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Electron correlation and nuclear charge dependence of parity-violating properties
in open-shell diatomic molecules
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The scaling of nuclear-spin-dependent parity-violating effects with increasing nuclear charge Z is discussed
in two series of isoelectronic open-shell diatomic molecules. The parameter Wa characterizing the strength of
parity violation in diatomic molecules is calculated in the framework of the zeroth-order regular approximation
and found to be in good agreement with the R(Z)Zk scaling law derived for atoms, in which R(Z) represents
a relativistic enhancement factor. The influence of electron correlation is studied on the molecular level, with
spin-polarization effects being conveniently accounted for by a previously established approximate relation
between the hyperfine coupling tensor and Wa. For high-accuracy predictions of parity-violating effects in
radium fluoride, the necessity for systematically improvable correlation calculations is emphasized.
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I. INTRODUCTION

Properties depending strongly on the behavior of the
electronic wave function in the vicinity of the nuclei display a
pronounced dependence on the nuclear charge Z. This has been
known for a long time and is often employed in atomic physics
to obtain qualitative estimates (see, e.g., Ref. [1]). For systems
with more complicated electronic structure, in particular for
molecules bearing nuclei with various Z values, a simple Z

scaling of such molecular properties is not a priori guaranteed,
as molecular properties also depend on the specific nuclear
arrangement, which could in principle modify the trends
(see, e.g., the discussion in Ref. [2]). Establishing general
scaling laws also for complex molecules would present a great
advantage, as scaling laws can be used for inexpensive order-
of-magnitude estimates. Quantum-chemical calculations allow
one to scrutinize proposed scaling laws for a given property
and investigate the form of the dependence on Z. This has been
applied in some detail in Ref. [3] for nuclear-spin-independent
parity-violating effects in chiral molecules containing atoms
from various rows of the periodic table [see Refs. [4–6] for
reviews on molecular parity violation (PV)]. In the present
article we calculate nuclear-spin-dependent parity-violation
interactions in alkaline-earth-metal monofluorides (Mg–Ra)F
(group-II monofluorides) and (Zn–Cn)H (group-XII monohy-
drides) as examples for open-shell systems. Most results and
conclusions presented below were reported by the authors on
several workshops and conferences during the years 2010 and
2011 and explicitly foreshadowed in Ref. [7]. A recent paper
took up the idea that we reported on those occasions, which
motivates us to present here our results and to comment, in
particular, on the inclusion of electron correlation effects in
molecular systems.

II. NUCLEAR-SPIN-DEPENDENT PARITY VIOLATION

One of the properties that is predicted to depend heavily on
Z is the nuclear-spin-dependent (NSD) parity-odd (P-odd)
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interaction (NSD-PV), whose effective operator in a four-
component (relativistic) framework is [8]

ĥI
PV = GF√

2

∑
A,i

kA,A �α · �IA ρA(�ri), (1)

where GF is Fermi’s constant of the weak interaction, kA,A

is an effective parameter describing NSD-PV interactions for
nucleus A (caused both by the nuclear anapole moment and
by weak electron-nucleon interactions; see Ref. [9]), and �IA

and ρA are the spin and nuclear-spin-density distribution of
nucleus A, respectively. For �α one uses

�α =
(

0 �σ
�σ 0

)
(2)

