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For a system of two identical fermions and one distinguishable particle interacting via a short-range potential
with a large s-wave scattering length, the Efimov trimers and Kartavtsev-Malykh trimers exist in different regimes
of mass ratio. The Efimov trimers are known to exhibit a discrete scaling invariance, while the Kartavtsev-Malykh
trimers feature a continuous one. We point out that a third type of trimer, “crossover trimers,” exists universally
regardless of short-range details of the potential. These crossover trimers have neither discrete nor continuous
scaling invariance. We show that the crossover trimers continuously connect the discrete and continuous scaling
regimes as the mass ratio and the scattering length are varied. We identify the regions for the Kartavtsev-Malykh
trimers, Efimov trimers, crossover trimers, and nonuniversal trimers in terms of the mass ratio and the s-wave
scattering length by investigating the scaling property and universality (i.e., independence on short-range details)
of the trimers.
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I. INTRODUCTION

Universality and the scaling symmetry are among the
central concepts in physics. While many of the well-known
examples appear in many-body systems, few-body systems
can also show universality and possess exotic scaling features.
A prime example is the Efimov states [1–5]. The Efimov
states are universal three-body bound states which exist for
a three-particle system with short-range interactions when
the s-wave scattering length as between particles is very
large. Their possibility has been discussed in various kinds of
systems, including nucleons [6], nuclear halo systems [7–9],
and three-helium systems [10]. Recently, the first experimental
signature of the Efimov states was observed in ultracold atomic
gases, where the large scattering length can be realized with
the use of Feshbach resonances [3,4].

The Efimov states are known to have two important features
[1,2]. One of them is the discrete scaling invariance: if one
knows the energy level of one Efimov state, the energy levels
of the other Efimov states can be obtained by successively
multiplying the energies by a universal scaling factor, as
illustrated in Fig. 1(b). This discrete scaling invariance origi-
nates from the universal inverse-square three-body attraction
at a hyper-radius R smaller than the s-wave scattering length
(see Ref. [2] for the definition of hyper-radius). This Efimov
attraction has another important consequence known as the
Thomas effect [11]: under this attraction, particles tend to come
closer all the way down to an infinitesimally small distance,
which implies the collapse of the system. In a real system,
however, the interaction between particles has a finite range
with a repulsive core, which prevents such a collapse. One can
take into account this finite-range nature of the potential by
imposing a three-body boundary condition at short distance,
which can be expressed in terms of a single three-body
parameter �. Thus, the Efimov states are characterized by two
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parameters: the s-wave scattering length as , and the three-body
parameter �. Except for these parameters, all the other details
of the interparticle potentials play a negligible role when the
s-wave scattering length is large, and the Efimov trimers can
be described in a universal (i.e., model-independent) manner.

Whether the Efimov states exist or not depends on the statis-
tics, mass ratios, and s-wave scattering lengths of the particles
[1]. In this paper, we consider a system with two identical spin-
polarized fermions (i.e., fermions without internal degrees of
freedom) and one distinguishable particle that interacts with
the two fermions via a large s-wave scattering length as ;
that is, close to the so-called unitarity limit corresponding
to 1/as = 0. We assume that there is no interaction between
the fermions, since the s-wave interaction between identical
fermions is forbidden by the Pauli principle, and higher
partial-wave interactions are well suppressed at low energy.
The Fermi-Dirac statistics dictates that the angular momentum
of the trimer states be nonzero, so that the centrifugal repulsion
competes with the Efimov attraction. The centrifugal repulsion
becomes weaker for heavier fermions, and the Efimov states
are known to exist if and only if the mass ratio between
the fermion and the other particle mF /mL is larger than
(mF /mL)E = 13.606 . . . [1,12]. Below this critical mass ratio,
the centrifugal barrier prevails and there emerges an R−2

effective repulsive potential between the three particles at short
distance R � |as |. Nevertheless, it has recently been shown by
Kartavtsev and Malykh [13] that such two fermions plus one
particle system can still support universal three-body bound
states below the critical mass ratio in the limit of the large
s-wave scattering length. In fact, a first trimer state emerges
for the mass ratio mF /mL > (mF /mL)(1)

KM = 8.172 . . ., and a
second one appears for mF /mL > (mF /mL)(2)

KM = 12.917 . . ..
These Kartavtsev-Malykh trimers (KM trimers) have prop-
erties distinct from the Efimov states. Since the potential is
repulsive at short distance, the three particles cannot come
close. Thus, these trimer states no longer depend on �, and
they are characterized only by as . As a consequence, their
spectrum exhibits a continuous scaling invariance: if one finds
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FIG. 1. (Color online) Schematic of the energy spectrum for
(a) Kartavtsev-Malykh (KM) trimers (thick lines) and (b) Efimov
trimers (thick curves), where μFL = mF mL/(mL + mF ), as is the
s-wave scattering length, and � is the three-body parameter. The
rightmost thin yellow (gray) lines show the dimer binding energy.

one such trimer at a specific value of the s-wave scattering
length, properties of trimers for different values of the s-wave
scattering length can be predicted by continuous rescaling
of the s-wave scattering length and the energy as as → βas ,
E → β−2E, and 〈r〉 → β〈r〉 [see Fig. 1(a)].

A natural question arises: how does the continuous scaling
invariance of KM trimers below the critical mass ratio
(mF /mL)E change into the discrete scaling invariance of
Efimov trimers above it? Although the two fermions plus
one particle system has been studied in some limited regions
[1,13–15], there has not yet been a systematic study that varies
both the mass ratio and s-wave scattering length and clarifies
the relation between Efimov and KM trimers. In this paper,
we investigate the two identical fermions plus one particle
system interacting via a broad Feshbach resonance and present
a unifying scenario for the Efimov states and KM trimers,
which have so far been studied separately. Our findings are
summarized as follows:

(1) There exist trimer states between the Efimov and the
KM regimes with neither discrete nor continuous scaling
invariance.

(2) These “crossover-trimer” states appear universally;
the crossover trimers appear independently of short-range

details of the potential and are characterized only by two
parameters, the s-wave scattering length as and the three-body
parameter �.
We have summarized our main results in Figs. 2 and 3.
As the mass ratio is varied, we have found that the energy
spectrum changes as schematically illustrated in Fig. 2. More
specifically:

(3) For mF /mL < (mF /mL)E, the trimers have the con-
tinuous scaling invariance if and only if the s-wave scattering
length is large: �as � 1. As we move away from unitarity,
they become dependent on the three-body parameter and
change into crossover trimers.

(4) At mF /mL = (mF /mL)E, there exist two trimers on
the positive-as side. These trimers have neither discrete nor
continuous scaling invariance and thus they are crossover
trimers.

