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An analytic three-channel model is developed for the description of simultaneous direct and indirect dissociative
recombination (DR) cross sections of molecular ions with electrons. The model is formulated in terms of three
parameters describing the interactions between the electron-ion entrance channel e, the dissociation channel d ,
and an “active” quasibound molecular Rydberg channel a and yields resonance-averaged cross sections for low
incident electron energies. The relative magnitudes of the parameters determine (i) the height of the downward
steps at the ion vibrational thresholds and (ii) the relative contributions of the direct and indirect processes. The
model is intended to serve for the empirical analysis of observed DR cross sections, and in particular it allows
the assessment of the extent to which reionization of the capture complex competes with dissociation. The model
is applied to the DR of H3

+ and HCO+.

DOI: 10.1103/PhysRevA.86.062706 PACS number(s): 34.10.+x, 34.80.Lx, 33.20.Wr

I. INTRODUCTION

The dissociative recombination of molecular ions with
electrons is an important process in interstellar medium and
plasmas. Bates [1] originally envisioned this process as being
due to a direct coupling between the ionization (entrance)
channel and the dissociation (exit) channel. In his theory these
are represented by potential energy curves pertaining to the
relevant nuclear reaction coordinate, namely, the electronic
potential energy curve of the ion for the entrance channel
and the potential curve describing the dissociating neutral
particles in the exit channel. The DR process is favored
when the dissociative curve crosses the ion curve near its
minimum. It was many years after Bates’s seminal work when
Bardsley [2] (see also Ref. [3]) recognized that in some systems
no such favorable crossing occurs, but the DR process still
proceeds via an indirect two-step mechanism. The indirect
process involves resonant capture of the colliding electron in
a quasibound Rydberg series of the neutral species, followed
by predissociation into neutral fragments.

Indirect processes are characterized by conspicuous down-
ward steps or “kinks” of the DR cross section near the conver-
gence threshold of the active quasibound Rydberg series [6,7].
Such kinks turn out to be rather widespread in many larger
systems including even small molecular clusters [7], to the
extent that one may wonder whether the original assumption
should be revised, according to which the prevalence of
a direct process would be the “normal” situation, whereas
the indirect process is exceptional. The kinks stand out in
experimental cross-sectional plots and appear conspicuously
as steps because in most cases the experimental energy
resolution has not been sufficient to resolve the Rydberg
structure of the vibrationally excited capture states. To date
H2

+ and H3
+ are the only exceptions where it has been possible

to resolve a few of these resonances experimentally.
Previous theoretical treatments of indirect processes in

polyatomic systems [4–8] therefore focused on the DR cross

section, 〈σ 〉, averaged over the Rydberg resonances. This
simplified approach was based on the Breit-Wigner (BW)
formula, and it was assumed that once the electron is captured
the compound molecule immediately dissociates and there is
no possibility for it to reionize by re-ejecting the electron into
the electronic (ionization) continuum. Thus the capture process
is the rate-determining step and is the only one that needs to
be considered explicitly. Further it was assumed that above
the vibrational threshold where the active Rydberg series has
terminated, the capture probability and therefore also DR cross
section σ drop to zero. Both these assumptions correspond to
extreme situations and are not exactly verified in real quantum
systems.

The physical reasons for the kinks to appear are twofold.
First, the incoming electron is likely to be re-ejected into the
newly opened ionization channel and dissociation is therefore
decreased. Second, despite the presence of Rydberg series
associated with higher vibrational thresholds, these are in fact
not directly coupled to the electronic continuum associated
with the ground-level ion and therefore cannot efficiently
capture the electron. (We have verified this point with numer-
ical multichannel scattering calculations in which the �v = 2
coupling was arbitrarily set to zero or alternatively to a large
value, while the �v = 1 couplings were kept fixed at a large
value. The kink was present in the first case but disappeared
in the second situation.) The coupling is weak since now the
ion core has to take up two (or more) quanta of vibrational
energy, a process which is essentially forbidden owing to the
�v = 1 propensity rule [9,10]. The propensity rule states that
in electron-vibrating-ion collisions the nonadiabatic energy
exchange between the continuum electron and the vibrating
ion essentially proceeds via the route involving the smallest
possible change of the vibrational quantum number v of the
ion, with the �v = 1 process very strongly favored when
energetically possible. The validity of this propensity rule has
been verified in great detail experimentally and theoretically in
the Rydberg states of H2 [10,11] and many other systems [12].
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The analytic expressions for the resonance-averaged DR
cross section used in Refs. [5–7] read

〈σ 〉 = 4πr

k2
(πμea)2, ε = 1

2
k2 � E+

a ,

(1)

σ = 0, ε = 1

2
k2 > E+

a .

Here k is the wave number of the incident electron in inverse
bohr units, a−1

0 , r is the multiplicity ratio which implies
averaging over the degeneracy of the initial electron + target
ion state and summing over the degeneracy of the final
molecular state, ε is the energy of the incident electron in
atomic units [i.e., ε = E/(h̄2/ma2

0), where m is the electron
mass and E is in SI units], E+

a is the convergence threshold
of the active Rydberg channel, and μea is a dimensionless
quantum defect matrix element connecting the continuum
entrance channel e to the active Rydberg channel a. πμea is
the associated electron-ion phase shift matrix element relevant
for the capture process. In Refs. [6,7] it proved possible to
derive the quantum defect μea from bound-state Rydberg
spectroscopic information, using the fact that quantum defects
typically vary slowly with energy and thus have very nearly
the same values below and above the threshold.