with �σ being a vector of the 2 × 2 Pauli spin matrices σx ,σy ,σz

and 0 a 2 × 2 zero matrix. The anapole moment was proposed
by Zel’dovich [10,11] soon after the discovery of parity
violation in processes mediated by the fundamental weak
interaction. The nuclear anapole moment [12] has received
great interest in atomic and molecular physics as it is caused
by parity-violating interaction within the nucleus, but should
favorably be probed in atomic and molecular experiments.
In atoms with stable nuclei, nuclear-spin-independent terms
caused by exchange of Z0 bosons between nucleus and
electrons typically dominate parity-violating effects and often
mask those effects depending on the nuclear spin that are
significantly smaller. Thus, as of yet, only for one nucleus,
namely, 133Cs, have nuclear-spin-dependent parity-violating
effects been determined in atomic experiments [13]. In linear
open-shell molecules, the special electronic structure itself
suppresses the contribution from nuclear-spin-independent
P-odd terms and offers, in principle, convenient access to
nuclear-spin-dependent P-odd contributions for a variety of
nuclei, including those with an odd number of neutrons instead
of an odd number of protons. This suppression in these
systems results from the fact that in linear molecules the matrix
elements of the spin-independent P-odd operator vanish in the
subspace of degenerate components of the Kramers doublet.
As the components of the Kramers doublet are interconverted
both by time reversal and by reflection in the symmetry plane
containing all nuclei whereas the P-odd operator is T even but
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changes sign under mirror reflection, the expectation values of
the components of the Kramers doublet (i.e., diagonal matrix
elements) must vanish. The nondiagonal matrix elements are
also zero for the nuclear-spin-independent P-odd term, be-
cause a (pseudo)scalar operator cannot connect states with dif-
ferent projections of the angular momentum. The nuclear-spin-
dependent P-odd term, in contrast, can give rise to nonvanish-
ing nondiagonal matrix elements between states with quantum
numbers of the projection of the total electronic momentum
on the molecular axis differing by 1. Another very attractive
feature of diatomics, besides suppression of the otherwise
masking contribution, is the closeness of the levels of opposite
parity, which greatly enhances a P-odd signal. With external
magnetic fields, the levels of opposite parity can in principle be
tuned to near-crossing to increase even more the effect induced
by parity violation. These favorable enhancement mechanisms
in open-shell diatomic molecules were discussed in the
pioneering papers [14–16]. A complementary route would be
the detection of NSD-PV in polyatomic chiral molecules by
nuclear magnetic resonance techniques [17–26]. As of yet,
however, molecular parity violation has not been detected,
which underlines the particular need for identification of
promising molecular candidate systems by theoretical means.

In open-shell diatomic molecules, the contribution from
interactions in Eq. (1) to the effective molecular spin-rotational
Hamiltonian can be parametrized by the term WakA[�λ × �Seff] ·
�I [27], a parity-violating contribution to the hyperfine coupling
tensor, where �λ is the unit vector pointing along the molecular
axis from the heavy to the light nucleus, �Seff is the effective
electron spin, and Wa is a single constant characterizing the
P-odd electron-spin–nuclear-spin coupling for a given nucleus
with nuclear spin �I . In the basis of the degenerate molecular
states |�〉 and |−�〉 (� is the projection of the total electronic
momentum on the molecular axis coinciding with the z axis),
Wa is approximately (see the discussion below) proportional
to the nondiagonal matrix element of the operator in Eq. (1):

Wa = 1

kA[�λ × �Seff]x,y

〈�|∂ĥI
PV

∂ �I |−�〉x,y, (3)

where it was taken into account that �λ has only a nonvanishing
z component. In contrast to Wa, components of the hyperfine
coupling tensor A can be computed also as diagonal matrix
elements in the |�〉 and |−�〉 basis, which we will exploit
below to estimate spin-polarization effects on Wa.

To calculate Wa we utilize a quasirelativistic two-
component zeroth-order regular approximation (ZORA) ap-
proach to electroweak quantum chemistry, which proved
to perform well in calculations of the spin-independent P-
oddenergy differences for chiral compounds when compared

to a four-component treatment [26,28,29]. Details of the
ZORA approach for the one- and multielectron cases can
be found elsewhere [3,28–30] and below we give only the
final expression of the NSD-PV terms in the ZORA approach
in the Hartree-Fock-Coulomb and Kohn-Sham-Coulomb self-
consistent-field (SCF) frameworks. The derivation of these
terms together with common consideration of the parity-
violation problem in open-shell polyatomic molecules can be
found in Ref. [31].

