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Two-center convergent-close-coupling calculations of positron scattering on magnesium
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The two-center convergent-close-coupling method is extended to the calculation of positron scattering from
atoms with two valence electrons above an inert ion core. Calculations of positron scattering on magnesium have
been performed over a wide energy range. Elastic scattering, Positronium formation, target excitation, and direct
ionization cross sections have been calculated. Results are in reasonably good agreement with the experimental
data where available. Current results confirm the existence of a low-energy shape resonance predicted by
variational and single-center convergent-close-coupling methods.
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I. INTRODUCTION

The positron, as the simplest antimatter particle, has been
a major subject of matter-antimatter interaction studies since
its discovery. Recent advances in positron-beam technologies
and their broad applications as a diagnostic tool have further
increased the need for deeper understanding of positron inter-
actions with atoms. The theoretical description is challenging
due to the two-center nature of the problem. This two-center
nature arises from the fact that a positron, being positively
charged, can capture an electron from the target atom thereby
forming positronium (Ps). The two centers require a mix of
coordinate systems, leading to a very complex underlying
theory. In particular, a rigorous inclusion of electron exchange
between Ps and the residual ion remains an unsolved problem.
Experiments are also difficult due to the requirement of
obtaining positron beams with sufficient energy resolution and
intensity.

So far, only the Detroit group at Wayne State University
has reported experimental data for e+-Mg scattering [1–3].
Total scattering cross sections have been measured for incident
energies between 2 and 50 eV [1,2]. Upper and lower limits for
Ps-formation cross sections have been reported in Ref. [3] for
positron incident energies of 0.1–60 eV. Both results have been
regarded as preliminary because of large uncertainties arising
from difficulties associated with the use of the magnesium
target.

Various theoretical approaches have been applied to the
e+-Mg scattering problem. Szmytkowski [4] has calculated the
elastic-scattering cross section by using the polarized orbital
method (POM). However, the results were not in agreement
with experiments. Campeanu et al. [5] calculated the total
scattering cross section at intermediate and high energies by
combining the elastic cross section obtained within the POM
with inelastic cross sections calculated using a distorted wave
approximation. Their results agree with the experimental data
above 30 eV but significantly underestimate the experiment at
lower energies. Gribakin and King [6] applied the many-body
Green’s function theory method to the problem by accounting
for the Ps formation on its ground state. Although their results
were not in good agreement with the experiment [1], they
showed the significance of the Ps-formation channels even
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below the Ps-formation threshold. Calculations by Ryzhikh
et al. [7], using the stochastic variational principle, predicted
that positrons may bind to Mg with a binding energy of
0.373 eV. Bromley et al. [8] have tuned free parameters of
the POM model to replicate this predicted positron binding
energy and then calculated the elastic cross section, phase
shifts, and scattering lengths at low energies. The results for
the total scattering cross section were broadly consistent with
the experimental data. Hewitt et al. [9] performed two-center
close-coupling- (CC-)type calculations by using the two lowest
states of Mg and the three lowest states of Ps. The Mg states
have been obtained within an independent particle model,
which effectively treats Mg as a single-electron target. The
results for the total cross section, obtained as a sum of cross
sections of all included channels, were in poor agreement with
the experiment of Stein et al. [1]. As cited by Surdutovich
et al. [3], Walters calculated the Ps-formation cross section
using the two-center method, which was developed for helium
by Campbell et al. [10]. Cheng and Zhou [11] have used the
optical-model approach, which uses a complex equivalent-
local polarization potential to calculate Ps formation in ground
and 2s and 2p excited states. Their result for the total
Ps-formation cross section agrees reasonably well with the
experimental data of Surdutovich et al. [3] but differs from
results of close-coupling [9] and many-body [6] calculations.

Mitroy et al. [12] applied the configuration interaction
(CI) method to generate low-energy phase shifts for elastic
scattering using bound-state calculations to the problem of
e+-Mg scattering. The semiempirical optical potential has
been fine-tuned by using a large configuration interaction
calculation. The Ps-formation channels have been indirectly
accounted for via the use of a very large CI expansion with
high orbital angular momenta states. They predicted a P -wave
resonance at about 0.1-eV positron scattering energy.