Figure 1 illustrates the application of Eq. (1) to the
dissociative recombination of H3

+ [6] (dot-dashed and full
curves, green online). The kink at the v2

+ = 1 threshold is
clearly exhibited by the experimental data, and, as pointed out
in Ref. [13], a second smaller step appears also at the v2

+ = 2
threshold. Equation (1), implemented with the parameter μea

deduced from bound-state Rydberg spectroscopy [6,13], is
seen to reproduce the observed [14,15] rate coefficient (cross
section times electron velocity) quite well, in particular when
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FIG. 1. (Color online) e−-H3
+ dissociative recombination rate

coefficients. Squares (black) and circles (red online): TSR (Ref. [14])
and CRYRING (Ref. [15]) experiments. Dot-dashed curve (green
online): Eq. (1) (after Ref. [6]) unconvolved; full curve (green online):
Eq. (1) convolved with �E⊥ = 1 meV, �E‖ = 0.04 meV. Dotted line
(blue online): three-channel model [Eq. (20)] unconvolved; dashed
line (blue online): three-channel model convolved. Note that the
previous all-degrees-of-freedom computations of dos Santos et al.
[16] and Petrignani et al. [17] (not shown here for clarity) produce
excellent agreement throughout the energy range shown, including
some of the resonance structure.

the spread of electron energies present in the experiments is
taken into account (full curve, green online). The agreement
demonstrates that the DR process in H3

+ is essentially a
�v2

+ = 1 process, governed by the propensity rule mentioned
above. However, Eq. (1) does not reproduce the finite step
height seen at the v2

+= 1 threshold because the Breit-Wigner
theory does not account for the continuum-continuum interac-
tions between the channels e and a above Ea

+. It is important
to note that the all-degrees-of-freedom computations of dos
Santos et al. [16] and Petrignani et al. [17] (not shown here
for clarity) achieve excellent agreement with experiment both
below and above the v2

+ = 1 threshold, including some of the
resonance structure.

In this paper we develop a three-channel analytical model
for Rydberg averaged DR cross sections where these extreme
conditions are relaxed and where in addition the possibility
is provided for indirect and direct processes to be present
simultaneously. The development is intended, first of all, as
a test of the Breit-Wigner formula, Eq. (1). It should also be
of use as an empirical tool for the interpretation of observed
DR cross sections in situations where a full many-channel ab
initio treatment of DR has not yet been implemented or is
not possible at all at this time. We use Eq. (1) as a reference
expression with which the more refined expressions derived
below are compared.

II. THEORETICAL CONSIDERATIONS

A. Theoretical model

Figure 2 depicts the model channel structure which we
are considering here. The entrance channel e is defined by the
recombining ion in the vibrational state ve

+ (typically ve
+ = 0

in a cold environment like the interstellar medium) and the
incoming electron electron with energy ε and wave number
k in a given partial wave. The exit channel d corresponds to
the dissociating fragments A and B, which may be atoms or
neutral molecules. The active Rydberg channel a corresponds
to an excited ion state, typically va

+ = 1, and represents the
entrance channel for an indirect process in the sense that
its coupling to e is favored by the �v+ = 1 rule. In our
discussion channels e and d are open by definition, whereas the
active Rydberg channel a may be closed (energy range below
Ea

+) or open (energy range above Ea
+, cf. Fig. 2). In the

following we call an “indirect” process one which proceeds
via the intermediate Rydberg channel a whether or not the
latter is closed. This corresponds to the spirit of multichannel
quantum defect theory, which aims at treating open and closed
channels on the same footing. Bardsley, in his work on indirect
processes [2], considered only the bound portion of the active
Rydberg series.

The channel structure represented in Fig. 2 is generic as it
includes the minimal number of channels required to formally
describe simultaneous direct and indirect DR processes. In
a real molecule, of course, further Rydberg channels also
exist which are associated with higher vibrational thresholds
va

+ = 2, 3, . . . . These may produce Rydberg structures in
the energy region of interest here and may, for example, via
a sequence of �v+ = 1 interactions, mediate the transition
to the exit channel d. In a large polyatomic molecule there
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FIG. 2. (Color online) Three-channel model for dissociative
recombination in a molecule, including an entrance-electron–
molecular-ion channel e, a dissociation channel corresponding to
fragmentation into neutral atomic and/or molecular fragments d , and
an “active” quasibound Rydberg channel a (schematic). Continua
are indicated by hatching, while bound levels are represented by
horizontal bars. The two ion thresholds Ee

+ and Ea
+ correspond to

ions in the vibrational ground and first excited states, respectively. The
incident electron energy is zero (ε = 0) for E = Ee

+. μij (i,j = e,a,
and d) are quantum defect matrix elements connecting the channels
(double arrows, red online). ζij = tan πμij are the related reaction
matrix elements. The channel couplings are assumed to be the same
throughout the energy range shown. Dashed arrows (blue online)
denoted by 〈σ 〉 and σ refer, respectively, to the resonance-averaged
DR cross section below and the continuum cross section above the
threshold Ea

+.

may be an analogy with the phenomenon of intramolecular
vibrational redistribution (IVR) (see, e.g., Ref. [18]), in that
once the electron is captured, the system rapidly passes into
the large manifold of vibrational degrees of freedom, before
it eventually finds the way to the exit channel. The effect of
these multistep interactions is lumped together in the effective
coupling μad (cf. the figure), which is directly related to the
predissociation partial widths �d of the a Rydberg resonances.
Similarly, the coupling μea is related to the autoionization
partial widths �e of the resonances [cf. the figure and Eq. (25)].
These considerations indicate that the effective three-channel
scenario depicted in Fig. 2 is a reasonable starting point for an
analytical model.