In Table I, QA is the weak charge of nucleus A, QA =
NA − (1 − 4 sin2 θW)ZA, where NA is the number of neutrons
in nucleus A, ZA the nuclear charge, sin2 θW the Weinberg
parameter, for which we employ the numerical value sin2 θW =
0.2319, and �Aμ the magnetic vector potential from the point-
like nuclear magnetic moments �μA = h̄γA

�IA with �Aμ(�r) =
(μ0/4π )

∑
A �μA × (�r − �RA)/(|�r − �RA|)3, γA being the gyro-

magnetic ratio and μ0 being the vacuum permeability. The
symbol e denotes the elementary charge (charge of a positron),
me the mass of the electron, h̄ = h/(2π ) the reduced Planck
constant, and {x,y} = xy + yx the anticommutator. The
ZORA factor ω̃ is also used, ω̃ = 1/(2me − Ṽ /c2), where Ṽ is
the model potential (with additional damping [32]) proposed
by van Wüllen [33], which alleviates the gauge dependence of
ZORA. To calculate Wa, the terms of the ZORA Hamiltonian
which are first order in �I have to be accounted for, namely,

z(1,1)
hf + z(1,1)

sd =
∑
A

GF

2
√

2

(
QA

{
e �σ · �Aμ(�r),

ω̃

c
ρN (�r)

}

+ 2kA,A

{
�σ · �p,

ω̃

c
�σ · �IAρA(�r)

})
. (4)

An advantage of the ZORA approach is that one of the
terms coupling the P-even hyperfine interaction with the P-
odd nuclear-spin-independent weak interaction [the first term
in Eq. (4)] naturally appears after the transition from a four-
component to a two-component framework. In our calculations
we neglect this term together with accompanying response
terms; however, as in atomic calculations it was shown to give
corrections on the order of a few percent for heavy atoms.

The Z-dependent scaling behavior of the matrix element
of the nuclear-spin-independent P-odd interaction was first
obtained in Ref. [1] and, for nuclear-spin-dependent P-odd
interaction, in Ref. [8]:

〈s1/2|ĥI
PV|p1/2〉 ∼ Z2R(Z), (5)

R(Z)= 4

3

2
√

1−(Zα)2 + 1

�[2
√

1−(Zα)2 + 1]2

(
a0

2ZA1/3r0

)[2−2
√

1−(Zα)2]

,

(6)

TABLE I. Parity-violating terms in the ZORA Hamiltonian.

Term Name Expression

z(0,1)
s Scalar P-odd interaction GF

2
√

2
QA{�σ · �p, ω̃

c
ρA(�r)}

z(1,1)
hf Scalar P-odd and hyperfine P-even interaction GF

2
√

2
QA{e �σ · �Aμ(�r), ω̃

c
ρA(�r)}

z(1,1)
sd Nuclear-spin-dependent P-odd interaction GF

2
√

2
2kA,A{�σ · �p, ω̃

c
�σ · �IAρA(�r)}

z(2,1)
sdr Nuclear-spin-dependent P-odd and hyperfine P-even interaction GF

2
√

2
2kA,A{e �σ · �Aμ(�r), ω̃

c
�σ · �IAρA(�r)}
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FIG. 1. (Color online) Relativistic enhancement factor R(Z) as
a function of the nuclear charge Z shown on a double-logarithmic
scale.

where a0 is the Bohr radius, α the fine-structure constant, and
r0 = 1.2 fm a nuclear size parameter. The analytic form of
the relativistic enhancement factor R(Z) was obtained from a
model treatment, such that R(Z) can either be tabulated and
used in approximate treatments or be calculated directly in
atomic relativistic vs nonrelativistic calculations. As is shown
in Fig. 1 on a double-logarithmic scale, R(Z) depends heavily
on Z (here the analytic form was used). The proposed scaling
behavior for atomic systems can subsequently be studied in

explicit calculations for molecular systems as we will show
below.