Recently, the single-center convergent-close-coupling
(CCC) method has been applied to the e+-Mg scattering
problem by Savage et al. [13]. The single-center method can
give accurate results below the Ps-formation threshold and
above the ionization threshold by utilizing a large basis, which
includes high orbital angular momentum states. However, it
cannot explicitly calculate the Ps-formation cross sections
and, therefore, is not applicable in the energy region between
the Ps-formation and the ionization thresholds. The elastic-
scattering phase shift, target excitation, and total ionization
(which implicitly contains Ps-formation) cross sections have
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been calculated. The elastic-scattering phase shift and cross
section were in good agreement with the results of Mitroy
et al. [12]. The approach also showed the existence of the
P -wave resonance, however, with a slightly different position
(0.15 vs 0.1 eV) and magnitude than the one predicted by
Mitroy et al. [12].

One of the interesting features of positron interactions is
the attachment to atoms and molecules [6,7,12]. Experiments
can indirectly show whether there are such bound states
through accurate measurements of elastic scattering at very
low collision energies. By having good agreement between
such measurements and calculations, the existence of positron
binding can be indirectly verified.

The purpose of this paper is to provide the most accurate
and complete theoretical results for positron scattering on
magnesium. To do so, we include the Ps-formation channels
in the corresponding CCC formalism, yielding a valid method
over the entire energy range with explicit results for Ps
formation.

II. FORMALISM

A. Mg structure

We model Mg as a system with two active electrons
above a frozen Hartree-Fock core [14,15]. The interaction Ve

between an active electron and the frozen Hartree-Fock core
is calculated as a static part of the Hartree-Fock potential Vst

plus an exchange potential Vex between an active and the core
electrons,

Ve(r) = Vst(r) + Vex(r). (1)

The static part of the Hartree-Fock potential Vst is calculated
as

Vst(r) = −Z

r
+ 2

∑
ψj ∈C

∫
d3r ′ |ψj (r ′)|2

|r − r ′|2 , (2)

where Z is the charge of the nucleus and ψj are the states of the
ion core C generated by performing the self-consistent-field
Hartree-Fock calculations [16]. The summation in Eq. (2) is
performed for all core electron pairs.

Previously, single-center CCC calculations of e+-Mg [13]
and e−-Mg [14,15] problems have used nonlocal Hartree-Fock
exchange between an active electron and the core electrons. In
this paper, however, the exchange between the active electron
and the core electrons is taken into account in the framework
of the equivalent local-exchange approximation [17],

Vex(r) = 1
2 {[Eex − Vst(r)] −

√
[Eex − Vst(r)]2 + ρ(r)}, (3)

where

ρ(r) =
∑
ψj ∈C

∫
d r̂|ψj (r)|2 (4)

is the electron-density distribution in the core and Eex is
some free adjustment parameter. This parameter is chosen
to get the correct ground-state energy. The reason for such an
approximation is to avoid the complexities arising from the use
of nonlocal potentials in calculating the rearrangement matrix
elements. The applicability of the approximation has been
tested by performing the single-center e+-Mg calculations and

obtaining an excellent agreement with the results of Savage
et al. [13].

A set of one-electron orbitals {ϕnl} is obtained via diago-
nalization of the Mg+ Hamiltonian in a Sturmian (Laguerre)
basis,

ξnl(r) =
√

λl(n − 1)!

(2l + 1 + n)!
(λlr)l+1 exp(−λlr/2)L2l+2

n−1 (λlr),

(5)

where λl are exponential fall-off parameters and

L2l+2
n−1 (x) =

j∑
m=0

(−1)m(j + n)!

(j − m)!(n + m)!m!
xm (6)

are the associated Laguerre polynomials, l is the angular
momentum, and n ranges from 1 to the basis size Nl . The
exponential fall-off parameters were chosen to be λl = 3.0.
The maximum value of angular momentum lmax together with
the values of Nl will ultimately determine the size of the target
basis used in the scattering calculations and will be the subject
of convergence studies.