B. Basic expressions

The DR cross section is expressed in terms of the relevant
scattering matrix element as

σed = πr

k2
|Sed |2, (2)

where, as above, k is the wave number of the incident electron.
Our task here is to evaluate Sed in terms of the channel

couplings between the three channels. Following Seaton [19],
these latter may be expressed in terms of a quantum defect
matrix μ or in terms of the equivalent real reaction matrix
K = tan π μ. The reaction matrix may be redefined in terms
of cos- and sin-type matrices instead of tan, according to

K = SC−1. These define the so-called complex Jost matrices,

J+ = C + iS, J− = C − iS, (3)

which in turn yield the generalized scattering matrix X

X = J+(J−)−1. (4)

The generalized scattering matrix may contain closed, c, as
well as open, o, channels; that is, it has a block structure:

X =
(

Xoo Xoc

Xco Xcc

)
. (5)

Finally, the physical scattering matrix is obtained after
application of asymptotic boundary conditions to the closed
channels, requiring that the closed-channel components of the
wave function vanish at infinity. This is done by standard
procedures [19] and yields

S = Xoo − Xoc

1

Xcc − e−2iπν
Xco. (6)

Here ν is in general a diagonal matrix consisting of the effective
principal quantum numbers of all closed channels. In the
present case only the active Rydberg channel may be closed
(energy region lower than Ea

+), and we have the single value
νa = [(E+

a − E)/Rhc]−1/2 where R is the Rydberg constant.
The oscillating term e−2iπν in Eq. (6) produces an infinite
number of resonances in the scattering matrix, which represent
an infinite series of quasibound Rydberg states embedded in
the continua. In this work we focus on the DR cross section
averaged over the resonances. According to Gailitis [19,21]
one has, instead of Eq. (6), in our three-channel situation with
a single closed channel (energy range Ee

+ � E � Ea
+ in

Fig. 2),

〈|Sed |2〉 = |Xed |2 + |Xea|2|Xad |2
|Xea|2 + |Xad |2 . (7)

For energies E � Ea
+ the second term of Eq. (7) is absent

and one uses directly the appropriate element |Sed |2 = |Xed |2
in the cross section expression (2).

C. Construction of the generalized scattering matrix

The X matrix connecting ionization and dissociation chan-
nels required to implement Eqs. (2) and (7) may be constructed
fully in a single step [16,22,23]. Alternatively it may be set up
by means of techniques pioneered by Giusti [24], in two (or
more) steps, by successively adding the interactions between
the relevant channels. We use here this latter technique,
which is particularly well adapted to indirect DR processes
in polyatomic molecules mediated by vibronic Renner-Teller
(RT) and Jahn-Teller (JT) interactions. Such interactions are
exactly zero for certain nuclear geometries—for instance
the linear configuration in HCO or the equilateral triangular
configuration in H3—and are therefore naturally introduced in
a separate step. Giusti’s two-step approach has been widely
used for the description of direct processes mediated by
electronic Rydberg-valence state interactions (configuration
interaction). A recent example is afforded by the work of
Waffeu Tamo et al. on the DR of HD+ [25].
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In the two-step approach one starts out from a zero-order
generalized reaction matrix K(1) to which one adds a further
reaction matrix K(2) arising from a residual interaction (e.g.,
the dissociative Rydberg-valence coupling or the RT or JT
effects induced by distortion of the molecule). The total
reaction matrix K(total) is not simply the sum; in other words,
K(total) �= K(1) + K(2). Instead, K(1) and K(2) must be combined
by use of the eigenvector matrices of K(1) and K(2), with
elements U

(1)
iγ and U (2)

γα , respectively, and eigenvalues tan πμγ

and tan πμα . Eigenchannel Jost-type matrices analogous to
Eq. (3) are then defined with elements Jiα

± = Uiαe±iπμα , and
the elements of the scattering matrix X(total) become [26]

X
(total)
ii ′ =

∑
γ γ ′

U
(1)
iγ eiπμγ

[ ∑
α

U (2)
γαe2iπμαU

(2)tr
αγ ′

]
eiπμγ ′ U

(1)tr
γ ′i ′ .

(8)

Note that when the zeroth-order reaction matrix K(1) is
diagonal, one has Uiγ = δiγ and the sums over γ and γ ′ in
Eq. (8) may be dropped. The off-diagonal element X

(total)
ed

which is of interest here is then independent of the zeroth-order
quantum defects μγ . In what follows μij refers to (real)
quantum defect matrix elements in all cases, while μα or γ

refers to eigen-quantum defects. We designate the real reaction
matrix elements pertaining to one particular step by lowercase
symbols ζij ≡ tan πμij in order to distinguish them from their
counterparts in the total reaction matrix, K(total). Similarly,
symbols ξ are used to denote complex matrix elements of a
Jost matrix pertaining to one particular step of the treatment.

D. General structure of the two-step, three-channel problem

We define the reaction matrix (first step) connecting the
asymptotic channels e, a, and d in such a way that only
coupling between the Rydberg channels e and a is included
and coupling with the dissociation channel d is ignored:

K
(1)
ii ′ =

⎛
⎜⎝

e a d

e ζee ζea 0

a ζae ζaa 0

d 0 0 0

⎞
⎟⎠. (9)

As already stated the elements ζij are real. According to Eq. (8)
the corresponding Jost matrices have the formal structure

J(1)
iγ = U

(1)
iγ eiπμγ =

⎛
⎜⎝

γ = 1 2 3

e cos δ eiπτ1 sin δ eiπτ2 0

a − sin δ eiπτ1 cos δ eiπτ2 0

d 0 0 1

⎞
⎟⎠.

(10)

Here δ is a phase angle which accounts for the interac-
tion between e and a, and πτ1, πτ2, and πτ3 = 0 are
the corresponding eigenphases πμγ defined by tan πμγ =
U(1)trK(1)U(1) (eigenphase-shift matrix πμγ ). δ, τ1, and τ2 are
specified below in the context of Rydberg vibronic coupling.

