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We develop and analyze a theoretical model which yields the shifts and widths of Feshbach resonances in
an atomic waveguide. It is based on a multichannel approach for confinement-induced resonances (CIRs) and
atomic transitions in the waveguides in the multimode regime. In this scheme we replace the single-channel
scalar interatomic interaction by the four-channel tensorial potential modeling resonances of broad, narrow,
and overlapping character according to the two-channel parametrization of Lange et al. [Phys. Rev. A 79,
013622 (2009)]. As an input the experimentally known parameters of Feshbach resonances in the absence of
the waveguide are used. We calculate the shifts and widths of s-, d-, and g-wave magnetic Feshbach resonances
of Cs atoms emerging in harmonic waveguides as CIRs and resonant enhancement of the transmission at zeros
of the free space scattering length. We have found the linear dependence of the width of the resonance on the
longitudinal atomic momentum and quadratic dependence on the waveguide width. Our model opens possibilities
for quantitative studies of the scattering processes in ultracold atomic gases in waveguides beyond the framework
of s-wave resonant scattering.
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I. INTRODUCTION

Impressive progress of the physics of ultracold quantum
gases has opened new pathways for the study of low-
dimensional few-body systems (see, for example [1,2]) as well
as strongly correlated many-body systems [3,4]. Specifically,
it was shown that the confining geometry of atomic traps can
drastically change the scattering properties of ultracold atoms
and induce resonances in the collisions [confinement-induced
resonances (CIRs)] [5]. The CIR for bosons has been found to
occur in the vanishing energy collisional limit as a consequence
of the coincidence of the binding energy of a diatomic
molecular state with the energy spacing between the levels
of the confining (harmonic) potential [6–8]. It was shown
that this coincidence leads to a divergence of the effective
interatomic coupling constant g1D and to a total atom-atom
reflection, which appears as a broad dip in the transmission
coefficient T , thereby creating a gas of impenetrable bosons
[9]. CIRs have also been extensively studied, e.g., in the
context of three-body [10,11] and four-body [12] scattering
in confining traps, fermionic p-wave scattering [13], and
distinguishable atom scattering [7,14–16] or multichannel
scattering [8,17,18] in atomic waveguides. Two novel effects
were predicted for distinguishable atoms: the so-called dual
CIR yielding a complete suppression of quantum scattering
[14], and the resonant molecule formation in tight waveguides
[16]. d-wave resonant scattering of bosons in confining
harmonic waveguides has been analyzed very recently in
Ref. [19]. Coupled l-wave CIRs in cylindrically symmet-
ric waveguides has been studied in Ref. [20]. Remarkable
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experimental progress has led to the observation of CIRs, for
identical bosons [21–24] and fermions [25–27], as well as to
distinguishable atoms [28].

However, the recent experimental [24,27–29] and theoret-
ical [17,30–32] investigations of the CIRs clearly show that,
despite the impressive progress, the existing theoretical models
of CIRs need to be improved for a quantitative description of
the experiments in this field. The obvious drawback of the
existing theoretical models for CIRs in atomic waveguides is
the single-channel character of the simple interatomic interac-
tions employed. Single-channel potentials with zero-energy
bound states were used for simulating magnetic Feshbach
resonances in free space representing a necessary ingredient
for the appearance of the CIR in a confining trap (see, for
example, [1,4]). In the seminal work of Olshanii [5] and in
subsequent papers [6,33], including the recent works [30,31],
the simple form of a pseudopotential was used modeling the
interatomic interactions. More realistic potentials were used
in our previous works [8,14–17,19] as well as in the works of
other authors [6,13,32,34] which, however, all possess a single-
channel character. The single-channel interatomic interaction
approach permits one to explore only the main attribute of
the Feshbach resonances in the three-dimensional free space,
namely, the appearance of a singularity in the s-wave scattering
length as → ±∞ when the molecular bound state with energy
EB crosses the atom-atom scattering threshold at energy E = 0
in the entrance channel. However, other important parameters
of the Feshbach resonance, such as the rotational and spin
structure of the molecular bound state in the closed channel
as well as the width � of the resonance characterizing the
coupling � of the molecular state with the entrance channel,
were ignored. The main goal of the present work is to
extend these theoretical approaches developed earlier for the
CIRs and transverse excitations and deexcitation processes
for collisions in harmonic waveguides [8] to the case of a
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tensorial interaction as well as taking into account the width
of the magnetic Feshbach resonances responsible for the CIR.
The parameters obtained from the experimental analysis of
the magnetic Feshbach resonances in free space, namely, the
resonant energies Ec,i (or the corresponding values of the field
strengths Bc,i of the external magnetic field), the widths of the
resonances �i(�i), spin characteristics, and the background
scattering length abg, are used as input parameters of our
model.