(5) For mF /mL > (mF /mL)E, the trimers satisfy the dis-
crete scaling law of the Efimov states close to the unitarity
point. Away from unitarity, the ground and first-excited trimers
deviate from the discrete scaling law and become crossover
trimers, while the shallower trimers satisfy the discrete scaling
law for the entire region.

(6) Both for mF /mL < (mF /mL)E and for mF /mL �
(mF /mL)E, the trimers dissociate into a fermion and a dimer
on the positive-as side, and a p-wave resonance occurs in
the fermion-dimer scattering channel. However, the ground-
state trimers may not do so due to nonuniversal short-range
effects.

(7) Close to the fermion-dimer dissociation boundary, the
ground-state trimer is model-dependent and hence nonuni-
versal. For the first-excited trimer, except for a very small
region close to the fermion-dimer dissociation boundary, the
nonuniversal short-range effects are negligible. The higher-
excited trimers are universal (i.e., independent of short-range
details) over the entire region.

In Fig. 3, we present these results as a function of the mass
ratio and 1/�as . By comparing the three-body calculation
with different short-range models, we specify the universal
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FIG. 2. (Color online) (a)–(c) Schematics of the energy spectra for different regimes of the mass ratio. Curves are deformed from the real
ones for the sake of illustration. The crossover trimer region, Kartavtsev-Malykh (KM) trimer region, Efimov trimer region, and nonuniversal
region are distinguished according to their scaling properties (see Sec. III for their identification) and are drawn as thick orange (gray) curves
in (a)–(c), thick blue (dark gray) curves in (a), thick green (dark gray) curves in (c), and black dotted curves in (a)–(c), respectively. The dashed
curves in (a) and (c) are the ones as predicted from the continuous scaling law of the KM trimers and the discrete scaling law of the Efimov
trimers, respectively. The dots on the positive-as side indicate the fermion-dimer dissociation points at which the trimer dissociates into a
fermion and a dimer, and the fermion-dimer p-wave scattering volume diverges. In panel (c), only four levels of the Efimov series are shown.
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FIG. 3. (Color online) Regions of (a) the ground-state, (b), (c) first-excited, and (d) second-excited trimers as a function of the mass ratio
and (�as)−1, where � is the three-body parameter and as is the s-wave scattering length. For the ground-state and first-excited trimers, there are
four regimes: the Efimov, KM, crossover, and nonuniversal. For the second-excited trimer, only the Efimov region appears. A trimer dissociates
into a fermion and a dimer at the fermion-dimer p-wave resonance (red curve on the positive-as side), while it dissociates into three particles
at the three-body resonance line (red curve on the negative as side). The blue dashed curves and black dotted curves correspond to qn = 0.40
[see Eq. (6)] and rn = 0.40 [see Eq. (5)], which delimit the Efimov region and KM trimer region, respectively. The black dashed-dotted curves
correspond to sn = 0.90 [see Eq. (9)], which separates the crossover and nonuniversal (i.e., model-dependent) trimer regions. The color contour
is used for the sake of clarity. The nonuniversal region increases with increasing mass ratio, and the Efimov region disappears for the mass ratio
well above 50 (see discussions in Sec. IV).

region and nonuniversal region. Their boundary is shown as
black dashed-dotted curves in Fig. 3. In the universal region,
the trimer can be described by the two parameters, while
it depends on other short-range details in the nonuniversal
region. Furthermore, in the universal region, we classify the
trimers from their scaling properties:

(i) Efimov trimer: trimer with a discrete scaling invariance.
(ii) KM trimer: trimer with a continuous scaling invariance.

(iii) Crossover trimer: trimer with no scaling invariance.
By investigating the scaling properties, we find their bound-
aries as dashed and dotted curves in Fig. 3. Note that all these
boundaries are crossover boundaries, and thus there is no clear
transition at any specific point. Therefore, as the mass ratio is
increased at a fixed scattering length as > 0, the KM trimer
gradually loses its continuous scaling invariance and turns into
a trimer with no scaling symmetry around the critical mass
ratio. If the mass ratio is increased further, it starts to acquire
the discrete scaling invariance and turns into the Efimov
trimer.

In the next section, we review some basic physics of the
Efimov trimers and KM trimers, and describe the method
we use in this paper. In Secs. III A and III B, we study
the scaling properties of the trimers and identify the KM
trimer region for mF /mL < (mF /mL)E and the Efimov trimer
region for mF /mL > (mF /mL)E, respectively, when the scat-
tering length is finite. We then show the existence of the
“crossover trimers” in Sec. III C. In Sec. IV, we investigate
to what extent trimers are universal (i.e., model independent).
Finally, in Sec. V, we discuss experimental implications
of our results. Throughout the paper, we use the natural
unit h̄ = 1.

II. EFIMOV TRIMERS AND KARTAVTSEV-MALYKH
TRIMERS

We solve the three-body problem of two identical fermions
and one particle with variable mass ratio α = mF /mL. The
interaction between the two fermions can be neglected at low
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energy, since they can only interact in odd angular momentum
channels. On the other hand, the fermion and the third particle
can interact in the s-wave channel. If the s-wave scattering
length is much larger than the range of the interaction and the
resonance width is broad enough [2], the interaction between
the particles can be modeled by a contact interaction. With
this prescription, two angular momenta become good quantum
numbers (�1,�2), where �1 is the angular momentum between
one of the fermion and the third particle, and �2 is the angular

momentum between the center of mass of these two particles
and the other fermion. If �1 �= 0, the fermion and the third
particle cannot interact, so that no trimer can be formed. If
�1 = 0, we must solve the three-body Schrödinger equation
by taking the full three-body correlation into account. With
the zero-range interaction, the problem reduces to solving
the following Skorniakov–Ter-Martirosian equation (STM
equation) [16,17]:

a�2 (p)

a
2�2+1
s

+ (−1)�2mL

μFLπ

∫
dq

( q

p

)�2+1
Q�2

(
mL

2μFL
[−ε + p2 + q2]

pq

)
1√

−ε + μFL

μDF
q2 − 1

as

a�2 (q)

a
2�2+1
s

= (−2)�2 (�2!)2

(2�2 + 1)!