Following Ref. [24] we define the reaction matrix K(2)

describing the dissociation process as follows:

K
(2)
ii ′ =

⎛
⎜⎝

e a d

e 0 0 ζed

a 0 0 ζad

d ζed ζad 0

⎞
⎟⎠ . (11)

The reaction elements ζ are again real and describe the cou-
pling of the Rydberg channels to the dissociation continuum
d. The associated eigenvector matrix is

U
(2)
iα =

⎛
⎜⎜⎝

α = 1 2 3

e 1√
2

cos β sin β 1√
2

cos β

a − 1√
2

sin β cos β − 1√
2

sin β

d − 1√
2

0 1√
2

⎞
⎟⎟⎠, (12)

and the diagonalized matrix tan πμα = U(2)trK(2)U(2)

(eigenphase-shift matrix πμα) is⎛
⎜⎝

− tan πτd 0 0

0 0 0

0 0 + tan πτd

⎞
⎟⎠, (13)

where

tan β = −ζad

ζed

, tan πτd =
√

ζ 2
ed + ζ 2

ad . (14)

Here β is a channel mixing angle and ±πτd are the eigenphases
induced by dissociation. Note that Eq. (8) actually requires
the eigenvectors of the matrix K(2)

γ γ ′ = U(2)(tr)
γ i K(2)

ii ′ U
(2)
i ′γ ′ rather

than those of K(2)
ii ′ itself, but this additional transformation

does not change the structure of Eq. (11); one merely has to
make the substitutions ζed → (ζed cos δ − ζad sin δ) and ζad →
(ζed sin δ + ζad cos δ) in Eqs. (11) and (14), respectively.

E. Elements of the X matrix

The relevant matrix elements of the matrix X(total) are readily
evaluated from Eq. (8), by combining Eqs. (10), (12), and (13),
to be

X
(total)
ed = sin(2πτd )

[
− cos(δ − β) sin

(
π

τ1 − τ2

2

)

+ i cos(δ + β) cos

(
π

τ1 − τ2

2

)]
,

X
(total)
ad = sin(2πτd )

[
+ sin(δ − β) sin

(
π

τ1 − τ2

2

)

− i sin(δ + β) cos

(
π

τ1 − τ2

2

)]
,

X(total)
ea = sin2(πτd )[cos 2δ sin 2β

+ sin 2δ cos 2β cos π (τ1 − τ2)]

− i cos2(πτd )[sin 2δ sin π (τ1 − τ2)]. (15)

[A phase factor eiπ(τ1+τ2)/2 common to all elements and
irrelevant for the cross sections has been omitted from
Eq. (15).] For given matrix elements ζee, ζaa , ζea , ζed , and
ζad , the matrices K(1) and K(2) may be diagonalized, the
eigenphases πτ1, πτ2, and πτd as well as the mixing angles
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δ and β determined, and hence the elements X(total) evaluated.
These may then be used to evaluate the averaged cross section
by means of Eq. (7).

F. Rydberg vibronic coupling

In vibronic frame transformation quantum defect theory
[27] for a specific vibrational mode with associated coordinate
ρ, the eigenvalues of the reaction matrix K consist of the
continuous infinite set tan πμ(ρ), where μ(ρ) is the geometry-
dependent fixed-nuclei quantum defect function. The eigen-
vector matrix consists of the elements 〈v+|ρ〉 ≡ χv+ (ρ), which
are just the set of target vibrational wave functions associated
with ρ. In Eq. (8) we may therefore set

Uiγ eiπμγ = 〈v+|ρ〉eiπμ(ρ). (16)

Instead of using Eq. (16) directly, we remove the continuous
eigen-channel set by integrating over ρ [24,26]. We thus
consider integrals

ξv+v = 〈v+|eiπμ(ρ)|v〉, (17)

which define a complex unitary matrix of infinite order. The
set of vibrational wave functions χv(ρ) may in principle
correspond to any potential energy curve [27], but we take
it here to coincide with the set of relevant target vibrational
wave functions χv+ (ρ). The notation v instead of v+ is used
merely for formal distinction of the asymptotic channels i and
the channels γ . In our specific problem (cf. Fig. 2) we retain
only the two vibronic channels e = v+ = 0 and a = v+ = 1,
and correspondingly we use v = 0 and v = 1.

While the matrix defined by the elements of Eq. (17) is
unitary and could serve as the Jost matrix J(1)

iγ , Eq. (10), the
unitarity is actually lost when only two functions of the infinite
vibrational basis are retained, as is done here. We therefore set
up the reaction matrix K(1) directly in terms of the elements
ζv+v = 〈v+| tan πμ(ρ)|v〉 [closely related to Eq. (17), with
v+,v taking the values 0 and 1], diagonalize it, and thus
obtain the phase angle δ and the eigenphases πτ1 and πτ2.
The unitarity of J(1) is preserved by this procedure. This is
done in Sec. II G.

G. Linear harmonic approximation

The v+ = 0 and 1 vibrational wave functions are usually
well approximated by those of the harmonic oscillator. (Highly
floppy systems are exceptions which we do not consider here.)
At the same time the quantum defect μ(ρ) may be expanded
for small vibrational amplitudes according to μ(ρ) ∼ μ(ρ =
ρe) + ∂μ

∂ρ
|ρ=ρe

(ρ − ρe), where ρe is the equilibrium value of the
coordinate ρ. Expanding in addition the tan function linearly
around ρe, we have [cf. Eq. (9)]

ζee = ζaa ∼ tan πμ(ρe),
(18)

ζea = ζae ∼ π
∂μ

∂ρ

∣∣∣∣
ρ=ρe

〈v+ = 0|ρ − ρe|v = 1〉.

Here well-known analytic expressions for a one- or two-
dimensional oscillator may be substituted for the vibrational
integral appearing in the second line of Eq. (18). With Eq. (18)
the eigenvalues of K(1) become tan πτ1 or 2 = ζee ± ζea and
we have δ = π/4. In the following we remove the common

diagonal elements ζee = ζaa from the matrix K(1) as they do
not contribute to the scattering matrix element Sed which we
determine here.