It is well known that the most adequate computational
schemes including all the above-mentioned parameters of the
Feshbach resonances are multichannel scattering [1,35,36]
and multichannel quantum-defect [37] approaches providing
a quantitative description for a broad regime of experimental
parameters for the Feshbach resonances in ultracold atomic
gases. In the present work the two-channel potential scheme
[36], permitting the efficient modeling of the interatomic
interaction near the known magnetic Feshbach resonances of
the Cs gas in free space [35], is included in our multichannel
approach [8] instead of the simplified interparticle single-
channel potential we have used so far for analyzing CIRs
and transverse excitations in atomic waveguides. With this
approach we model s-, d-, and g-wave Feshbach resonances
in ultracold Cs (s, d, and g indicate here the “exit” channels,
i.e., they correspond to rotational quantum numbers of the
molecular states in the closed channels), which were observed
in free space scattering experiments [35], and quantitatively
analyze the shifts and widths of the resonances in the harmonic
waveguides at experimental conditions closed to the ones
encountered in the works [23,24]. We note that selected aspects
of the modeling of magnetic Feshbach resonances in optical
traps and lattices were also considered in Refs. [38–42].

II. FESHBACH RESONANCE MODEL

We consider the collision of two identical bosonic atoms
in a harmonic waveguide. This two-body problem permits the
separation of the center-of-mass and relative motion yielding
the following Hamiltonian for the relative atomic motion

Ĥ (r,θ ) =
[
− h̄2

2μ
∇2 + 1

2
μω2

⊥ρ2

]
Î + V̂ (r) (1)

with ρ = r sin θ and the trap potential 1/2μω2
⊥ρ2. V̂ (r) is the

four-channel interatomic potential, Î is the unit matrix, r is the
relative radial coordinate, and μ = m/2 is the reduced mass
of the atoms.

Following the scheme suggested in Ref. [36] for describing
the three magnetic Feshbach resonances in an ultracold Cs gas,
let us suppose that initially the scattering atoms are prepared
in one spin configuration |e〉 (called the “entrance channel”)
and the “closed channels” |c,i〉 (i = 1, 2, 3) support s-, d-, and
g-wave molecular bound states at −11.1, 47.78, and 53.449 G,
respectively. The quantum state of an atomic pair with energy
E is described as

|ψ〉 =
3∑

i=1

ψc,i(r)|c,i〉 + ψe(r)|e〉

satisfying the Schrödinger equation with the Hamiltonian (1).
A four-channel square-well potential

V̂ =

⎛
⎜⎜⎜⎝

−Vc,3 0 0 h̄�3

0 −Vc,2 0 h̄�2

0 0 −Vc,1 h̄�1

h̄�3 h̄�2 h̄�1 −Ve

⎞
⎟⎟⎟⎠ (if r < a)

=

⎛
⎜⎜⎜⎝

∞ 0 0 0

0 ∞ 0 0

0 0 ∞ 0

0 0 0 0

⎞
⎟⎟⎟⎠ (if r > a) (2)

is employed to describe the colliding atoms in the “entrance
channel” |e〉 and the weakly bound molecules in the “closed
channels” |c,i〉 near a Feshbach resonance. For r < a =
4π�(1/4)−2RvdW, we assume the attractive potential can
support multiple molecular states—that is, Ve,Vci

� EvdW =
h̄2/2μR2

vdW—and h̄�i induce Feshbach couplings between the
channels [36]. The size a of the potential action is chosen to
account for the interatomic interaction determined by the van
der Waals (vdW) tail with the length RvdW = 1/2(2μC6/h̄

2)1/4

and the energy scale EvdW = h̄2/2μR2
vdW [43], where C6 is

the corresponding van der Waals coefficient and �(x) is the �

function. For r > a, entrance- and closed-channel thresholds
are set to be E = 0 and E = ∞, respectively (see Fig. 1 in
Ref. [36]).

