-
netic scattering with real ε(r), the S matrix should be unitary,
Ŝ
†
k Ŝk = 1̂, for real k.

(ii) For electromagnetic scattering, the S matrix we obtain
from solving Eq. (30) should commute with projection onto
the asymptotic free transverse modes in Eq. (36).

(iii) For scalar, vector, and electromagnetic scattering, the
result of the inward-outward calculation should be independent
of the fitting point r0.

(iv) For a spherical finite square well in the scalar case and
a dielectric sphere in the electromagnetic case, the S matrix is
diagonal and can be found analytically. For the scalar spherical
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FIG. 1. (Color online) Eigenvalues of the matrices Ĝk(r) and Ĥk(r) for k = 1, truncated at jmax = 2, using the dielectric function in Eq. (44)
with h = 4, w = 1, and s = 8. For each eigenvalue, solid lines show the real part and dashed lines show the imaginary part. Taking r0 = 1

2 , we
only calculate Ĥk(r) for r < r0 and Ĝk(r) for r > r0.

square well, we have [1, p. 309]

Sk,� = −qh
(2)
� (ka)j ′

�(qa) − kh
(2)′
� (ka)j�(qa)

qh
(1)
� (ka)j ′

�(qa) − kh
(1)′
� (ka)j�(qa)

, (40)

where the potential is

V (r) =
{

V0, r < a

0, r > a,
(41)

and q = (k2 + V0)1/2. For the dielectric sphere, we
have [1, p. 49]

Sk,�,δ = −nδh̄
(2)
� (ka)j̄ ′

�(nka) − h̄
(2)′
� (ka)j̄�(nka)

nδh̄
(1)
� (ka)j̄ ′

�(nka) − h̄
(1)′
� (ka)j̄�(nka)

, (42)

where we have defined the Riccati-Hankel functions
j̄�(z) = zj�(z), h̄

(1)
� (z) = zh

(1)
� (z), and h̄

(2)
� (z) = zh

(2)
� (z), δ =

±1 for the two transverse polarization channels, and the
permittivity is

ε(r) =
{

n2, r < a

1, r > a.
(43)

By using smooth functions that closely approximate the step
functions in each case, we can verify that we obtain these
results using our variable phase calculation.

B. Sample calculations

To illustrate the numerical advantages of the variable phase
method, we first consider a spherically symmetric example in
electromagnetism, with

ε�m(r) =
√

4πδ�0δm0

(
1 + h

1 − tanh [s(r − w)]

2

)
. (44)

This profile gives a smooth approximation to a dielectric ball
parametrized by height h, radius w, and edge steepness s.
Because the profile is symmetric, the S matrix is diagonal and
degenerate in the azimuthal quantum number m. Choosing
our numerical matching point at r0 = w

2 , we integrate outward
starting from a small radius rsmall 
 min( 1

k
,w) to obtain Ĥk(r)

for rsmall < r < r0, and integrate inward starting from a large
radius rbig � max( 1

k
,w) to obtain Ĝk(r) for rbig > r > r0.

Sample results are shown in Fig. 1. We see that these functions
vary smoothly in response to the dielectric source, with
trivial behavior outside the dielectric and no oscillations. In
particular, Ĝk(r) only becomes nontrivial when we reach
values of r for which the source is no longer negligible; by
choosing a moderate value of the steepness parameter s, we
have softened the edge of the dielectric ball in order to highlight
this transition.

For comparison, we can reconstruct the normalized physical
wave function ψ̂norm

k (r) from these results by writing

ψ̂norm
k (r) = 1√

2π

{
Ĝ−k(r)Ŵ (−kr)P̂ W̃−k|r=r0 P̂ − Ĝk(r)Ŵ (kr)P̂ W̃k|r=r0 P̂ for r > r0

Ŵ (kr)−1Ĥk(r)Ĉk for r < r0,
(45)

where P̂ is the projection matrix onto the transverse modes,
the modified Wronskian W̃k is evaluated at r = r0 using
Eqs. (39) and (16), and Ĉk is a constant matrix that matches the
normalization of the two solutions, which is obtained by setting
the two expressions in Eq. (45) equal at r = r0. This result,
shown in Fig. 2, displays the typical oscillations associated
with wave number k. By “factoring out” the free contribution
Ŵ (kr), our method allows us to avoid these oscillations in
numerical calculations.