III. CALCULATION DETAILS

In all our computations we used for the alkaline-earth-metal
atoms a basis set of uncontracted Gaussians with the exponent
coefficients (ECs) composed as an even-tempered series.
This sequence was generated according to αi = γβN−i ,
i = 1, . . . ,N . For s and p functions β was taken equal to 2.0 for
basis sets centered on the heavier alkaline-earth-metal nuclei
(Sr,Ba,Ra) as well as on ytterbium and (5/2)1/25 × 102/5 ≈ 2.6
for the group-XII nuclei (Zn,Cd,Hg,Cn) and the lighter
group-II nuclei (Mg,Ca). For all sets of d and f functions
β = (5/2)1/25 × 102/5 ≈ 2.6 was chosen. The tighter basis
sets for s and p functions were employed because the
P-odd operator mixes mainly s and p waves on the heavy
nucleus. For the ECs and the resulting basis set dimensions,
see Table II. On the fluorine atom in all cases we used an
uncontracted atomic natural orbital (ANO) basis set of triple-ζ
quality [34] and on hydrogen an s,p subset of an uncontracted
correlation-consistent basis set of quadruple-ζ quality [34]
with the ECs given explicitly in Table II.

The nuclear density was modeled by a spherical Gaussian
distribution ρ(R) = ρ0e

−(3/2ξ )R2
, where ξ is the root mean

square radius of the corresponding nucleus computed accord-
ing to the empirical formula ξ = (0.836A1/3 + 0.57) fm =
(1.5798A1/3 + 1.077) × 10−5a0, where A is the given mass
number of the respective isotope. Within this work we

TABLE II. Basis set parameters for ZORA HF-DFT calculations. Even-tempered basis sets of uncontracted Gaussians are given in the form
Nbas; l; (ECmax; ECmin), where Nbas is the number of Gaussians, l is s, p, d or f and represents the angular momentum quantum numbers 0, 1,
2, or 3. ECmax and ECmin are the largest and smallest exponent coefficient (in a−2

0 ), respectively.

Mg Ca Sr,Ba,Yb Ra

27; s; (500000000; 0.00769) 27; s; (500000000; 0.00769) 37; s; (2000000000; 0.0291) 39; s; (2000000000; 0.00728)
25; p; (191890027; 0.02000) 25; p; (191890027; 0.0200) 34; p; (500000000; 0.0582) 34; p; (500000000; 0.0582)
4; d; (3.750; 0.21336) 13; d; (13300.758; 0.135789) 14; d; (13300.758; 0.0521) 14; d; (13300.758; 0.0521)

9; f; (751.8368350; 0.3546) 10; f; (751.8368350; 0.13638)
Zn,Cd,Hg,Cn

27; s; (500000000; 0.0077)
25; p; (191890027; 0.0200)
14; d; (13300.758; 0.0521)
8; f; (751.8368350; 0.9219352)