The one-electron orbitals {ϕnl} are used to form a set
of antisymmetric two-electron configurations, followed by
standard CI calculations of the Mg wave functions. The
calculated Mg states {ψ (N)

α }, α = 1, . . . ,N , diagonalize the
Mg target Hamiltonian HT,〈

ψ
(N)
α′

∣∣HT

∣∣ψ (N)
α

〉 = ε(N)
α δα′α, (7)

where εα are the (pseudo)state energies. The target
(pseudo)states ψ (N)

α are expressed via two-electron configu-
rations as

ψ (N)
α (r1,r2) =

N∑
ab

Cα
ab

∑
la ,ma,lb,mb

Clm
lamalbmb

ϕa(r1)ϕb(r2), (8)

where the CI coefficients Cα
ab satisfy the symmetry property,

Cα
ab = (−1)S+la+lb−lCα

ba

to ensure antisymmetry of the two-electron target states.
The orbital and spin angular momenta are denoted by
l and S, respectively. The lowest-energy states are good
approximations of the Mg bound eigenstates, whereas, the
higher-energy pseudostates provide for a discretization of the
target continuum.

Note that, for positron scattering on the ground state of
magnesium, only states with S = 0 are required. Table I shows
the ionization energies from the lowest singlet (S = 0) states

TABLE I. Ionization energies of Mg singlet states in eV.

State N0 = 16 N0 = 22 Experiment

3S 7.642 7.642 7.646
3P 3.241 3.241 3.300
3D 1.863 1.889 1.893
4S 1.185 2.244 2.253
4P 1.221 1.471 1.528
4D 0.531 0.910 1.058
4F 0.281 0.706 0.867
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FIG. 1. Coordinate system for e+-Mg scattering.

of Mg obtained with N0 = 16 and N0 = 22. From the table,
one can see that the ground and 3P (the first excited) states
have converged very close to the real eigenvalues, whereas, the
other lowest excited states get closer to the real eigenvalues as
basis size is increased.

B. Scattering

Since we model Mg as a He-like target, we may readily
utilize the positron-helium scattering theory given earlier [18]
and cover the theoretical details here more briefly.

The scattering wave function 
 must satisfy the
Schrödinger equation,

(H − E)
(r0,r1,r2) = 0, (9)

where E is the total energy and H is the total Hamiltonian
for this system, r0, r1, and r2 denote the positions of the
positron, electron 1, and electron 2, respectively. To describe
the Ps center, it is convenient to use Jacobi coordinates (R,ρ),
where R = 1/2(r0 + r1) is the position of the Ps center of
mass (c.m.) relative to the target nucleus and ρ = r0 − r1 is
the relative coordinate of the positron and electron. The two
systems of coordinates (r0,r1,r2) and (R,ρ,r2) are shown
in Fig. 1. We emphasize that since there are two electrons,
which can form positronium, there are two corresponding sets
of Jacobi coordinates. When necessary, we will refer to them
explicitly as (R1,ρ1,r2) and (R2,ρ2,r1). Figure 1 shows one
of them where Ps is formed by electron 1.

We are interested in relatively low-energy positron col-
lisions and so, may neglect the relativistic and spin-orbit
interactions. With these assumptions, the total Hamiltonian
of the e+-Mg system can be written as

H = H0 + Ve(r1) + Ve(r2) + Vp(r0) + 1

|r1 − r2|
− 1

|r0 − r1| − 1

|r0 − r2| , (10)

where

H0 = − 1
2∇2

0 − 1
2∇2

1 − 1
2∇2

2

is the free Hamiltonian of three particles. Ve and Vp are
interaction potentials between the inert ion core with an active
electron and positron, respectively.