To illustrate the S matrix as a function of k, we consider a
dielectric with a Drude model dependence on wave number:

ε�m(r) =
√

4πδ�0δm0 + (2π )2

π
σp

√−k2 − (λpk)2
p�m(r), (46)

where p�m(r) specifies the radial profile function for each
spherical component of the dielectric profile. Here λp is the
plasma wavelength, σp is the conductivity, and the frequency

062715-6



VARIABLE-PHASE S-MATRIX CALCULATIONS FOR . . . PHYSICAL REVIEW A 86, 062715 (2012)

2 4 6 8
r

2

1

1

2

k

FIG. 2. (Color online) Eigenvalues of the matrix ψ̂norm
k (r) for

k = 1, truncated at jmax = 2, using the dielectric function in Eq. (44)
with h = 4, w = 1, and s = 8. The two expressions in Eq. (45) join
smoothly at r0 = 1

2 .

is ω = c
√

k2. We consider a deformed sphere using a profile
given by

p00(r) =
√

4π
1 − tanh [s(r − w)]

2 (47)

and p10(r) = 1 − tanh [s(r − w)]

2
,

with all other p�m(r) equal to zero. The j = 1 eigenphase shifts
for this case, given by one-half of the argument of the eigen-
values of the S matrix, are shown in Fig. 3 as functions of k. By
comparing to the case where ε00(r) is kept the same but ε10(r) is
set to zero, we see that a nontrivial ε10(r) mixes the polarization
channels and splits the degeneracy between |m| = 1 and m =
0. As expected, these effects vanish at small k, where modes
have wavelengths much larger than the length scale associated
with the asymmetry, and also at large k, where modes have
wavelengths much smaller than the plasma wavelength.

V. DISCUSSION AND FUTURE DEVELOPMENTS

We have developed a variable phase method to calculate
the scattering S matrix for potentials in quantum mechanics
and dielectrics in electromagnetism that are localized but do
not have any particular symmetries. The result takes the form
of a matrix initial value ODE given in terms of a spherical
harmonic decomposition of the scattering source. By using the
Wronskian, we can combine inward and outward integration

in r to obtain a well-behaved numerical computation, which
remains tractable even for imaginary wave number k. Finally,
we have extended this approach to the electromagnetic case by
considering a modification of the Maxwell wave equation that
avoids problems associated with disentangling the transverse
and longitudinal waves.

Our high-level MATHEMATICA code provides a transparent
and flexible high-level implementation of the methods de-
scribed here, but it is only suitable for small- to moderate-scale
calculations. Larger-scale calculations involving large num-
bers of partial waves will require the use of optimized low-level
parallel linear algebra routines. Since the ultimate problem to
be solved is quite generic, such calculations can take advantage
of standard numerical packages for matrix ODEs.
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APPENDIX A: DIFFERENTIAL OPERATORS

Here we collect the differential operator relations needed
to express Eq. (30) in the vector spherical harmonic basis,
taken from Ref. [18]. In these equations f (r) is an arbitrary
radial function, Ym

j (θ,φ) is an ordinary spherical harmonic,
and Y �

jm(θ,φ) is a vector spherical harmonic:

∇[
f (r)Ym

j (θ,φ)
]

=
√

j

2j + 1

(
d

dr
+ j + 1

r

)
f (r)Y �=j−1

jm (θ,φ)

−
√

j + 1

2j + 1

(
d

dr
− j

r

)
f (r)Y �=j+1

jm (θ,φ),

∇ · [
f (r)Y �=j+1

jm (θ,φ)
]

= −
√

j + 1

2j + 1

(
d

dr
+ j + 2

r

)
f (r)Ym

j (θ,φ),

2 4 6 8
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0.8

0.6
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FIG. 3. (Color online) Eigenphase shifts, given by one-half the argument of the eigenvalues of the S matrix, truncated at jmax = 1. The
left panel shows the case of the dielectric function given by Eqs. (46) and (47), with λp = π , σp = 1, w = 1, and s = 8, while the right panel
shows the result for the same ε00(r), but with ε10(r) = 0.
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∇ · [
f (r)Y �=j

jm (θ,φ)
] = 0,

∇ · [
f (r)Y �=j−1

jm (θ,φ)
]