Such a choice of the interatomic interaction permits a
simple parametrization of the atom-atom scattering in uni-
versal terms of the energy of the ith bare bound state Ei , the
Feshbach coupling strength of the bound molecular state with
the entrance channel �i , and the background scattering length
abg, which is convenient for an analysis of experimental data
near magnetic Feshbach resonances [1,36]. When the mixing
between the closed channels and the entrance channel is
weak and the background scattering length |abg| considerably
exceeds the range of the interatomic interaction a, the s-wave
scattering length a and the binding energy Eb in free space are
given by [36]

1

a − a
= 1

abg − a
+ 1

a

3∑
i=1

�i/2

Ei

(3)

and

Eb = h̄2k2
m

2μ
, km = 1

abg − a
+ 1

a

3∑
i=1

�i/2

Eb + Ei

, (4)

respectively. Then, assuming that the bare bound states can be
linearly tuned magnetically by a linear Zeeman shift—namely,
Ei = δμi(B − Bc,i), where δμi is the relative magnetic mo-
ment between the entrance and ith channels and Bc,i is the
crossing field value of the ith bare bound state, the scattering
length a(B) can be represented as

a

abg
=

3∏
i=1

B − B∗
i

B − B0,i

. (5)

Here B0,i is the ith lowest pole of a and B∗
i is the ith lowest

zero. The width of the ith Feshbach resonance can be defined
as �i = B∗

i − B0,i . The binding energy of Feshbach molecules
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FIG. 1. (Color online) The s-wave scattering length a of |F =
3,mF = 3〉 Cesium atoms as a function of the magnetic field B. The
solid curve shows the analytical result (5) and the dots show the
numerical result (see the text).

can be measured in the experiment by, e.g., radio frequency and
microwave spectroscopy [44–48]. Using the fitting parameters
abg, δμi , �i , and Bc,i , one can fit the experimental data [44–48]
with (4), from which one can calculate a(B) (3), B∗

i , and B0,i

(5) [36].
The result of the procedure is given in the Table I of Ref. [36]

for ultracold Cs Feshbach molecules where abg = 1875a0 and
a = 95.7a0 (a0 is the Bohr radius) are also given. With these
values for B0,i and B∗

i we show the scattering length a(B) as a
function of the magnetic field B according to Eq. (5), in Fig. 1.

The parameters abg, δμi , �i , Bc,i , B∗
i , and B0,i from [36]

together with a(B) defined by Eq. (5) are used for fitting the
diagonal terms Vc,i and Ve in the tensor potential (2). The
nondiagonal terms h̄�i are defined by the formulas [36]

�i/2 = 2θ2Vc,i , tan 2θi = 2h̄�i

Ve − Vc,i

.

The scattering length a(B) is then calculated for different
B and varying parameters of the potential V̂ by solving the
Schrödinger equation([

− h̄2

2μ
∇2 + 1

2
μω2

⊥ρ2

]
Î + B̂ + V̂ (r)

)
|ψ〉 = E|ψ〉 (6)

in free space (ω⊥ = 0) with the scattering boundary conditions

ψe(r) → exp{ikz} + f (k,θ )/r exp{ikr}, ψc,i(r) → 0

at kr → ∞ for the fixed E → 0 (k = √
2μE/h̄ → 0) [49].

The diagonal matrix B̂ in Eq. (6) is defined as Bii = δμi(B −
Bi) (i = 1,2,3) and Bee = 0. After separation of the angular
part in Eq. (6) we come to the system of four coupled radial
equations[

− h̄2

2μ

d2

dr2
+ h̄2lα(lα + 1)

2μr2
+ Bαα

]
φα(r) +

∑
β

Vαβ(r)φβ(r)

= Eφα(r) (7)

for the radial part φα(r) of the desired wave func-
tion |ψ〉 = ∑

α ψα(r)|α〉 = ∑
α φα(r)Ylα0(r̂)|α〉, where α =

{e,i = 1,2,3} (le = 0, l1 = 0, l2 = 2, l3 = 4) and the matrix
elements Vαβ(r) are defined by Eq. (2). The centrifugal barrier

+ h̄2lα (lα+1)
2μr2 in Eq. (7) models at r → 0 the correct asymptotic

behavior φi(r) ∼ rli+1 of the molecular bound states |c,i〉
in the closed channels which couple to the entrance s-wave
(le = 0) channel |e〉 by the nondiagonal terms Vαβ(r) (α �= β).