μDF mL

μ2
FL

[2μFL

mL

1

(−ε + p2)a2
s

]�2+1
, (1)

where p is the relative incoming momentum be-
tween the fermion and the dimer, ε = 2μFLE, μFL =
mF mL/(mL + mF ) and μDF = mF (mF + mL)/(mL + 2mF )
are the reduced masses between the fermion and the third
particle and between the dimer and the fermion, respectively,
Q� denotes the Legendre polynomial of the second kind,
and a�(q) is the momentum-dependent �th-wave scattering
length. The STM equation was originally proposed to obtain
the fermion-dimer scattering length [16]. In fact, by taking
the energy at the dimer threshold E = −1/(2μFLa2

s ) and
solving Eq. (1), the scattering length of the fermion-dimer �th
partial wave can be obtained as a�(q = 0) (s-wave scattering
length for � = 0, and p-wave scattering volume for � = 1).
The three-body problem is equivalent to the fermion-dimer
scattering problem, and thus we can also use it to investigate
the properties of trimers with Eq. (1). The binding energy
of the trimer states can be obtained by searching for the
value of ε at which a� diverges. This can be done by
finding the value of ε at which the eigenvalue of the left-
hand side of Eq. (1) [seen as an operator acting on a�(q)]
vanishes.

If �2 is an even integer, no trimer can be formed due to the
Pauli principle between the identical fermions [13]. Thus, the
only possible channels for trimers are �1 = 0 with odd �2. In
this paper, we focus on the most energetically stable channel
(�1,�2) = (0,1).

In this channel, it is known that the Thomas collapse
occurs for α = mF /mL > (mF /mL)E = 13.606 . . . [12,18],
and the STM equation becomes singular, which signals the
formation of an Efimov state. To avoid this singularity, a
finite-momentum cutoff in the integration is introduced:∫ ∞

0
dq →

∫ �

0
dq. (2)

This momentum cutoff amounts to introducing a new short-
range scale in the problem; thus the Thomas collapse is
avoided and the ground-state energy becomes finite EGS ∼
�2/(2μFL). Therefore, the momentum cutoff may be regarded
as a three-body parameter, which fixes the energy scale of
the trimers [19]. Then, the Efimov states with the discrete

scaling invariance are obtained as En+1 = e−2π/γ En, 〈r〉n+1 =
eπ/γ 〈r〉n, where γ is determined from the equation [1,13]

0 = 1 + γ 2

γ
tanh γ

π

2
− 2

sin 2ω

cosh γω

cosh γ π
2

+ sinh γω

γ sin2 ω cosh γ π
2

,

(3)

where

cot ω =
√

1 + 2α

α
. (4)

The Efimov trimers are thus described by two parame-
ters: the three-body parameter � and the s-wave scattering
length as .

On the other hand, for mF /mL < (mF /mL)E, the STM
equation is well behaved at � → ∞, and two trimers are
known to exist for as > 0 [13,17]. These trimers start to appear
at (mF /mL)(1)

KM = 8.172 . . . and (mF /mL)(2)
KM = 12.917 . . .,

and their binding energy increases with increasing mass ratio.
Since there is only one length scale in the equation, these
trimers can be described by the s-wave scattering length as .
As a result, these trimers have a continuous scaling invariance:
if the s-wave scattering length is scaled as as → βas , the
binding energy En (n = 1,2) and the mean radius 〈r〉 are scaled
as E → β−2E, and 〈r〉 → β〈r〉 for an arbitrary (continuous)
value of β. This is in marked contrast with the discrete scaling
invariance of the Efimov states.

The continuous scaling law of the KM trimers is well
defined in the scaling limit: � → ∞ with as fixed. Thus,
to understand the relation between the KM trimers and the
Efimov trimers, we must keep � and as finite and investigate
how the KM trimers evolve into the Efimov trimers as �,
as , and the mass ratio are varied. Therefore, we solve the
STM equation with a finite-momentum cutoff �, and examine
how well the discrete scaling and continuous scaling hold,
thereby presenting a unifying picture for the KM trimers and
the Efimov trimers.

While we use the STM equation based on the zero-range
approximation, this method has been shown to give an accurate
description of the three-body system when the scattering

062703-4



CROSSOVER TRIMERS CONNECTING CONTINUOUS AND . . . PHYSICAL REVIEW A 86, 062703 (2012)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

8.2

8.5

10.0

12.0

13.5

 0

 0.1

 0.2

 0.3

 0.4

 0  0.1  0.2  0.3  0.4

dimer energy
= 10.0
= 12.0

α = 13.5−
−
−

−

(a)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

13.0

13.1

13.2

13.3

13.4

13.5  0

 0.05

 0.1

 0.15

 0.2
 0  0.05  0.1  0.15  0.2

dimer energy
α = 13.5

−

−

−

−

−

(b)

(c) (d)

0.005 0.01 0.150.1 0.2 0.3 0.4 0.5 0.6 0.70 0

8

9

10

11

12

13

0.2

0.4

0.6

0.8

1

0

13.6

13.5

13.4

13.3

13.2

13.1

13.0

12.9

12.8

12.7

−

α
α

FIG. 4. (Color online) (a), (b) Spectra of trimers with several different mass ratios α = mF /mL as measured from the dimer binding energy
for (a) the ground-state trimer and (b) the first-excited trimer. The insets show the energy of the trimers as measured from the vacuum, together
with the dimer binding energy (red solid curve). (c), (d) Contour plots of rn defined in Eq. (5) for (c) the ground-state trimer and (d) the
first-excited trimer. The red solid curve shows the fermion-dimer dissociation threshold, while the black-dotted curve is the rn = 0.40 curve,
which delimits the region in which the continuous scaling invariance is well satisfied (i.e., the KM-trimer regime).

length between the particles is large [20]. Thus, around the
unitarity limit, our results should remain unchanged even if one
performs more sophisticated three-body calculations. Away
from unitarity, the trimer starts to become nonuniversal and
depends on short-range details. In this nonuniversal region,
the STM equation becomes less accurate (see Fig. 3 and
discussions in Sec. IV).

III. SCALING PROPERTIES OF TRIMERS

In this section, we present the results of our numerical
calculations with the STM equation for a sharp momentum
cutoff Eq. (2). Specifically, we calculate the binding energy
of the trimers by changing the mass ratio α = mF /mL, and
the product of the s-wave scattering length and the momentum
cutoff �as . In fact, they are the only two free parameters
in Eq. (1) if the energy is measured in units of �2/(2μFL).
Thus, in this paper, we normalize the energy by �2/(2μFL)
and investigate the wave number K ≡

√
2μFL|E|/�2 as a

function of the mass ratio α and the normalized inverse s-wave
scattering length (�as)−1.