F ANO basis H basis

s p d s p

103109.46 245.33029 5.000000 82.640 2.2920000
15281.007 56.919005 1.750000 12.410 0.8380000
3441.5392 17.604568 0.612500 2.8240 0.2920000
967.09483 6.2749950 0.214375 0.7977
314.03534 2.4470300 0.2581
113.44230 0.9950600 0.08989
44.644727 0.4039730
18.942874 0.1548100
8.5327430 0.0541840
3.9194010
1.5681570
0.6232900
0.2408610
0.0843010
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employed mass numbers corresponding to the standard relative
atomic mass rounded to the nearest integer, namely, 1H,
19F, 24Mg, 40Ca, 65Zn, 88Sr, 112Cd, 137Ba, and 201Hg. The
radium nucleus with atomic mass number 225 was taken and
the copernicium nucleus with atomic mass number 284. As
computed Wa values do not depend too strongly on the atomic
mass number (for 213RaF, 223RaF, and 225RaF changes in |Wa|
were found on the order of a few hertz [7]), we report only one
value for |Wa|, even though the specific isotope corresponding
to the standard relative atomic mass may have a nuclear-spin
quantum number of I = 0. A modified version [26,28,29,31]
of the program package TURBOMOLE [35] was used for
the complex generalized SCF (Hartree-Fock or Kohn-Sham)
calculations. As spatial symmetry was not exploited, we
also calculated the value of the projection � of the total
electron angular momentum on the molecular axis. In the
two-component generalized Hartree-Fock (GHF) calculations
� ∼= 0.5 ± 10−3, in the two-component density functional
theory (DFT) calculations within the generalized Kohn-Sham
(GKS) framework � ∼= 0.5 ± 10−4. The value of |Wa| was
computed according to Eq. (3). In the ZORA calculations
|�〉 and |−�〉 are many-electron functions, and the Löwdin
formula [36] for calculations of the matrix elements between
nonorthogonal one-determinantal (OD) functions was applied:

〈�1|Ŵ |�2〉 =
∑

k

∑
l

〈ψ̃k|ŵ|ψl〉D(k|l), (7)

where |�1〉 and |�2〉 can be either orthonormalized or
nonorthonormalized OD functions, 〈ψ̃k|ŵ|ψl〉 is the matrix
element of the one-electron operator ŵ between members
of the two sets of molecular-spin orbitals with 〈ψ̃i |ψ̃j 〉 =
δij ,〈ψi |ψj 〉 = δij that are occupied in the OD wave functions
�1 and �2, respectively, and D(k|l) is the (k,l) cofactor of
S which is obtained from the original OD wave functions by
crossing out in the overlap matrix S (which has the matrix
elements skl = 〈ψ̃k|ψl〉) the kth row and lth column, subse-
quently forming the determinant of the resulting submatrix and
multiplying by (−1)k+l . We note in passing that in the direct

application of the present complex GHF (GKS) approach only
the absolute value of Wa is immediately accessible, whereas
determination of its sign requires an additional symmetrization
procedure, which for the purpose of the present study, however,
is not required.

In calculations of the (Mg-Ra)F row two different
exchange-correlation (XC) functionals were used in a gen-
eralized Kohn-Sham DFT framework: (1) the local-density
approximation (LDA) and (2) a three-parameter hybrid func-
tional containing Becke’s exchange functional together with
the Lee-Yang-Parr (LYP) correlation functional B3LYP. This
latter hybrid XC functional, which contains an admixture of
about 20% nonlocal Fock exchange, was used in the form
employed in the GAUSSIAN03 program package [37] with
the VWN(III) approximation by Vosko, Wilk, and Nusair
for the correlation functional of the homogeneous electron
gas. Both XC functionals (LDA and B3LYP) attempt to
describe nonlocal exchange-correlation effects by means of an
effective (primarily, see below) local interaction. In the case
of the LDA this interaction is estimated via a procedure that
employs locally the exchange and correlation energy density
of a homogeneous electron gas. The B3LYP functional is
somewhat more sophisticated in containing additional terms,
e.g., ones that account for the local gradient of the density, and
includes—being a hybrid functional—also some contribution
from nonlocal Fock exchange which attempts to alleviate
pronounced errors due to the use of a local exchange term.
In some previous studies of parity-violating potentials in
chiral molecules containing heavy nuclei, the HF and LD
approximations were found to define often the range of
corresponding values, with various other functionals such as
B3LYP yielding parity-violating potentials typically falling in
between these two extremes (see, e.g., Refs. [29,38]).

The equilibrium distance for all diatomic molecules was
taken from experimental data, except for RaF, where the
distance was obtained in Ref. [7] from four-component
relativistic coupled-cluster calculations in the Fock space
and CnH, where we used the bond length obtained in the
two-component GHF framework.