By varying the Vc,i , Ve, and �i we obtain an excellent
agreement of the calculated s-wave scattering length a(B)
with the analytical results from [36] for cesium atoms
in the hyperfine state |F = 3,mF = 3〉 for the considered
magnetic field regime −40 G < B < 60 G (see dots in Fig. 1).
In this regime, we observe three resonance terms, which
correspond to the coupling to the s-, d-, and g-wave molecular
states.

Next we analyze the scattering properties of the s-, d-,
and g-wave magnetic Feshbach resonances in harmonic
waveguides by integrating the Schrödinger equation (6) for
ω⊥ �= 0 with the scattering boundary conditions

ψe(r) = [cos(k0z) + fe exp{ik0|z|}]�0(ρ), ψc,i(r) → 0

(8)

at |z| = |r cos θ | → ∞ adopted for a confining trap [8]. fe(E)
is the scattering amplitude, corresponding to the symmetry
with respect to the exchange z → −z (we consider collisions
of identical bosonic Cs atoms), �0(ρ) is the wave function
of the ground state of the two-dimensional (2D) harmonic
oscillator, and k0 = √

2μ(E − h̄ω⊥)/h̄ = √
2μE‖/h̄. In the

presence of the harmonic trap (ω⊥ �= 0) the problem (6), (8)
becomes nonseparable in the plane {ρ,z}, i.e., the azimuthal
angular part is separated in the wave function |ψ〉 and Eq. (6)
is reduced to the coupled system of four 2D Schrödinger-type
equations. To integrate this coupled channel 2D scattering
problem in the plane {r,θ} we have extended the computational
scheme [8].

The computations have been performed in a range of
variation of ω⊥ close to the experimental values of the trap
frequencies ∼2π × 14.5 kHz [24]. We have integrated Eq. (6)
for varying B and fixed longitudinal colliding energy E|| =
E − h̄ω⊥. In the main part of computations the energy E||
was chosen very low E|| = 1.0 × 10−16( h̄2

μa2 ) → 0 [k0 = 1.0 ×
10−8( 1

a0
) → 0] to have a possibility for direct comparison with

existing pseudopotential estimates obtained in zero-energy
limit. The integration was performed in the units of the
problem leading to the scale transformation: r → r

a
, E → E

E0
,

V → V
E0

, and ω⊥ → ω⊥
ω0

with E0 = h̄2

μa2 and ω0 = E0
h̄

.

III. RESULTS AND DISCUSSION

A. Transmission coefficient

In Fig. 2 we present the transmission coefficient T (B) =
|1 + fe(B)|2 as a function of B calculated for the harmonic
trap ω⊥ = 14.9 kHz with the two-channel (i = 1) and four-
channel (i = 1,2,3) character of the tensorial interaction V̂ (r)
(2). The two-channel potential V̂ (i = 1) supports only one
broad s-wave Feshbach resonance, while the four-channel
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FIG. 2. (Color online) The transmission coefficient T for the
harmonic trap with ω⊥ = 14.9 kHz as a function of the magnetic
field B for the case of the two-channel (solid curve) and four-channel
(dots) potential (2).

potential V̂ (i = 1,2,3) supports all three s-, d-, and g-wave
magnetic Feshbach resonances in free space (ω⊥ = 0) at the
fields B0,1 = −11.1 G, B0,2 = 47.78 G, and B0,3 = 53.449 G,
respectively [36]. All these resonances are also developed in
the calculated curve T (B) of the transmission coefficient in
the trap (ω⊥ �= 0).

First, we have analyzed the region of B  −11.1 G near
the s-wave resonance. In Fig. 3 we show the calculated 1D
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FIG. 3. (Color online) The coupling constant g1D as a function
of the scattering length a in free space in the region near the s-wave
Feshbach resonance, calculated for the harmonic trap with ω⊥ =
14.9 kHz. Dots indicate the numerical data and the solid curve the
analytical results with the formulas derived in the pseudopotential
approach [5].
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FIG. 4. (Color online) The transmission coefficient T (B) as a
function of the strength of the magnetic field for several trap
frequencies ω⊥. Here the s-wave scattering length a(B) from Fig. 1
is also given (solid line).