A. (mF/mL)(1)
KM < mF/mL < (mF/mL)E

The binding energies of the ground-state and first-excited
trimers are shown in the insets of Figs. 4(a) and 4(b).
The ground-state trimer appears on the positive-as side
at (mF /mL)(1)

KM = 8.172 . . ., while the first-excited trimer
appears at (mF /mL)(2)

KM = 12.917 . . .. The binding energy
of the trimers is rather close to the dimer binding energy
1/(2μFLa2

s ), suggesting that the three particles are only loosely
bound. Note that the trimers do not exist for negative as . The
trimer binding energies as measured from the dimer binding
energy are presented in Figs. 4(a) and 4(b). A linear behavior
can be seen close to the unitarity point. This suggests that
the continuous scaling law holds well in this regime and the
corresponding trimers are the KM trimers. In fact, the binding
energy of the KM trimers should behave as |E| ∝ 1/(2μFLa2

s ),
so that K1/4 ∝ (�as)−1/4, and a linear energy spectrum should
be obtained. The existence of the KM trimers for a large
positive as for (mF /mL)(1)

KM < mF /mL < (mF /mL)E (ground
KM trimer) and (mF /mL)(2)

KM < mF /mL < (mF /mL)E

(first-excited KM trimer) was predicted in Ref. [13],
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FIG. 5. (Color online) (a) Energy spectra of the ground-state, first-excited, and second-excited trimers for mF /mL = 20.0 and mF /mL =
30.0. The binding energy is measured from the three-body continuum. For the first- and second-excited trimers, the radial scaling transformation
has been performed. On the positive-as side, the fermion-dimer dissociation points are shown for each trimer state. (b) Energy spectra as measured
from the dimer binding energy for mF /mL = 20.0 and mF /mL = 30.0. The same radial scaling transformation is performed as in (a).

and here the same result is reproduced by a different
method.

Away from unitarity, the trimers gradually become depen-
dent on the three-body parameter �. As a result, the deviation
from the linear behavior gradually becomes significant, and
the trimer finally dissociates into a fermion and a dimer. This
suggests that a scattering resonance occurs at this dissociation
point in the fermion-dimer scattering channel. Since the trimer
we consider here has a finite angular momentum Ltot = 1, the
scattering resonance occurs in the p-wave channel. Thus, we
arrive at the following conclusions (cf. statements 3 and 6 in
the introduction):

(i) The trimers satisfy the continuous scaling invariance
when the s-wave scattering length is sufficiently large: �as �
1.

(ii) As we move away from unitarity, the continuous
scaling invariance deteriorates, and the trimers dissociate into
a fermion and a dimer on the positive-as side as long as
nonuniversal corrections are negligible (see discussions in
Sec. III B for the nonuniversal corrections).
One can quantify the continuous scaling property by introduc-
ing the following quantity [x ≡ (�as)−1]:

rn(x) = K (KM)
n (x) − Kn(x)

K
(KM)
n (x) − Kdimer(x)

, (5)

where Kdimer(x) = x is the dimer binding energy, and
K (KM)

n (x) =
√

2μFL|En|(x)/�2 = Cnx is the trimer binding
energy in the limit 1/�as → +0 for the ground-state trimer
(n = 1), and the first-excited trimer (n = 2). Cn � 1 character-
izes the trimer binding energy in the universal limit �as � 1,
and it gets larger as the mass ratio α is increased. Here, rn(x)
is 0 when the continuous scaling law holds exactly, while
it is 1 in the absence of the trimers. The values of rn are
shown in Figs. 4(c) and 4(d). One can clearly see that the
continuous scaling law holds sufficiently close to the unitarity
limit, and we regard this region as the KM trimer region. Away

from unitarity, the trimers do not have the continuous scaling
property, and they become dependent on �.

As the mass ratio is increased, the KM trimer region first
grows, but it starts to shrink as we move closer to the critical
mass ratio (mF /mL)E. This is a manifestation of the fact that
the hyper-radial potential barrier at short distance decreases as
the mass ratio is increased toward the critical mass ratio (see
Fig. 1 of Ref. [13]). The wave function of the trimers is then
more likely to penetrate into the short-distance region, and the
trimers become more sensitive to the three-body parameter
�. At the critical mass ratio, the hyper-radial potential barrier
disappears, so that the trimers depend on � even close to the
unitarity limit, and the continuous scaling law breaks down.

B. mF/mL > (mF/mL)E = 13.606 . . .

The energy spectra above the Efimov critical mass ratio are
shown in Figs. 5(a) and 5(b). Here, the following radial scaling
transformations are performed for the first- and second-excited
trimers:

first excited :K2 → K2e
π/γ , (�as)

−1 → (�as)
−1eπ/γ ,

second excited :K3 → K3e
2π/γ , (�as)

−1 → (�as)
−1e2π/γ ,

where γ is calculated from Eq. (3). We perform these scaling
transformations so that all the curves should superimpose into
a single universal curve if the discrete scaling law of the
Efimov states holds. We can see from Fig. 5(a) that the discrete
scaling law holds well for most regions. While the trimers
exist only on the positive-as side for the ground-state and
first-excited trimers below the critical mass ratio (mF /mL)E,
above it they exist even for as < 0. In addition to these two
trimers, an infinite sequence of trimers start to appear for
mF /mL > (mF /mL)E. As as is varied across unitarity, these
trimer levels appear on the negative as side, and they finally
dissociate into a fermion and a dimer on the positive-as side.

All of these trimer states, including the ground-state and
first-excited trimers, have a good discrete scaling invariance
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FIG. 6. (Color online) (a) Binding energy of the ground to fourth-excited trimers at the unitarity limit. The radial scaling transformation
has been performed. (b) Ratio of the binding energy between the adjacent trimer levels at the unitarity limit. (c) Ratio of the s-wave scattering
length at which the trimer dissociates into three particles. (d) Ratio of the s-wave scattering length at which a trimer dissociates into a fermion
and a dimer. In (b)–(d), the universal scaling ratio obtained from Eq. (3) is shown as black solid curves.

close to the unitarity point. In Fig. 6(a), the binding energies
from the ground-state up to the fourth-excited trimers at the
unitarity limit are shown. At the unitarity limit, the binding
energies of the trimers evolve smoothly from the critical
mass ratio. This behavior is also reported in Ref. [21] for
the same system with a narrow resonance. One can take the
ratio

√
En/En+1 of the adjacent trimer binding energies, and

compare it with a universal discrete scaling factor predicted
from the Efimov theory [see Eq. (3)]. The result is shown in
Fig. 6(b). The discrete scaling law holds for all the trimers
including the ground-state and first-excited trimers, which
are the KM trimers for mF /mL < (mF /mL)E. Thus, the KM
trimers for mF /mL < (mF /mL)E and as > 0 change contin-
uously into the Efimov trimers for mF /mL > (mF /mL)E and
1/as = 0 as the mass ratio and the scattering length are varied.
As the mass ratio and the binding energy of trimers increase,
the Efimov states gradually become dependent on nonuniversal
short-range details and there appear slight deviations from the
universal scaling law, as can be seen in Figs. 6(a) and 6(b).