III. LIMITING CASES

A. Dominating indirect coupling, no direct coupling: ζed = 0

We first examine the situation of vanishing direct coupling,
which was assumed in Refs. [5–7], and we use the linear
harmonic approximation. This situation may be applicable
when no potential surface crossing with a dissociative state
occurs near the equilibrium geometry of the recombining ion,
and therefore ζed ≈ 0. ζad , on the other hand, may differ
from zero because the vibrationally excited wave function
extends farther in configuration space so that Franck-Condon
factors are more favorable, or else because vibronic coupling
effects are stronger when the vibrational excitation increases.
When ζed = 0, Eqs. (14) yield β = π/4 and tan πτd = ζad .
Equations (15) then give

X
(total)
ed = − ζea√

1 + ζ 2
ea

2ζad(
1 + ζ 2

ad

) ,

X
(total)
ad = −i

1√
1 + ζ 2

ea

2ζad(
1 + ζ 2

ad

) , (19)

X(total)
ea = −i

2ζea(
1 + ζ 2

ea

) 1(
1 + ζ 2

ad

) .

Substituting ζij → tan(πμij ) we obtain from Eq. (7)

〈σ 〉 = 4πr

k2
sin2(πμea)

[
sin2(πμad ) cos2(πμad )

1 − cos2(πμea) cos2(πμad )

]

≡ 4πr

k2
sin2(πμea)F (ea), ε = 1

2
k2 � E+

a ,

σ = 4πr

k2
sin2(πμea)[sin2(πμad ) cos2(πμad )]

≡ 4πr

k2
sin2(πμea)G(ea), ε = 1

2
k2 > E+

a . (20)

The two Eqs. (20) may be compared with the averaged
Breit-Wigner expression, Eq. (1). The factors F (ea) and G(ea),
defined by the second identity of each expression, play the
role of correction factors to the corresponding Breit-Wigner
result, Eqs. (1), which for sin(πμea) ≈ πμea correspond to
F (ea) = 1 and G(ea) = 0. These correction factors account for
the reionization processes occurring after capture, neglected
in the Breit-Wigner theory.

The quantity σ/〈σ 〉 = G/F tells us by which factor the
cross section is reduced when the energy passes through the
threshold E+

a . We define the relative height of the downward
step which occurs at the threshold E+

a of the active Rydberg
channel as

H = 1 − σ

〈σ 〉 = 1 − G(ea)

F (ea)
= cos2(πμea) cos2(πμad ). (21)

The Breit-Wigner theory predicts the cross section will drop
to zero at E+

a , that is, H = 1 in this case.
Figure 3 [left-hand panels (a) and (c)] displays the factors

F (ea), G(ea), and H obtained with the three-channel model for
ζed ≡ tan(πμed ) = 0 [Eqs. (20) and (21)], plotted as functions
of the coupling to dissociation, μad , for various values of
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FIG. 3. (Color online) Top panels (a) and (b): Correction factors F and G. Bottom panels (c) and (d): Relative height H of the downward
step at the v+ = 1 threshold. F and H are plotted as functions of the coupling strength to the dissociation continuum, for various values of
the capture strength μea : μea = 0.01 full black line, 0.05 dashed line (blue online), and 0.10 dot-dashed line (red online). The factors G are
indicated by long-dashed lines. Left panels (a) and (c): pure indirect process. The Breit-Wigner values F (BW ), G(BW ), and H (BW ) are
indicated by dotted lines (in the appropriate colors online) in panels (a) and (c). Right panels (b) and (d): pure direct process. Note the difference
of the scales of panels (c) and (d). See the text for further details.

the capture quantum defect, μea . For comparison the figure
also shows the values obtained in the framework of the
Breit-Wigner theory, including refinements of Eq. (1) derived
in Ref. [7] for values of |μad | comparable or smaller than
|μea|. We discuss this situation first. When |μad |  |μea|,
dissociation is so weak that the captured electron reionizes
before having a chance to pass into the dissociation channel.
F (ea) therefore tends to zero in this limit, as is also predicted
by the refined Breit-Wigner model. When |μad | ≈ |μea| one
has F (ea) ≈ 0.5, an interesting result, again obtained both
in three-channel model and the Breit-Wigner formalism [7].
Turning now to situations where |μad | � |μea|, we see from
Fig. 3 that the Breit-Wigner theory is reliable when the
vibronic coupling term |μea| is quite small and |μad | is
also rather small. The assumption |μad | � |μea| underlying
Eq. (1) turns out to be not very stringent: Indeed, we see that
|μad | ≈ 2 to 5 × |μea| (the best value depends on μea) yields
the best agreement with the BW expression. By contrast, when
the coupling |μad | gets very strong, counterintuitive nonlinear
multichannel effects quickly take over, enhancing reionization
and causing the correction factor F (ea) to fall progressively
further below unity. At the same time G(ea) (which would be
zero according to the BW theory) increases, thereby rapidly
diminishing the step height H .

These findings do not severely limit the applicability of
Eq. (1), because vibronic coupling in molecules tends to be
intrinsically rather weak so that in effect real systems always

correspond to situations close to the abscissas in Fig. 3. The
Jahn-Teller effect in H3 with μea = 0.052 [6] [corresponding
very nearly to the dashed curves (blue online) in Figs. 3(a) and
3(c)] is indeed an example of an exceptionally strong vibronic
effect. The practical use of Fig. 3 is illustrated in Sec. V A
below with the example of H3

+ recombination.