coupling constant g1D = limk0→0 Re{fe(k0)}/Im{fe(k0)}k0/μ

[6] as a function of the scattering length a(B) in this
region. By tuning B in the interval −60 G � B � 40 G, the
s-wave scattering length a(B) changes from −∞ to +∞.
At B = −49.78 G corresponding to the point a(B) = a⊥/C

(where C = 1.4603 and a⊥ = √
h̄/μω⊥) of the appearance

of the CIR [5], the coupling constant g1D(a/a⊥) diverges
and the behavior is in very good agreement with our pre-
vious computation of g1D(a/a⊥) performed with the single-
channel screened Coulomb potential [8] and the formulas
g1D = 2h̄a/(μa2

⊥)/(1 − Ca/a⊥) derived in a pseudopotential
approach [5].
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FIG. 5. (Color online) The dependence of the s-wave scattering
length a(B) on the width a⊥ of the waveguide at the points Bmin of
the minimum of the transmission coefficient T (a(B),a⊥) (see Fig. 4).
The dots, pluses, and circles correspond to the calculated points
near the s-, d-, and g-wave magnetic Feshbach resonances, respec-
tively. The solid curve corresponds to the formula a = a⊥/C [5].
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Let us next analyze the region of the d-wave magnetic
Feshbach resonance near the point 47.78 G (see Fig. 1)—the
region of major experimental interest due to atomic loss and the
formation of Cs molecules in the confined ultracold gas of Cs
atoms [23,24]. The results of our computations are illustrated
by the curves T (B) calculated for different ω⊥ (Fig. 4)
corresponding to the transverse frequencies of the optical
trap being used in the experiment [24]. It is clearly shown
that the position Bmin of the transmission coefficient T (B)
minimum is dependent on the trap width a⊥ = √

h̄/(μω⊥)
and the corresponding scattering length a(Bmin) at the point
Bmin is accurately described by the formulas a(Bmin) = a⊥/C

obtained by Olshanii [5] for the position of the CIR in a
harmonic waveguide. The latter fact is illustrated in Fig. 5.
Here the results of the calculation of the dependence of
a(Bmin) on a⊥ for s-wave and g-wave Feshbach resonances
are also given. This analysis clearly demonstrates that the
law a = a⊥/C for the position of the CIR in a harmonic

47.2 47.4 47.6 47.8 48 48.2
10

−20

10
−15

10
−10

10
−5

10
0

(b)

Magnetic Field B (G)

T
ra

ns
m

is
si

on
 T

 

 

k0 = 2.0899 × 10−8 (a−1
0 )

k0 = 1.4778 × 10−10 (a−1
0 )

k0 = 1.4778 × 10−5 (a−1
0 )

10
−10

10
−8

10
−6

10
−4

10
−6

10
−4

10
−2

10
0

k0 (units of a−1
0 )

Γ
∗ i

(G
)

 

 

(a)

FIG. 6. (Color online) (a) The dependence of the width �∗
i

on the longitudinal momentum k0 near the d-wave Feshbach
resonance. The solid line has been obtained via Eq. (10); solid circles
indicate the widths �∗

i (k0) extracted from the numerically calculated
T (B,k0). (b) The transmission coefficient T as a function of the
magnetic field B calculated for a few k0. For both subfigures ω⊥ =
14.9 kHz.

waveguide is fulfilled with high accuracy for the Feshbach
resonances of different tensorial structure, although the law
was initially obtained at zero-energy limit in the framework
of an s-wave single-channel pseudopotential approach to the
interatomic interaction [5]. We also see that the positions
Bmax of the maximums of the coefficients T (B) calculated for
different ω⊥ are independent of ω⊥ and coincide at the point
B∗

2 = 47.944 G of the zero of the scattering length in free space
[a(B∗

2 ) = 0]. This fact is in agreement with the analytic result
T = |1 + fe|2 → 1 obtained in the pseudopotential approach
at a → 0. The same behavior of the T (B) coefficients has
been found in the vicinity of 18.1 and 53.46 G (points B∗

1 and
B∗

3 of s-wave scattering length zeros near the s- and g-wave
Feshbach resonances).