Figure 5(b) shows that, away from unitarity, the binding
energy curve becomes less scale invariant. One can quantify

this point by observing the position of the three-body thresh-
old a(−)

n and the fermion-dimer dissociation point a(FD)
n . In

Fig. 6(c), the ratios of the three-body threshold a(−)
n between

adjacent levels are shown. Again, if the discrete scaling law
holds, all the curves should be superimposed onto a single
universal curve. One can see that the discrete scaling law
holds rather well for most of the region. For a large mass
ratio, there is a slight deviation from the universal discrete
scaling law, especially for small n with a large mass ratio. For
these trimers, the binding energy is large, and the nonuniversal
finite-range effect becomes non-negligible, so that the trimers
become less Efimovian.

On the other hand, the fermion-dimer dissociation point
a(FD)

n behaves quite differently from the three-body threshold
as shown in Fig. 6(d). The ratio of a(FD)

n between the adjacent
levels has the following important features:

(i) For n = 1 (ground–first-excited trimers) and n = 2
(first-excited–second-excited trimers), the ratio a

(FD)
n+1 /a(FD)

n

differs significantly from the universal curve.
(ii) For n � 3, the ratio is consistent with the universal

curve if the mass ratio is not too large.
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The first feature is a consequence of the existence of two
KM trimers below the critical mass ratio. In fact, as shown
in Fig. 4, the ground-state and first-excited trimers exist on
the positive-as side, so that the fermion-dimer dissociation
points are well separated from the unitarity point at the critical
mass ratio. This is in marked contrast with the fermion-dimer
dissociation points for the highly excited trimers [red solid
curve for as > 0 in Fig. 3(d)], and the three-body thresholds
for all the trimers [red solid curve for as < 0 in Figs. 3(a)
to 3(d)], which start to appear from the unitarity point at the
critical mass ratio. Therefore, the ground-state and first-excited
trimers no longer satisfy the discrete scaling invariance close to
the fermion-dimer dissociation point, while they have a good
scaling invariance for n � 3 as long as the binding energy is
small and the nonuniversal short-range effect is negligible.

Note here that the fermion-dimer resonance of the ground-
state trimer may not appear for some potentials. It is known for
the case of three identical bosons that nonuniversal finite-range
effects can prevent the ground-state trimer from dissociating
into a fermion and a dimer. This is the case, for instance, for
helium atoms with a scaled realistic potential [10]. For the two
fermions and one particle system we consider here, a similar
situation may occur for the ground-state trimer. In contrast,
the binding energies of the first-excited and higher-excited
trimers are so small that the finite-range effects should be
less significant. Therefore, they are likely to dissociate into a
fermion and a dimer.

Thus, we arrive at the following conclusions (cf. statements
5 and 6 in introduction):

(i) The trimers satisfy the discrete scaling law of the
Efimov states close to the unitarity point. Away from
the unitarity, the two lowest trimers deviate from the discrete
scaling law, while the shallower trimers satisfy the discrete
scaling law well for most of the region.

(ii) The trimers dissociate into a fermion and a dimer on
the positive-as side, and a p-wave resonance occurs in the
fermion-dimer scattering channel. The ground-state trimers
may not do so due to nonuniversal short-range effects.
Again, these statements are valid as long as the mass ratio
is not too large, so that nonuniversal short-range effects are
negligible.

We note that the three-particle resonances a(−)
n start to

appear right above the critical mass ratio (mF /mL)E, and thus
there is no three-body resonance for mF /mL < (mF /mL)E. In
general, it is possible that a three-particle resonance start to
appear in the region 8.62 < mF /mL < (mF /mL)E [14,15].
However, as pointed out in Ref. [14], such a three-body
resonance for mF /mL < (mF /mL)E can appear only when
the interaction between the fermions is present and its strength
is fine tuned. In our work, we do not include the interaction
between the fermions, since it is negligible in general at low
energy. Thus, we do not find such three-body resonance for
mF /mL < (mF /mL)E.

C. Crossover trimers

From the discussions so far, the following properties for the
ground-state and first-excited trimers have been obtained:

(i) For mF /mL < (mF /mL)E, the two trimers satisfy the
continuous scaling invariance fairly well if and only if the

s-wave scattering length is large; �as � 1, and the continuous
scaling region shrinks as the mass ratio is increased [see
Figs. 4(c) and 4(d)].

(ii) For mF /mL > (mF /mL)E, the two trimers are Efimov
trimers close to the unitarity limit as shown in Fig. 6(b),
whereas they are no longer Efimov trimers close to the
fermion-dimer dissociation point [see Fig. 6(d)].
For mF /mL < (mF /mL)E, the KM trimer regime is identified
by rn. In a similar manner, for mF /mL > (mF /mL)E, we
introduce the following quantity to identify the Efimov trimer
region [x ≡ (�as)−1]:

qn(eπ/γ x) ≡ |e−π/γ Kn(eπ/γ x) − Kn+1(x)|
|Kn+1(x) − x| . (6)

In Fig. 3, the contour of qn = 0.40 is shown as blue dashed
curves. Close to the unitarity point, the Efimov’s discrete
scaling law holds well, so that qn is rather small. As we move
away from the unitarity, the deviation from Efimov’s discrete
scaling law becomes significant, and qn increases. We can
identify the Efimov trimer as a region with small qn. As we
discussed in Fig. 6(d), the breakdown of the scaling invariance
is significant for the ground-state and the first-excited trimers,
and the higher-excited trimers satisfy the discrete scaling
invariance well. If we delimit the Efimov region according
to the value of qn, the Efimov region shrinks as the mass
ratio is decreased toward the critical mass ratio, as shown
in Fig. 3. Close to the critical mass ratio, both the KM trimer
region and the Efimov trimer region shrink, suggesting that the
trimers start to acquire a distinct nature from these two trimers
around the critical mass ratio; they have neither discrete nor
continuous scaling invariance. Thus, we arrive at the following
conclusions:

(i) The KM trimers for mF /mL < (mF /mL)E change
continuously into Efimov trimers for mF /mL > (mF /mL)E

as the mass ratio and the s-wave scattering length are varied.
(ii) In between the KM and Efimov trimers, there exist

“crossover trimers,” which have neither discrete nor continu-
ous scaling invariance.
The change in the scaling invariance occurs gradually as a
crossover, rather than as an abrupt change. The crossover
trimer regions are shown as red regions in Fig. 3. At the critical
mass ratio, there is neither the discrete nor continuous scaling
invariance. In fact, we can show that there is neither R−2

attraction nor a large centrifugal barrier in the hyper-radial
potential at the critical mass ratio, so that the trimers depend
on the three-body parameter �, but still they do not have
the discrete scaling invariance of the Efimov states. Thus, we
arrive at the first and fourth conclusions listed in Sec. I.