B. Dominating direct coupling, no indirect coupling: ζad = 0

This situation is the exact opposite of that discussed in
Sec. III A: An electronic surface crossing with a dissociative
state occurs near the equilibrium geometry of the ion in such a
way that the Franck-Condon factors yield a much larger value
for ζed than for ζad . In this case, where the direct coupling
dominates and the active Rydberg series is not coupled to
the dissociation continuum, Eqs. (14) yield β = −π/4 and
tan πτd = ζed . Equations (15) then give

X
(total)
ed = i

1√
1 + ζ 2

ea

2ζed(
1 + ζ 2

ed

) ,

X
(total)
ad = ζea√

1 + ζ 2
ea

2ζed(
1 + ζ 2

ed

) , (22)

X(total)
ea = −i

2ζea(
1 + ζ 2

ea

) 1(
1 + ζ 2

ed

) .
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The analog of Eqs. (20) now becomes

〈σ 〉 = 4πr

k2
sin2(πμed )

[
cos2(πμea) cos2(πμed )

1 − sin2(πμea) cos2(πμed )

]

≡ 4πr

k2
sin2(πμed )F (ed), ε = 1

2
k2 � E+

a ,

σ = 4πr

k2
sin2(πμed ) [cos2(πμea) cos2(πμed )]

≡ 4πr

k2
sin2(πμea)G(ed), ε = 1

2
k2 > E+

a , (23)

and the relative step height is given by

H = 1 − σ

〈σ 〉 = 1 − G(ed)

F (ed)
= sin2(πμea) cos2(πμed ). (24)

The factors F (ed), G(ed), and H for the case of a dominant
direct coupling of the entrance channel to the dissociation
continuum are plotted in the right-hand panels (b) and (d)
of Fig. 3 as functions of the coupling to dissociation, μed ,
for various values of the capture quantum defect, μea . We
see, not surprisingly, that capture processes into the Rydberg
channel have little influence in this situation, even though
a small downward step may also occur when |μea| is large
[dot-dashed curve (red online) in Fig. 3(d)]. Again, as we have
seen for the case of indirect processes [panels (a) and (c) of
Fig. 3], real situations correspond to rather small values of the
effective interactions, typically well below ≈0.2. For instance
the electronic coupling μed dominating the DR of the NO+
ion—one of the classic examples of a strong Rydberg-valence
direct interaction which yields no step feature at all—is known

to amount to μed = 0.063 only [28], a value situated close to
the abscissa in the panels (b) and (d) of Fig. 3, where F (ed) and
G(ed) are close to unity.

IV. INTERMEDIATE SITUATIONS

The expressions (15) together with the linear harmonic
approximation, Eq. (18), can be used to evaluate averaged
DR cross sections by means of Eq. (7) for intermediate
situations where both the direct and indirect processes are
present, that is, ζed �= 0 and simultaneously ζad �= 0. In an
intermediate situation we may compare the calculated cross
section both with the limiting expression (4πr/k2) sin2(πμea)
as well as with (4πr/k2) sin2(πμed ), and hence alternatively
define correction factors F (ea) and F (ed) (and, of course, the
corresponding quantities G(ea) and G(ed)). Large deviations of
F (ea) or F (ed) from unity then tell us whether the direct or
indirect process tend to dominate. The relative step height
is always given by H = 1 − σ/〈σ 〉, that is, in terms of
the ratio of the continuum cross section above the v+ = 1
threshold divided by the resonance-averaged cross section
below.

Figure 4 is a chart intended to allow the assessment of the
relative importance of the indirect and direct DR processes,
respectively, based on observed relative step heights and cross-
sectional values. The figure presents an array of plots of the
correction factors F (ea), F (ed), and relative step heights H , as
functions of the coupling strength μed , for various assumed
values of the Rydberg capture coupling, μea , and Rydberg
dissociative coupling, μad . Each plot corresponds for μed = 0
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FIG. 4. (Color online) Correction factors F and relative step heights H in intermediate situations (μad �= 0, μed �= 0) as functions of the
direct coupling strength μed . Top row of panels: correction factors F (ea) for various values of μea and μad , as indicated. Second row of panels:
corresponding correction factors F (ed). Bottom row of panels: relative step heights H . See the text for details.
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to the situation discussed in Sec. III A above and approaches
for increasing values the situation discussed in Sec. III B.

The array of plots as a whole indicates in a quantitative
manner how the direct process takes over as μed increases.
Basically, we see that for small values of μed the correction
factor F (ea) is near unity or not too far from it, whereas for
increasing μed typically we find F (ea) � 1. The correction
factor F (ed) behaves in the opposite way: For small values of
μed it is �1, whereas it approaches values not too far from
unity for larger μed . We further see that as the Rydberg capture
coupling μea becomes larger, the indirect process resists
the competition of the increasing direct process longer. At
the same time the remarks made in Sec. III A concerning the
relative magnitudes of μea and μad remain valid: μad must be
larger than μea for the indirect process to remain significant.
The horizontal lines (green online) in the top and second rows
of panels in Fig. 4 indicate the values F = 1. Whenever the
curves F (ea) or F (ed) approach these lines, this means that
the predicted resonance-averaged cross section 〈σ 〉 is near the
value (4πr/k2) sin2(πμea) and/or (4πr/k2) sin2(πμed ). The
use of Fig. 4 is illustrated in Sec. V B below with the example
of HCO+ dissociative recombination.

V. DISCUSSION

A. Dissociative recombination of H3
+

It is instructive to re-examine the DR of H3
+ to which the

Breit-Wigner expression, Eq. (1), has been applied previously
[6]. H3

+ is a good example of a pure indirect process implying
ζed ≈ 0, as we know since the important work of Kokoouline
et al. [29]. The recent experimental data of Kreckel et al. taken
at the ion storage ring Test Storage Ring (TSR) [14] indicate
that the DR cross section falls very nearly by one order of
magnitude at the v2

+ = 1 threshold of H3
+. This is borne out

in their Fig. 7 (see also the present Fig. 1), which also shows
that their data are consistent with the earlier CRYRING data
from Ref. [15]. In terms of our present definitions this means
that the observed relative step height amounts to H ≈ 0.9.
Within the framework of the present three-channel model the
value μea = 0.05 used in Ref. [6] implies, together with this
value for H , that μad ≈ 0.10, a value just twice as large as μea .
This may be inferred by inspection from Fig. 3(c) (dashed
curve, blue online). Further, the dashed curve (blue online)
in Fig. 3(a) indicates that for this case we have F ≈ 0.75.
This in turn means that the cross section below the threshold
predicted by the three-channel model would be ≈25% lower
than the value predicted by Eq. (1).