B. Width of the resonant enhancement of the transmission

While the coefficients T (B) in the vicinity of the points B∗
i

[positions of the zeros of the scattering length a(B)] show a
resonant behavior one can define the width �∗

i of this resonance
as the width at half T maximum. By using the formulas for
the even scattering amplitude in the trap [18,50]

fe = − 1

1 + i cot δ1D
= − 1

1 + ik0a1D

valid near the CIR in the zero-energy limit and the definitions
a1D = a⊥

2 (C − a⊥
a

) and a = abg
∏3

i=1
(B−B∗

i )
(B−B0,i )

, we obtain

�∗
i = 4abgγia

2
⊥k0�i

4a2
bgγ

2
i − a4

⊥k2
0

(
1 − Cγi

abg

a⊥

)2 , (9)

where γi = ∏3
j �=i

(B∗
i −B∗

j )

(B∗
i −B0,j ) . The above formula is valid for the

condition �∗
i � B∗

i of narrow resonances, which is fulfilled
with high accuracy for the d- and g-wave resonances and less
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FIG. 7. (Color online) The dependence of the width �∗
i on

the trap frequency ω⊥ near the d-wave Feshbach resonance at
k0 = 2.0899 × 10−8(a−1

0 ). The solid curve has been obtained via
Eq. (10); solid circles indicate the widths �∗

i (ω⊥) extracted from the
numerically calculated T (B,ω⊥). The analytical (dashed line) and
numerical (squares) results for the right half-width 1/2�

(i)
CIR versus

ω⊥ are also given.
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accurately for s-wave resonance (see Fig. 2). In the low energy
limit k0 → 0 the expression is reduced to

�∗
i = �i

a2
⊥k0

abgγi

= �i

√
2E‖√

μabgω⊥γi

, (10)

where �i = B∗
i − B0,i is the width of the Feshbach resonance

in free space and the dimensionless γi factor ≈ 1
2 for the case of

d- and g-wave resonances and ≈1 for the s-wave resonance.
Figures 6 and 7 demonstrate the very good agreement of
these formulas with the numerical computations. Actually, in
Fig. 6(a) one can see in a broad range of k0 variation the
very good agreement of the width �∗

i (k0), extracted from
numerically calculated T (B,k0), with the linear functional
dependence on the longitudinal momentum k0, following from
Eq. (10). Also, the �∗

i (ω⊥) has inverse dependence on ω⊥.
It is confirmed by the results of the numerical calculations
of �∗

i (ω⊥) given in Fig. 7. Thus, Eq. (10) can be used for
extracting important information about the analyzed system.
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FIG. 8. (Color online) The relative populations Pi/Pe (13) of the
molecular states i = s, d , and g calculated as a function of B near
the d-wave Feshbach resonance in Cs for the pair collisions in free
space (a) and in the harmonic waveguide with ω⊥ = 59.6 kHz (b).
The s-wave scattering length a(B) in free space from Fig. 1 is also
given.

Indeed, by measuring the width �∗
i one can extract from

Eq. (10) the longitudinal momentum k0 = √
2μE‖/h̄ (longi-

tudinal colliding energy E‖) and estimate the “longitudinal”
temperature of the atomic cloud in the trap. This expression
also shows that one can control the width �∗

i of the resonance
by varying the trap frequency ω⊥. Increasing ω⊥ leads to a
narrowing of the resonance (see Figs. 4 and 7), the effect of
which can be used experimentally. Figure 6(b) demonstrates
the stability of the position of the CIR (the minimum of the
transmission coefficient T ) with respect to k0 variation and the
linear growth of the transmission coefficient T with increasing
k0. It is shown that already at very low k0 ∼ 10−5( 1

a0
) the T

coefficient becomes large enough and consequently can be
experimentally “visible” near CIR.

To conclude this section we also give the expression for the
position of the CIR with respect to the resonance at a = 0 (to
the point B∗

i ):

�
(i)
CIR = �i

1 − Cγi
abg

a⊥

. (11)

Since the resonance maximum at B∗
i corresponds to the unit

value T (B∗
i ) → 1 and the minimum of the CIR approaches

zero T (B∗
i − �

(i)
CIR) → 0, we can define the “right” half-width

1
2�

(i)
CIR of the CIR as the distance of the zero of the coefficient

T to the right situated point where T = 1
2 . Using the formulas

for �
(i)
CIR and Eq. (10) for �∗

i we obtain

1

2
�

(i)
CIR = �

(i)
CIR − 1

2
�∗

i
−−−−→
(k0→0) �i

[
1

1 − Cγi
abg

a⊥

− a2
⊥k0

2abgγi

]
.