IV. UNIVERSALITY: INDEPENDENCE ON SHORT-RANGE
DETAILS

So far, the properties of the trimers by the STM equation
with a sharp momentum cutoff have been discussed. This
amounts to assuming a certain form of a finite-range potential
at short distance and hence imposing a specific value of the
three-body parameter. However, one can take other forms
of potentials, in general. Thus, one may ask the following
question: do the results obtained so far represent universal
features of the trimers for the two fermions plus one particle
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system, or do they represent the special features of the sharp
momentum cutoff? The word “universal” is used here in
the sense that the trimers can be characterized only by the
three-body parameter and the s-wave scattering length. A
property is defined to be universal if all the details of the
potential other than these two parameters are unimportant.
This question can be answered by performing the three-body
calculation with different short-range models and comparing
the results. In this section, the results of the STM equation
calculated with the two different ways of the momentum
cutoffs are compared: the sharp cutoff∫ ∞

0
dq →

∫ �S

0
dq, (7)

and the Gaussian cutoff∫ ∞

0
dq →

∫ ∞

0
dq exp

(
− q2

2�2
G

)
. (8)

If the trimer is universal, the change of the ways of cutoff
merely corresponds to changing the value of the three-body
parameter. Then, the energy spectra for the two models differ
only by their energy scales specified by their three-body
parameters. Thus, by rescaling the energy spectra and thereby
taking a common three-body parameter, we obtain a common
universal spectrum for the two models. In fact, if the energy

spectrum KG,S =
√

2μFL|EG,S|/�2
G,S is plotted as a function

of (�G,Sas)−1, or K
1/4
G,S as a function of (�G,Sas)−1/4, then the

change in the momentum cutoff corresponds to a mere radial
scaling transformation. Thus, whether the trimer is universal
or not can be checked by performing a scale transformation of
the energy spectra and see whether they can be superimposed
upon each other.

The universal and nonuniversal regions obtained this way
are closely related to the level of approximation of the STM
approach. In the universal region, the system can be described
by the two parameters, so that the exact three-body calculation

should agree with the STM result as far as the scattering
length and the three-body parameter are the same. On the
other hand, in the nonuniversal region (shown as gray regions
in Fig. 2), other short-range details which are not incorporated
in the STM approach cannot be ignored. Thus, the STM result
will in general deviate from the numerically exact three-body
calculation with a realistic potential. Our numerical results in
this nonuniversal region are at most qualitative.

Our main conclusions in this section are items 2 and 7
described in the introduction. More specifically, we have found
the following:

(i) For mF /mL < (mF /mL)E, both the ground-state and
first-excited trimers behave universally, except for the ground-
state trimer close to the fermion-dimer dissociation point.

(ii) For mF /mL > (mF /mL)E, the ground-state and first-
excited trimers become more strongly nonuniversal close to the
fermion-dimer dissociation point, while they remain universal
in other regions.

(iii) For mF /mL > (mF /mL)E, the higher excited trimers
are universal in the entire region, even close to the fermion-
dimer dissociation point.

(iv) For a mass ratio well above 50, the binding energy of
the trimers becomes so large that the nonuniversal short-range
effects can no longer be neglected.

A. mF/mL < (mF/mL)E = 13.606 . . .

The energy spectra as measured from the dimer binding
energy are shown in Fig. 7. The energy spectra for the sharp
cutoff and Gaussian cutoff agree close to 1/as = 0. This is
a natural consequence of the nature of the KM trimers: they
only depend on the s-wave scattering length as . Since the
same s-wave scattering length is used for both models, a
change in the momentum cutoff does not affect the energy
spectrum.

Away from unitarity, the trimers become dependent on the
value of the three-body parameter, and the energy spectra for
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FIG. 7. (Color online) Energy of trimers as measured from the dimer binding energy for (a) the ground-state trimer at mF /mL = 10.0 and
(b) the first-excited trimer at mF /mL = 13.3. The energy for the sharp momentum cutoff (red solid curve) and Gaussian momentum cutoff
(blue dashed curve) are compared. The energy of the Gaussian cutoff after a rescaling of the three-body parameter is also shown as green
dashed-dotted curves. The scaling factors are taken to be 1.85 for (a) and 1.90 for (b). The black dotted lines are the linear fits in the large-as

region.
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the sharp and Gaussian cutoffs start to deviate from the linear
spectrum of the KM trimers, and the two models give different
binding energy curves. However, the two spectra can be
superimposed into a single universal curve by performing the
rescaling to set a common value of the three-body parameter
if the result is model independent. In Fig. 7, the energy
spectra after rescaling are also shown. For the ground-state
trimer, the two curves overlap for (�as)−1/4 � 0.6, so that it is
model independent in this region. Close to the fermion-dimer
dissociation point the two curves do not overlap, and therefore
the ground-state trimer depends on nonuniversal short-range
effects in this region. On the other hand, as we can see in
Fig. 7(b), the first-excited trimer is universal for almost the
entire region. This difference is closely related to the fact that
the binding energy of the first-excited trimer is small and thus
the s-wave scattering length at the fermion-dimer dissociation
point is large, compared with the deep ground-state trimer. In
fact, (�as)−1 = 0.008 at the fermion-dimer dissociation point
for the first-excited trimer at mF /mL = 13.3 with the sharp
momentum cutoff. Thus, the dependence on the nonuniversal
short-range details of the models becomes less significant for
the first-excited trimer. From this fact, we can expect that the
fermion-dimer p-wave resonance for the ground-state trimer
is nonuniversal, while it is rather universal for the first-excited
trimer.

Note that the universal region is larger than the linear
region both in Figs. 7(a) and 7(b). This fact supports our
main conclusion illustrated in Fig. 2(a). For the ground-state
trimer, the continuous scaling law holds well for a large s-wave
scattering length region, and it is the KM trimer. As we vary
the s-wave scattering length, the ground-state trimer loses its
continuous scaling invariance, and this deviation occurs in a
model-independent manner. Thus, the KM trimer changes into
the crossover timer. As the s-wave scattering length is varied
further, nonuniversal short-range effects become significant
and the trimer is no longer universal. On the other hand, the
first-excited trimer is universal for most of the region, so that
the nonuniversal corrections are irrelevant, as described in the
upper branch of Fig. 2(a). As the mass ratio is increased
toward the critical value, the KM region shrinks, so that
the ground-state and first-excited trimers become crossover
trimers for most of their region, as illustrated in Fig. 2(b).