We may summarize the situation by saying that based on
the present three-channel model and the observed relative step
size at 0.313 eV, we find that (i) we can get an estimate of
the value μad of the coupling of the active Rydberg series
to the dissociation continuum, and on the other hand, (ii), for
electron energies lower than 0.313 eV the three-channel model
predicts a cross section lower by about 25% than what was
predicted in Ref. [6]. Such a reduction appears as a rather
minor effect on a logarithmic plot such as generally used
for the representation of DR measurements spanning several
orders of magnitude. We nevertheless note that a very recent
re-evaluation of the Jahn-Teller effect in H3 [13] indicates

that the value μea was underestimated in Ref. [6] and that
their cross section values should be increased by about 15%.
This partially compensates for the reduction due to inclusion
of reionization in the three-channel model. We thus conclude
that the three-channel model appears to be consistent with
experimental DR measurements and with the value for μea

deduced from H3 bound-state spectroscopy [6], if we assume
a value μad ≈ 0.1. Figure 1 (dashed curves, blue online) shows
that the rate coefficient as a function of the energy evaluated
by means of Eq. (20) (with the updated value of μea [13] and
the value of μad determined here) indeed fits the observed
step height reasonably well. The second step near v2

+ = 2,
however, is not reproduced by the three-channel treatment
as it involves �v2

+ = 2 interactions, which we ignore here.
We stress once again that the coupling μad estimated here is
an effective quantity, which in fact is likely be the result of
multistep interactions between the active channel a and the
dissociation channel d, via a chain of intermediate Rydberg
channels a′, a′′, . . . involving increasing vibrational excitation.

B. Dissociative recombination of HCO+

The Breit-Wigner expression Eq. (1) was applied to
the dissociative recombination of HCO+ a few years ago,
assuming that the mechanism driving the process is the
pπ ∼ sσ interaction induced by Renner-Teller coupling when
the target ion bends [4,5]. However, the recombination rates
predicted in this way were by about a factor 2 to 6 below
the observed rates of Refs. [30,31]. At the same time only a
very small step, if any, is apparent at the v2

+ = 1 threshold of
HCO+ at ε = 0.103 eV, as shown in particular by Fig. 4 of
Ref. [32]. This raises the question of whether a direct process
might also contribute. HCO+ is isoelectronic with NO+, and
similar electronic Rydberg-valence interactions like in NO
must also exist in HCO, while the Renner-Teller interaction,
a strong vibronic nonadiabatic effect, is of course absent in
diatomic NO. The corresponding surface crossings may be
less favorable in HCO than in NO for the occurrence of a
significant direct DR process. Indeed, Larson et al. [33], in
their ab initio calculations, did not find a favorable crossing
between the HCO+ ground state and the dissociative 2A′ state
of HCO. On the other hand, the absence of a surface crossing
does not necessarily mean that there is no direct DR process,
as is known from the example of CH+ [34]. New theoretical
calculations by Larson et al. [32] take account of direct as well
as indirect (Renner-Teller) processes in HCO but do not cover
the low energy range �0.103 eV that we are interested in here.

These discrepancies prompt us to use our present parametric
three-channel approach in order to estimate what coupling
strength μed would be required to bring experiment and theory
into agreement at low energies. The Rydberg capture coupling
has been evaluated in Ref. [5] from Rydberg spectroscopic
data to be about μea = 0.02. (Actually, two capture processes,
mediated by Renner-Teller sσ → pπ as well as pπ → sσ

coupling, were considered in Ref. [5], which have somewhat
different values, but for simplicity we use here their average.)
Further, as already stated, the thus predicted low-energy
DR cross section is on the average too low by a factor
≈4. Inspection of the curves F (ea) in Fig. 4 for μea = 0.02
indicates that the necessary correction F (ea) ≈ 4 is reached for
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μed ≈ 0.04, almost independently of the value of μad . Careful
inspection of the experimental cross sections reproduced in
Fig. 4 of Ref. [32] further suggests that the small step
barely visible near the v2

+ = 1 threshold corresponds, very
approximately, to H ≈ 0.2. We next examine the predicted
relative step heights for μea = 0.02 in the lowest row of
the plot array of Fig. 4. There it is seen that H ≈ 0.2 is
compatible with μad ≈ 0.05. Therefore we conclude that the
set of values μea = 0.02, μed = 0.04, μad = 0.05 is roughly
compatible with the observations. We stress again, as in the
preceding discussion of H3

+ DR, that the values for μad and
μed estimated here are effective quantities which possibly
are not related in a simple way to corresponding quantities
calculated from first principles.

C. Autoionization and predissociation widths of Rydberg states

The channel interaction parameters estimated in Secs. V A
and V B for H3 and HCO imply autoionization and predissocia-
tion widths of the molecular Rydberg states of the active series
involved in the process. These could in principle be calculated
from the scattering matrix Eq. (6), but we may equivalently
use the Rydberg Fermi Golden rule expression [10]

�j = 2π
2R
n∗3

a

μ2
aj . (25)

Here, �j (j = e or d) is the partial autoionization width
(j = e) or predissociation width (j = d), respectively, while
μaj is the quantum defect matrix element coupling the Rydberg
channel a to the continuum e or d (cf. Fig. 2).R is the Rydberg
constant as before, and n∗

a is the effective principal quantum
number of the individual member of the active Rydberg series
considered. The total width is then � = �e + �d . For our
estimates we assume that the autoionized and predissociated
Rydberg level is not mixed, that is, that it corresponds
purely to v2

+ = 1 or 0. Further, we ignore rotational motion
which (via the appropriate frame transformation) also affects
the resonance widths. Table I lists a few partial and total
level widths estimated by means of Eq. (25) and compares
them with values estimated on the basis of optical-optical
double-resonance Rydberg spectra published by Helm and
collaborators for H3 [35,36] and by Grant and collaborators
for HCO [37]. These experimental values are not much more
than visual estimates based on the broadest features seen in
the region above the relevant v2

+ thresholds Ee
+. The values

TABLE I. Autoionization and predissociation widths of Rydberg
levels (cm−1).