Electron interaction with the inert ion core Ve is given in
Eq. (1). Positron interaction with the inert ion core is just a
static part of the Hartree-Fock potential,

Vp(r) = −Vst(r), (11)

where Vst is given by Eq. (2).
Following the two-center CCC approach [18,19], the

scattering wave function 
 is sought as an expansion,


 ≈
Nα∑
α

Fα(r0)ψα(r1,r2) +
Nβ∑
β

{Gβ(R1)ψβ(ρ1)φion(r2)

+Gβ (R2)ψβ(ρ2)φion(r1)}, (12)

where the first term corresponds to expansion in terms of the
magnesium wave functions ψα with expansion coefficients
being Fα , whereas, the second term corresponds to expansion
in terms of the positronium states ψβ with coefficients Gβ .
Nα and Nβ are the numbers of the atomic and Ps states,
respectively. Indices α and β run over all included basis states
of the magnesium and Ps. The basis states may contain both
eigen- and positive-energy pseudostates of both Mg and Ps
depending on the choice. The second term allows for both
active electrons to form positronium. The residual ion of Mg+

is described by φion, and we consider it to be only in its 3s

ground state.
Substituting the expansion (12) into (9) and following

Ref. [20], we obtain momentum-space coupled-channel equa-
tions for transition matrix elements,

Tγ ′γ (qγ ′ ,qγ ) = Vγ ′γ (qγ ′ ,qγ ) +
Nα+Nβ∑

γ ′′

∫
dqγ ′′

(2π )3

×Vγ ′γ ′′ (qγ ′ ,qγ ′′ )Gγ ′′(q2
γ ′′ )Tγ ′′γ (qγ ′′ ,qγ ),

(13)

where γ = α,β and qγ is the momentum of free particle γ

relative to the c.m. of the bound pair in channel γ . The effective
two-body free Green’s functions are defined as

Gα′′
(
q2

α′′
) = (

E + i0 − q2
α′′/2 − εα′′

)−1
, (14)

Gβ ′′
(
q2

β ′′
) = (

E + εion + i0 − q2
β ′′/4 − εβ ′′

)−1
, (15)

and describes the free relative motion of particle γ ′′ and
bound pair γ ′′ with binding energy εγ ′′ , where εion is the
binding energy of the residual ion. Fundamentally, due to the
nonorthogonality of the two-center expansion, the underlying
equations (13) are highly ill conditioned. This requires higher
accuracy in the calculations of coupled equations as the basis
sizes are increased.

The effective potentials are given by

Vα′α(qα′ ,qα) = 〈qα′ |〈ψα′ |Uα′α|ψα〉|qα〉,
Vβ ′β(qβ ′ ,qβ) = 〈qβ ′ |〈ψβ ′φion|Uβ ′β |ψβφion〉|qβ〉, (16)

Vβα(qβ,qα) = 〈qβ |〈ψβφion|Uβα|ψα〉|qα〉,
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where

Uα′,α = Vp(r0) − 1

|r0 − r1| − 1

|r0 − r2| ,

Uβ ′,β = Vp

(∣∣∣∣R + 1

2
ρ

∣∣∣∣) − Ve

(∣∣∣∣R − 1

2
ρ

∣∣∣∣) + 1∣∣R − 1
2ρ − r2

∣∣
− 1∣∣R + 1

2ρ − r2

∣∣ ,
Uβ,α = Uα,β = H − E (17)

are the channel potential operators.
Upon partial-wave expansion in total orbital angular

momentum J according to [and similar for Tγ ′γ (qγ ′ ,qγ )]

Vγ ′γ (qγ ′ ,qγ ) =
∑

L′,M ′,L,M,J,K

YL′M ′ (̂qγ ′)CJK
L′M ′l′m′

×VL′LJ
γ ′,γ (qγ ′ ,qγ )CJK

LMlmY ∗
LM (̂qγ ), (18)

Eq. (13) transforms to

T L′LJ
γ ′,γ (qγ ′ ,qγ ) = VL′LJ

γ ′,γ (qγ ′ ,qγ ) +
Nα+Nβ∑

γ ′′

∑
L′′

×
∫

dqγ ′′q2
γ ′′

(2π )3
VL′L′′J

γ ′,γ ′′ (qγ ′ ,qγ ′′ )