(12)

The above expression describes the narrowing of the CIR
width �

(i)
CIR with decreasing trap frequency ω⊥, opposite to

�∗
i (see Fig. 4). This expression might also be of interest to the

experimental analysis of the CIRs.
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FIG. 9. (Color online) Schematic picture (presented in Refs. [6,
17] for a single-channel potential model of interatomic interaction)
of the bound state energy Eb of two atoms as a function of a⊥/a in
free space (solid line) and in the harmonic waveguide (dashed line).
The first excited resonance state energy Er is also presented.
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C. Population of molecular states in free space
and in the waveguide

We have also calculated the relative populations Pi/Pe

of the molecular states |c,i〉 in the process of pair atomic
collisions for harmonic traps of different frequencies ω⊥ as
well as in free space (ω⊥ = 0). The populations Pi are defined
as

Pi = 2π

∫ ∞

0

∫ π

0
|ψc,i(r,θ )|2r2dr sin θ dθ, (13)

where integration over the infinite region 0 � r < ∞ gives a
convergent result due to the decaying tails of the molecular
bound-state wave functions ψc,i(r) → 0 at distances of the
order ∼a in the closed channels |c,i〉. The population Pe is
defined in a region near the origin r → 0 of the molecular
dimension ∼a in the entrance channel by using Eq. (13)
where the upper limit of the integration over r is a. The
relative populations Pi/Pe of the molecular states for ultracold
atomic collisions in free space and in the harmonic waveguide
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FIG. 10. (Color online) The relative populations Pi/Pe (13) of
the molecular states i = s, d , and g calculated as functions of B near
the s-wave Feshbach resonance for Cs for the pair collisions in free
space (a) and in the harmonic waveguide with ω⊥ = 59.6 kHz (b).
The s-wave scattering length a(B) from Fig. 1 is also presented.

with ω⊥ = 59.6 kHz are shown in Fig. 8 in the region of
B near the d-wave Feshbach resonance. In free space the
pair collision leads to a relatively low population of the
d-wave molecular state P2/Pe ∼ 10−4–10−5. The populations
of nonresonant s- and g-wave states are P1 � P2 and P3 � P2

essentially suppressed here. The dependence of the d-wave
molecular state population on B repeats the dependence on
B of the population of the region ∼a in the entrance channel
P2(B)/Pe(B) ∼ const. However, in the confined geometry of
the waveguide (ω⊥ �= 0) the pair collision leads to a resonant
enhancement of the relative population P2(B)/Pe(B) of the
d-wave molecular state near the point B∗

2 = 47.944 G where
the free space scattering length is zero a(B∗

2 ) = 0. In the
waveguide the point of appearance of the bound state is
shifted from the position defined by 1/|a| → 0 for free space
scattering (see point A in the illustrative scheme of the bound
and resonant states of an atomic pair given in Fig. 9) to the
point 1/|a| → ∞ (the point B in Fig. 9). This is why we
observe in Fig. 8(b) the strong resonant enhancement of the
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FIG. 11. (Color online) The relative populations Pi/Pe (13) of
the molecular states i = s, d , and g calculated as functions of B near
the g-wave Feshbach resonance in Cs for the pair collisions in free
space (a) and in the harmonic waveguide with ω⊥ = 59.6 kHz (b).
The s-wave scattering length a(B) from Fig. 1 is also presented.
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population P2(B∗
2 ) at the magnetic field B∗

2 = 47.944 G. The
populations P1/Pe and P3/Pe of other molecular states also
show some enhancement with respect to the entrance channel
due to the coupling of the states with the “resonance” channel
|c,2〉, which, however, are a few orders of magnitude less than
the enhancement of the population P2/Pe. We do not observe
a resonant behavior of P2(B) at the point B = 47.57 G of the
CIR (see Fig. 4 and the point C in Fig. 9). We suspect that this is
the case due to the rather weak coupling in our model potential
V̂ (2) between the entrance channel |e〉 and the resonant state in
the closed channel |c,2〉 for stimulating considerable transition
to the molecular state |c,2〉 in the closed excited channel of
the waveguide.