B. mF/mL > (mF/mL)E = 13.606 . . .

In Figs. 8(a) and 8(b), the energy spectra at the unitarity
limit and at a fixed mass ratio for the sharp and Gaussian
cutoff are shown. As shown in the inset, the energy spectra
are different for the two models. As we did for the lower
mass-ratio region, the two models should be transformed into
each other by rescaling the momentum cutoff as long as the
trimers are universal. In Fig. 8(a), we can see how well this
rescaling works at the unitarity limit. At the unitarity, the ratio
of the binding energies for the two models gives the rescaling
factor, and we can see that the rescaling scenario of the three-
body parameter works well for all trimer levels. Therefore,
the trimers are model-independent and hence universal. One
can see that the universality deteriorates for a large mass ratio,
since the binding energy of the trimers is no longer small.

From the rescaling factor between the two models obtained
at the unitarity limit shown in Fig. 8(a), the radial scaling
transformation for each mass ratio can be performed, so that
we can check whether the two models give the same result after
performing the radial rescaling transformation and setting the
same three-body parameter. In Fig. 8(b), the energy spectra
after this rescaling are shown. One can see that the two results
give the same universal curves for most of the region, so that
most of the features of the trimers are model independent. The
disagreement is visible only for regions well separated from
the unitarity point.

One can quantify the universality of the three-body thresh-
old and the fermion-dimer dissociation point by taking the
ratio of as values at which the three-body resonance and
the fermion-dimer resonance occur. The results are shown in
Figs. 8(c) and 8(d). The ratio of the three-body thresholds
presented in Fig. 8(c) is consistent with the universal curve
and thus they are model independent in most of the region.
There are small nonuniversal deviations only when the mass
ratio becomes too large and the binding energy of the trimers
becomes large. In Fig. 8(d), on the other hand, there is a
significant deviation for n = 1 (ground–first-excited trimers).
This means that the nonuniversal corrections are significant for
the ground-state trimer close to the fermion-dimer dissociation
point. For the first-excited and higher-excited trimers, the devi-
ation is less significant. For these trimers, the binding energy
is small, so that they are less affected by the nonuniversal
short-range effects.

With these results, we can understand the behavior of
the trimers described in Fig. 2(c). For the second- and
higher-excited trimers, the spectra satisfy Efimov’s discrete
scaling law, as discussed in Fig. 6, and they are model
independent for the entire region. For the first-excited trimer,
the spectrum satisfies Efimov’s discrete scaling law for 1/as <

0 or close to the unitarity limit. As we change �as toward
the fermion-dimer dissociation point, there is a deviation
from the discrete scaling law as presented in Fig. 6(d). This
deviation is a universal feature due to the presence of the
KM trimers below the critical mass ratio, and it is distinct
from nonuniversal short-range effects. In fact, we can define
the following quantity to characterize the model independence
[x ≡ (�as)−1]:

sn(x) ≡
∣∣KS

n (x) − βSGKG
n

(
β−1

SGx
)∣∣∣∣KS

n (x) − x
∣∣ , (9)

where βSG ≡ KS
n /KG

n is a scaling factor between the two
models obtained by taking the ratio of the binding energies
of the two models at the unitarity [cf. Fig. 8(a)]. Note that
this quantity is well defined only above the critical mass
ratio mF /mL > (mF /mL)E. Close to the unitarity limit, sn

is small, indicating that the trimers are model independent.
As we move away from unitarity toward the positive-as side,
the nonuniversal short-range effects becomes significant for
the ground-state and first-excited trimers and sn increases.
In Figs. 3(a) and 3(b), the contour of sn = 0.90 is shown
as a black dashed-dotted curves, which can be regarded
as boundaries between the universal (model-independent)
regions and nonuniversal (model-dependent) regions. While
the boundaries for the Efimov trimer regions and the KM

062703-10



CROSSOVER TRIMERS CONNECTING CONTINUOUS AND . . . PHYSICAL REVIEW A 86, 062703 (2012)

 0

 0.2

 0.4

 0.6

 0.8

 1
-0.4 -0.2  0  0.2  0.4  0.6  0.8  1

 0
 0.1
 0.2
 0.3
 0.4
 0.5

-0.4 -0.2  0  0.2  0.4

dimer
Gaussian

sharp

(b)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 20  30  40  50  60  70  80  90  100

universal ratio
n=1
n=2
n=3
n=4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 20  30  40  50  60  70  80  90  100

universal ratio
n=1
n=2
n=3
n=4
n=5
n=6

(d)
(c)

-

-

-

-

-

-

-

-

-

-

-

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 20  30  40  50  60  70  80  90  100

ground-state trimer
1st excited trimer

2nd excited trimer
3rd excited trimer

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 20  30  40  50  60  70  80  90

sharp
Gaussian

FIG. 8. (Color online) (a) Ratio of binding energy between adjacent trimer levels at the unitarity limit. Two models are compared: the STM
equation with the sharp momentum cutoff and the Gaussian cutoff. (b) Energy spectra from the ground-state trimer to the fourth-excited trimer
at mF /mL = 30.0 for the sharp momentum cutoff (blue dash-dotted curves) and the Gaussian momentum cutoff (green dashed curves). The
radial scaling transformation has been performed, so that the energy spectra with the different cutoffs are superimposed onto universal curves.
In the inset, the energy spectra before the radial scaling transformation are shown. (c) Ratio of s-wave scattering length at which the trimer
dissociates into three particles. (d) Ratio of the s-wave scattering length at which the trimer dissociates into a fermion and a dimer. In (c) and
(d), the universal scaling curves between the two models obtained from Fig. 8(a) are shown as the black solid curves.

trimer regions shrink toward the critical mass ratio, the curves
delimiting the universal and nonuniversal regions are well
separated from the unitarity limit. Therefore, the trimers at the
critical mass ratio are universal states which are distinct from
the KM trimers or Efimov trimers. We can identify them as
the crossover trimer states: universal three-body bound states
with neither continuous nor discrete scaling invariance.

The absence of the scaling invariance for the crossover
trimer is qualitatively different from the nonuniversal deviation
of the ground Efimov trimer observed in ultracold-atom
experiments [5,22]. This nonuniversal deviation is due to the
large binding energy of the ground-state trimer, and it depends
on microscopic details of the potential. On the other hand,
we obtain the same binding energy curve of the crossover
trimers for different forms of the potentials after the radial
rescaling, as we did in Figs. 7 and 8(b). Furthermore, as shown
in Fig. 2, at the critical mass ratio, the crossover trimers exist

even when the scattering length is large; �as � 1. In this
limit, the nonuniversal finite range effects become negligible,
and the trimers should behave universally.

V. EXPERIMENTAL IMPLICATIONS

To observe the properties of the two fermions and one par-
ticle system discussed in this paper, the following conditions
are necessary:

(i) One needs a mixture of fermions without internal
degrees of freedom (i.e., spin-polarized fermions) and another
particle. The statistics of the other particle is arbitrary.