×Gγ ′′
(
q2

γ ′′
)
T L′′LJ

γ ′′,γ (qγ ′′ ,qγ ), (19)

where L, L′, and L′′ are the angular momenta of the free
particles in channels γ, γ ′, and γ ′′, respectively. The effective
potentials in the representation of the total angular momentum
are given by

VL′LJ
γ ′,γ (qγ ′ ,qγ ) =

∑
m′,m,M ′,M

∫∫
d q̂γ ′d q̂γ Y ∗

L′M ′ (̂qγ ′)

×CJK
L′M ′l′m′Vγ ′γ (qγ ′ ,qγ )CJK

LMlmYLM (̂qγ ),

(20)

where YLM (̂qγ ) are the spherical harmonics of unit vector q̂γ .
The angular momenta of pair γ (γ ′) are l (l′), and M,m,K

are the projections of L,l,J , respectively. Accordingly, K =
M + m = M ′ + m′.

Note that, within this model, the main difference between
e+-Mg and e+-He problems is that we use numerical potentials
Ve and Vp instead of the pure Coulomb potentials for
interactions of positrons and electrons with the nucleus. This
means that the derivations of transition matrix elements are
the same as for the positron-helium case, and the details can
be found in Ref. [18].

III. RESULTS

Our previous calculations of positron scattering from
hydrogen, helium, and alkali targets [18,19,21] have shown
that better convergence is achieved when both centers are
treated on equal footing by using a similar number of basis
states on both centers. However, in the case of Mg, we were
not able to obtain stable results when the Ps center had a
similarly large number of states. This behavior might be due to
the approximation, made by dropping the electron-exchange
term between the Ps and the residual ion, which we adopt

for positron scattering from He and He-like targets. Another
possibility for such instability can be that the overcompleteness
of similar near-complete double-center expansions has become
more problematic than previously found for H, He, Li, and Na.

To avoid instabilities in the calculations with a large number
of states from both centers, we adopt a slightly different
approach. We take a complete set of target states, and then
we add to it the ground state of Ps at low energies and
two more eigenstates above their thresholds. This kind of
expansion satisfies the scattering boundary conditions at any
energy range including the area between the Ps formation and
the ionization thresholds where a single-center expansion is not
valid. Therefore, we should be able to get all cross sections,
including Ps formation, over the full energy range of interest.
We denote our results as CCC(Nlmax ,nPs), where Nlmax indicates
the total number and the highest orbital momentum (lmax) of
Mg states and nPs is the number of Ps eigenstates.

Figure 2 shows the J = 0 and J = 1 partial-wave elastic
cross sections calculated with different bases below the Ps-
formation threshold (0.85 eV). It also shows the single-center
results of Savage et al. [13], which were obtained by utilizing
305 states of Mg with the highest orbital angular momentum
lmax as high as 20. Such high orbital momentum states were
needed to get a convergent result within the single-center CCC.
The difference between CCC(793,0), which does not contain
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FIG. 2. (Color online) e+-Mg elastic-scattering cross sections for
the J = 0 and J = 1 partial waves. The CCC(30520,0) result is due
to Savage et al. [13].
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FIG. 3. (Color online) e+-Mg elastic-scattering cross section. The
first vertical line is at the Ps-formation threshold, and the second one
is at the Mg-ionization threshold. Other details are given in the text.

Ps states (nPs = 0), and the convergent single-center CCC
results of Savage et al. [13] indicates the slow convergence rate
with increasing lmax. The reason for such a slow convergence
is due to strong coupling to virtual Ps-formation channels,
which can be taken into account indirectly by using high
orbital momentum states or by explicitly including Ps states
into expansions. By comparing the results of CCC(793,0) with
CCC(793,1), we can see the importance of such coupling into
virtual Ps-formation channels. It shows that, by adding only
one Ps state to a quite small basis, we can get the convergent
result.