In Figs. 10 and 11 we present the results of our computation
of the molecular state populations near the s- and g-wave
Feshbach resonances −11.1 G and 53.449 G, respectively.
We observe the qualitatively analogous effect of resonant
enhancement of the relative populations P1(B)/Pe(B) and
P3(B)/Pe(B) at the points B∗

1 = 18.1 G and B∗
3 = 53.457 G

in the harmonic waveguide, which correspond to the positions
of the zero of the s-wave scattering length in the vicinity of
s- and g-wave Feshbach resonances, respectively. Here we
notice P1(B)/Pe(B)  const, i.e., the same dependence on B

of the s-wave molecular state population as the population
of the region �a in the entrance channel [see Fig. 10(a)]. In
Fig. 11(a) we observe the resonant enhancement of the relative
population P3(B)/Pe(B) of the g-wave molecular state near
the Feshbach resonance in free space at B0,3 = 53.449 G,
where 1/|a| → 0. A similar resonance enhancement near
the point 1/|a| → 0 of the appearance of the near threshold
resonance or weakly bound state in free space (see point A in
Fig. 9) is observable via the values P1(B), P2(B), and Pe(B)
but, because P1(B)/Pe(B)  const and P2(B)/Pe(B) ∼ const,
we do not observe this effect in the relative populations
P1(B)/Pe(B) and P2(B)/Pe(B) in Figs. 10(a) and 8(a).

IV. CONCLUSION

We have developed a theoretical model for a quantitative
analysis of the Feshbach resonance shift and width induced
by an atomic waveguide. It is based on our multichannel
approach for confinement-induced resonances and atomic
transitions in the waveguides in the multimode regime [8]. In
this scheme the single-channel (scalar) interatomic interaction
is replaced by a four-channel (tensorial) potential modeling
resonances of different structure according to the two-channel
parametrization of Lange et al. [36]. The experimentally
known parameters of the Feshbach resonance in the absence
of the waveguide are used as an input in our approach. We
have calculated the shifts and widths of s-, d-, and g-wave
magnetic Feshbach resonances of Cs atoms emerging in
harmonic waveguides as CIRs and resonant enhancement of
the transmission at zeros of the free space scattering length.

In particular, we find that the relationship a = a⊥/C for
the position of the CIR in a harmonic waveguide is fulfilled
with high accuracy for the Feshbach resonances of different
tensorial structure which holds in spite of the fact that this
property was originally obtained in the framework of an
s-wave single-channel pseudopotential approach [5]. Note,
that this property was experimentally confirmed for d-wave
Feshbach resonances in a gas of Cs atoms [24]. The maximum
of the transmission, corresponding to the zero of the scattering
amplitude, is shown to be independent of the trap field strength
and then again corresponds to the zero B∗

i of the s-wave
scattering length a(B) in free space. In a nutshell, the Feshbach
resonance in free space develops in the harmonic waveguide
into a minimum of T (position of CIR), defined by the formulas
a = a⊥/C, and a maximum, coinciding with the position of
zero of the s-wave scattering length a. The “distance” between
these extrema is equal to �

(i)
CIR = �i/(1 − Cγiabg/a⊥).

We have derived expressions for the widths �∗
i ,

1
2�

(i)
CIR of

the resonant enhancement of T at B∗
i and the “right” side

half-width of the minimum of the T coefficient, i.e., at the
position of CIR, and confirmed its validity by numerical
results for k0 → 0. By measuring the width �∗

i one can,
in principle, extract from these expressions the longitudinal
collision energy and estimate the “longitudinal” temperature
of the atomic cloud in the trap. In other words the width of
the atomic loss resonance observed in the experiment [24]
at the point of CIR might contain important information about
the longitudinal atomic momentum k0 and the temperature of
the gas. It also shows that one can control the width �∗

i of the
resonance at a(B∗

i ) = 0 by varying the trap frequency ω⊥. An
increase of ω⊥ leads to a narrowing of the resonance, an effect
which could potentially be used experimentally.

Finally, the molecule formation rates in a waveguide show
an enhancement for the case of a corresponding zero of the
s-wave scattering length a(B∗

i ) = 0. We have shown that
the positions of these resonances are stable with respect to
the variation of the confining frequency ω⊥ of the waveguide.

Our model adds to the possible studies of scattering
processes of ultracold atomic gases in waveguides beyond the
framework of s-wave resonant scattering. Our model might
be extended to the cases of fermions or distinguishable atom
scattering, including transverse excitation and deexcitation
processes [8]. It also permits investigation of other trap
geometries [49] and more realistic interatomic interactions.
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