(ii) The interaction between the fermions and the other
particle is resonant; that is, as � �−1 ∼ r0, where r0 is the
range of the interaction.

Ultracold fermionic gases are the most viable candidates
to satisfy these conditions. In ultracold atoms, by using a
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TABLE I. Mass ratios for some atomic combinations.

Species Mass ratio

7Li-40K 5.70
7Li-43Ca 6.12
23Na-161Dy 7.00
23Na-167Er 7.26
23Na-173Yb 7.52
7Li-53Cr 7.55
6Li-53Cr 8.80
7Li-87Sr 12.39
6Li-87Sr 14.45
7Li-161Dy 22.94
7Li-167Er 23.79
7Li-173Yb 24.65

Feshbach resonance, one can fine-tune the s-wave scattering
length between the atoms and make it divergently large by
changing an external magnetic field [3]. Furthermore, one
can prepare a mixture of fermionic atoms. For example, a
mixture of Li and Yb atoms has been cooled down to quantum
degeneracy and an atomic combination with a large mass
imbalance is now available [23]. We also note that other atoms
with a very large mass are currently being cooled down, such
as Dy [24] and Er [25]. Thus, atomic mixtures with a large
mass imbalance seem a promising candidate.

In Table I, the mass ratios for some atomic combinations
are presented. Since there appears no trimer for mF /mL <

(mF /mL)(1)
KM = 8.172 . . ., one must prepare light atoms, such

as Li, and heavy atoms, such as Sr, Yb, Er [26], and Dy [26]
to observe the trimers. Among those satisfying mF /mL >

(mF /mL)(1)
KM, most of them are in the region mF /mL >

(mF /mL)E = 13.606 . . .. Thus, both the Efimov trimers and
the crossover trimers can be observed with those atomic
combinations. On the other hand, there are two candidates,
where the KM trimers can be observed: 6Li-53Cr [26] and
7Li-87Sr. We also note that in ultracold atoms, the effective
masses of the atoms can be varied by using an optical
lattice [27].

In ultracold atomic gases, the existence of the Efimov states
is often identified through the loss of atoms from their con-
fining potential [3,5]. Recently, a photoassociation technique
is used as an alternative way to observe the Efimov trimers
[28]. This technique has been applied to observe directly the
binding energy of Efimov states. With the photoassociation
technique, one can measure the binding energy of the trimers
as a function of the scattering length, so that one can check
how well the continuous or discrete scaling law holds. The
deviation from the continuous or discrete scaling invariance
as described in Figs. 2(a) and 2(c) can be a clear signature of
the crossover trimers. This universal deviation of the crossover
trimer is essentially different from the nonuniversal corrections
discussed for the ground-state Efimov trimer [5,22]. While
the latter depends significantly on short-range details of each
atomic species, the universal deviation can be observed for
the crossover trimer after rescaling the three-body parameter,
as we did in Sec. IV, and it can be quantitatively predicted
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FIG. 9. (Color online) p-wave scattering volume v(AD)
p of the

atom-dimer scattering for 6Li-53Cr (red solid curve, mF /mL = 8.80),
7Li-87Sr (green dashed curve, mF /mL = 12.39), and 7Li-173Yb (blue
dotted curve, mF /mL = 24.65), calculated with the STM equation
with the sharp momentum cutoff. In the inset, the s-wave scattering
length of the atom-dimer scattering for each atomic combination is
shown. The points show the p-wave atom-dimer resonance positions
for each atomic combination.

with the universal theories, such as the STM equation, or the
effective field theory [2].

Another way is to observe the p-wave atom-dimer res-
onance for mF /mL < (mF /mL)E. Close to the atom-dimer
dissociation point, as shown in Fig. 9, the atom-dimer p-
wave scattering volume is significantly enhanced, while the
atom-dimer s-wave scattering length remains of the order
of the atom-atom s-wave scattering length. This atom-dimer
resonance cannot appear for the KM trimers, and therefore it
suggests the existence of the crossover trimer, as illustrated
in Fig. 2(a). Especially, the p-wave atom-dimer resonance for
the first-excited trimer is a universal feature of the crossover
trimer. The enhanced p-wave interaction would deform the
shape of the cloud, so that it should have a measurable effect
on the in-situ and time-of-flight images of the condensates. In
addition, one can also measure the enhanced p-wave scattering
volume by colliding two condensates of atoms and dimers
[29]. Other methods to observe the collisional properties are
reviewed in Ref. [30].

Other candidates to observe the KM trimers and crossover
trimers are nuclear systems [6–9,31]. In some nuclear systems,
the s-wave scattering length between nucleons or nuclei may
be accidentally large, and the possibility to observe Efimov
states has been discussed in Ref. [31]. Recently, neutron halo
states are studied in neutron-excess nuclei, especially for heavy
nuclei such as 11Li [8] and 31Ne [9], and their analogy with
the Efimov states has often been discussed [6,7]. In these
systems, the scattering length between the nuclei and neutrons
are accidentally large, so that a rather shallow and large trimers
may be formed. If there exist some nuclei with a large s-wave
scattering length and a suitable mass ratio, the universal trimers
and crossover trimers may also be observed. We note, however,
that the existence of the Coulomb repulsion and the interaction
in the higher-angular-momentum channels often significantly
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affect the halo states in the nuclei, so that these systems may be
more complicated than what has been presented in this paper.

VI. CONCLUSION

In conclusion, for a three-body system of two fermions and
another particle interacting via a broad Feshbach resonance,
we have found that there exist trimers with neither discrete nor
continuous scaling invariance between the KM trimer region
with the continuous scaling invariance and the Efimov trimer
region with the discrete scaling invariance. These “crossover
trimers” appear regardless of the short-range details of the
potential, and they are characterized only by two parameters,
the s-wave scattering length as and the three-body parameter
�. As the s-wave scattering length and the mass ratio are
varied, the KM trimers change continuously into the Efimov
trimers via the crossover trimers. Furthermore, we have shown
that the energy spectrum changes as described in Fig. 2 as the
mass ratio is varied (see statements 3 to 7 in the introduction).
We have specified the scaling property and universality (i.e.,
independence of short-range details) of the trimers as shown
in Fig. 3.

The Efimov trimers and KM trimers can also exist with a
higher angular momentum Ltot, specifically for two fermions
plus one particle systems with odd-integer Ltot, as well as two
bosons plus one particle systems with nonzero even-integer
Ltot [17,32]. Therefore, we expect a scenario similar to the
one discussed in this paper for these systems as well. We
consider a broad resonance in this work, but the case of a
narrow resonance merits further investigations [21]. We also
note that a change in dimensionality would make the situation
qualitatively different [33,34], which could be a subject of
future study.
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