μea μad μed n∗
a �e �d �e + �d �(expt.)

H3 v2
+ = 1 0.05 0.10 8 7 27 34 3a

20 0.4 1.7 2.1 1b

HCO v2
+ = 1 0.02 0.05 13 0.3 1.6 1.9 0.8c

v2
+ = 0 0.04 13 0 1.0 1.0

aRough estimate based on the spectra plotted in Figs. 7 and 9 of
Refs. [35] and [36].
bRough estimate based on the spectra plotted in Figs. 7(e) and 7(f) of
Ref. [40].
cRough estimate based on the spectrum plotted in Fig. 4 of Ref. [37].

for HCO v2
+ = 0 listed in Table I correspond to the range

E < Ea
+ in Fig. 2, where the channel e is closed and may be

predissociated via the coupling μed .
Table I shows that the observed widths of H3 and HCO are

smaller than those implied by the dissociative recombination
data. For HCO the discrepancy corresponds to a factor
of 2 and may be attributed to the rough nature of our
estimates. For H3 the discrepancy is as large as an order of
magnitude. This disagreement may appear surprising at first
sight, but it should be realized that the strongly predissociated
Rydberg states which drive the DR process are not likely to
appear prominently in the resonantly enhanced multiphoton
photoionization spectra because the population is diverted into
the dissociation channel. In other words, the structures seen
in those spectra are probably for a good part just not the ones
active in DR. This well-known effect has been documented
in detail experimentally [38] and theoretically [39] in the
manifold of triplet gerade Rydberg states of H2. Helm and
collaborators [40] have carried out an experiment on H3 where
they monitored both the ionization and dissociation fragment
channels. This work concerned mostly the s Rydberg channels,
which are not so important for DR, but their Figs. 7(e) and
7(f) show the example of a 20pe′ resonance which is indeed
quite broad and seen most prominently in the dissociation
channel. The discrepancy between the three-channel formula
and the observation is reduced to a factor of 2 in this case
(cf. Table I).

VI. CONCLUSIONS

The three-channel DR model developed here represents
an extension of the two-channel Breit-Wigner model of
Ref. [6] applicable to indirect dissociative recombination at
low electron energies (ε � 0.2 eV). The present refinement
takes account of the following processes which were omitted
in Ref. [6]: (i) Reionization (or autoionization) of the col-
lision complex which may occur after electron capture into
vibrationally excited Rydberg states and which competes with
predissociation leading to DR, and (ii) competition between
direct and indirect DR processes.

Figure 3 of the present paper should be helpful for the
assessment of the accuracy and reliability of the simple
Breit-Wigner approach. It has allowed us here to confirm
the validity—to within about 25%—of the earlier application
to H3 [6]. Figure 4 is designed to help experimentalists
interpret their results and determine the relative importance
of the direct and indirect processes based on the observed
Rydberg resonance-averaged cross section at low energy and
the relative step height H observed near the first vibrational
threshold. We have used it here in order to make a guess at
the relative contributions of the direct and indirect processes
in HCO. Some knowledge of the vibronic coupling parameter
(quantum defect) μea connecting the entrance and the active
electron-ion Rydberg channels is always necessary, but it
turns out that this quantity may be characterized by means of
Rydberg spectroscopy (H3

+, HCO+ [5,6]) or by first principles
calculations (HCO+, H3O+, NH4

+ [4,41,42]), probably more
easily than the elusive interactions with the dissociation
channels.
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By combining experimental DR data with the use of
Figs. 3 and 4 we have been able to extract approximate
values for the dissociative couplings μad and μed in H3

and HCO. We have tested these by estimating autoionization
and predissociation widths of some highly excited individual
Rydberg states in the relevant spectral regions of H3

+ and
HCO. The resonances observed in the published experimental
REMPI experiments are considerably narrower than these
estimates, and we attribute this discrepancy to the fact that
the strongly predissociated Rydberg states which are involved
in the DR process are not likely to be observed in multiphoton
ionization experiments. Beyond the efforts made in Ref. [40],
it would seem worthwhile to test this hypothesis by sys-
tematic double-resonance experiments where the dissociation
channels are monitored and where these resonances should
appear.

It should not be overlooked, of course, that the present
model is set up in terms of a minimal set of effective
channels. We have completely ignored the rotational struc-
ture. Further, in real molecules, multichannel effects may
play an important role, such as shown for the dissociative
recombination of LiH+ by Čurı́k and Greene [43]. Complex
resonances [44] possessing a rich fine structure may be
formed, which permit the exchange of several quanta of
vibrational energy between a slow free electron and an
ion core, rather than just a single one as envisioned here.
Part of these phenomena are effectively included in our
simplified model as discussed in Sec. II A. However, for
instance, the appearance of a second step near v2

+ = 2 in
the experimental spectra of Fig. 1 is a sign of the occurrence
of multichannel effects not taken into account here, as is
the irregularity of the resonance structure seen at lower
energies.

Finally, we stress that the present approach aims at provid-
ing experimentalists studying dissociative recombination with
a tool that allows them to discuss their data in qualitative
or semiquantitative terms and extract information on the
interactions at play without having to resort to sophisticated
large-scale calculations. We hope that this spectroscopy of
dissociative recombination will prove useful in the future.
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