The results given in Fig. 2 show that the basis CCC(793,1) is
sufficient to get convergent results. Therefore, furthermore, we
use only this basis by adding two more states (2s and 2p) of Ps
when the scattering energy is above their thresholds (5.95 eV).
The results are denoted as CCC. The partial-wave summed
elastic cross section is shown in Fig. 3. It shows that our results,
with two center bases, are in excellent agreement with the
results of Savage et al. [13] (in their energy range of validity),
including the position and magnitude of the p-wave resonance.
The agreement between our calculations and the results of
Mitroy et al. [12] is satisfactory except for the position and
magnitude of the p-wave resonance.

Figure 4 shows the total scattering cross section above the
Ps-formation threshold compared with the single-center results
of Savage et al. [13] and with the experimental data of Stein
et al. [2]. Below the Ps-formation threshold, the results are the
same as in Fig. 3. Between the Ps-formation and the ionization
thresholds, our results are above the experimental data of Stein
et al. [2]. The single-center calculations of Savage et al. [13]
were not valid in this energy region and did not produce
convergent results. Above 10 eV, our results compare well
with results of the single-center CCC and the experimental
data.

The Ps-formation cross section is presented in Fig. 5.
Our results are compared with the previous calculations of
Gribakin and King [6], Hewitt et al. [9], Walters (data taken
from Ref. [3]), and Cheng and Zhou [11]. Also presented
are experimental data of Surdutovich et al. [3], which are
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FIG. 4. (Color online) e+-Mg total scattering cross sections. The
vertical line indicates the Mg-ionization threshold. Experimental data
are due to Stein et al. [2].

preliminary estimations for the upper and lower limits of
the Ps-formation cross sections. Our results compare well
qualitatively with the results of the many-body theory by
Gribakin and King [6], the close-coupling calculations of
Walter as presented by Surdutovich et al. [3], and the
momentum space optical potential method by Cheng and Zhou
[11]. The many-body theory results [6] have been obtained
as a nonelastic cross section, and at this energy range, the Ps
formation is a dominant contributor. The results of Hewitt et al.
[9], obtained using only a few Mg and Ps states, are much lower
than our results. Quantitative agreement between the given
theories is not very satisfactory. Unfortunately, the available
experimental data are also reported as preliminary and cannot
discriminate the theoretical results as all lie between the lower
and the upper limits of the experimental estimations.
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FIG. 5. (Color online) e+-Mg Ps-formation cross sections. Ex-
perimental data for upper and lower limits of Ps-formation cross
sections are due to Surdutovich et al. [3]. The vertical line indicates
the position of the Ps-formation threshold. Other details are given in
the text.
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FIG. 6. (Color online) e+-Mg total ionization cross sections.
σd ion, σPs, and σTICS are direct ionization, Ps-formation, and total
ionization cross sections, respectively. The vertical line indicates the
Mg-ionization threshold.

Figure 6 shows the total ionization cross section (TICS),
which is the sum of the Ps-formation and direct ionization cross
sections. The single-center CCC can obtain the TICS above
the ionization threshold as a capture to positive pseudostates
and cannot separate Ps formation from it. In the two-center
approach, cross sections for Ps formation and direct ionization

are calculated separately and then are summed up to obtain the
TICS. As can be seen from the figure, the two methods agree
soon after the ionization threshold, giving us great confidence
in the accuracy of the presented results.

IV. CONCLUSION

The CCC approach has been applied to positron scattering
on magnesium explicitly including the Ps-formation channels.
The importance of the Ps channels, even below the Ps-
formation threshold, has been demonstrated by showing that
the single-center CCC results can be reproduced with relatively
small bases if one Ps state is included. Using the two-center
method, we obtained the Ps-formation cross section, which is
in qualitative agreement with previous theories and prelimi-
nary experimental estimations. More accurate measurements
of elastic cross sections at low energies and Ps-formation cross
sections would be of interest, and we hope it will be possible
in the near future. Our future outlook is to extend the code for
positron scattering on noble gases.
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