=
√

j

2j + 1

(
d

dr
− j − 1

r

)
f (r)Ym

j (θ,φ),

∇ × [
f (r)Y �=j+1

jm (θ,φ)
]

= i

√
j

2j + 1

(
d

dr
+ j + 2

r

)
f (r)Y �=j

jm (θ,φ),

∇ × [
f (r)Y �=j

jm (θ,φ)
]

= i

√
j

2j + 1

(
d

dr
− j

r

)
f (r)Y �=j+1

jm (θ,φ),

+ i

√
j + 1

2j + 1

(
d

dr
+ j + 1

r

)
f (r)Y �=j−1

jm (θ,φ),

∇ × [
f (r)Y �=j−1

jm (θ,φ)
]

= i

√
j + 1

2j + 1

(
d

dr
− j − 1

r

)
f (r)Y �=j

jm (θ,φ). (A1)

APPENDIX B: FREE GREEN’S FUNCTIONS AND
PLANE-WAVE EXPANSIONS

Throughout this paper we have considered scattering in
a spherical partial-wave basis. For both Casimir calculations
and traditional scattering problems, it is helpful to be able to
convert these results to a plane-wave basis. The key tools in this
conversion are the expansion of a plane wave and the expansion
of the free Green’s function in terms of free spherical waves.
Again drawing on Ref. [18], we collect those expansions here.
For scalar scattering we have the well-known results

eik·r = 4π
∑
�m

i�j�(kr)Ym
� (θk,φk)∗Ym

� (θ,φ), (B1)

where θk and φk are the angles of k̂ in spherical coordinates,
and

G0(r,r ′,k) = ik
∑
�m

j�(kr<)h(1)
� (kr>)Ym

� (θ ′,φ′)∗Ym
� (θ,φ),

(B2)

where r< (r>) is the smaller (larger) of r = |r| and r ′ =
|r ′|. For vector waves, the expansion of a plane wave with

polarization ξ becomes

ξeik·r = 4π
∑
�jm

i�
[
ξ · Y �

jm(θk,φk)∗
]
j�(kr)Y �

jm(θ,φ), (B3)

while the expansion of the free dyadic Green’s function is

G(r1,r2,k) = ik
∑
�jm

j�(kr<)h(1)
� (kr>)Y �

jm(θ1,φ1)∗

⊗ Y �
jm(θ2,φ2). (B4)

We can also express these results in terms of transverse and
longitudinal vector spherical harmonics. For the decomposi-
tion of a vector plane wave, we define

YM
jm(θ,φ) = Y �=j

jm (θ,φ),

YN
jm(θ,φ) =

√
j + 1

2j + 1
Y �=j−1

jm (θ,φ) +
√

j

2j + 1
Y �=j+1

jm (θ,φ),

(B5)

for j = 1, 2, 3, . . ., and

YL
jm(θ,φ) =

√
j

2j + 1
Y �=j−1

jm (θ,φ) −
√

j + 1

2j + 1
Y �=j+1

jm (θ,φ),

(B6)

where j = 0, 1, 2, 3, . . .. (Note that for j = 0, the unphysical
term with � = −1 is multiplied by zero.) Similarly, we consider
the free transverse modes in Eqs. (36) along with the free
longitudinal mode given by

Ljm,k(r,θ,φ) =
√

j

2j + 1
zj−1(kr)Y �=j−1

jm (θ,φ)

+
√

j + 1

2j + 1
zj+1(kr)Y �=j+1

jm (θ,φ), (B7)

for j = 0, 1, 2, . . . .

For the decomposition of a plane wave, we then have

ξeik·r = 4π
∑
χjm

ij+σ
[
ξ · Yχ

jm(θk,φk)∗
]
χ

reg
jm,k(r,θ,φ), (B8)

where σ = 0, 1, − 1 for χ = M, N, L respectively, and for
the free dyadic Green’s function we have

G(r1,r2,k) = ik
∑
χjm

χ
reg
jm,k(r<)∗ ⊗ χout

jm,k(r>), (B9)

again for χ = M, N, L. Here the regular solution is given
by taking z�(kr) = j�(kr) in Eqs. (36) and (B7), while the
outgoing solution has z�(kr) = h

(1)
� (kr).
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