TABLE III. Calculated P-odd parameter |Wa| (in Hz) for open-shell diatomic molecules together with the charge number Z of the heavy
nucleus and the equilibrium distance Re employed.

|Wa|/Hz

Z Re/a0 GHF GKS-B3LYP GKS-LDA

MgF 12 3.30 3.9 4.9 5.2
CaF 20 3.71 8.0 9.2 9.5
SrF 38 3.92 3.9 × 101 4.6 × 101 4.8 × 101

BaF 56 4.07 1.11 × 102a 1.19 × 102 1.25 × 102

RaF 88 4.24 1.30 × 103b 1.42 × 103 1.47 × 103

RaF (basis S) 88 4.24 1.07 × 103 1.48 × 103

RaF (basis L) 88 4.24 1.24 × 103 1.50 × 103

ZnH 30 3.01 4.7 × 101

CdH 48 3.36 2.23 × 102

HgH 80 3.33 3.30 × 103c

CnH 112 3.10 4.88 × 104

aIn Ref. [7] 111 Hz was obtained with a slightly different basis set.
bIn Ref. [7] 1.3 kHz was reported for a slightly different basis set.
cIn Ref. [7] 3.3 kHz was reported for a slightly smaller basis set.
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IV. RESULTS

The results of our study are summarized in Table III. We cal-
culated the absolute value of the parameter Wa for the ground
�1/2 states of the alkaline-earth-metal monofluorides (Mg–
Ra)F and group-XII monohydrides (Zn–Cn)H. In addition, we
report results for YbF for comparison with other approaches.
Before discussing details of the results we would like to
emphasize that the majority of our calculations are model ones.
Thus the Wa values provided can primarily be used in assessing
the order of magnitude. The exception is the Wa parameter that
takes account of the spin-polarization effect from molecular
calculations. In this case we provide some theoretical uncer-
tainty estimates (see the corresponding paragraph).

One can see from Table I two main trends when accounting
for correlations by DFT: (1) a systematic increase in the
value of |Wa| from B3LYP to LDA XC functionals and (2)
a relative decrease in correlation contributions from 33%
for MgF to about 12% for RaF. Both these dependences
are consistent with previous observations and anticipations.
The former trend was observed for parity-violating energy
differences between enantiomers of chiral molecules [29]; the
latter is also not surprising as the main contribution in this
class of heavy-atom open-shell diatomic molecules is expected
to arise from spin-polarization effects, which cannot (fully)
be accounted for by direct calculation of nondiagonal matrix
elements between complex GHF wave functions at least for
T -odd operators, for which thus results of essentially paired
GHF quality are obtained. A discussion of the influence of
symmetry breaking for OD wave functions on matrix elements
of different operators can be found in Ref. [39]. Finally we
plotted on a double-logarithmic scale (Fig. 2) instead of |Wa|
the values of |Wa/R(Z)| obtained on the GHF level against
Z, as we have argued previously [3,7] that one should correct
for the relativistic enhancement factors when attempting to
extract Zk scaling laws from quasirelativistic and relativistic
calculations. Fitting of the points in Fig. 2 by a linear function
gives a slope equal to 1.75 for (Mg–Ra)F and 2.68 for
(Zn–Cn)H, which are indeed close to the scaling factors for
NSD-PV interaction matrix elements.

10 1005020 3015 70

5

10

50

100

500

1000

Wa R Z Hz

Z

FIG. 2. (Color online) Scaling of |Wa|/R(Z) GHF values with
Z for the (Mg–Ra)F and (Zn–Cn)H series [orange (bottom) line,
blue dots and red (upper) line, green dots, respectively] on a double-
logarithmic scale. The slope of the lines is 1.75 for (Mg–Ra)F and
2.68 for (Zn–Cn)H, which implies an R(Z)Zk scaling law for Wa

with k = 1.75 and k = 2.68, respectively.

Our current results have been mainly confirmed by recent
four-component calculations of Wa in the series of diatomic
radicals (Mg–Ra)F [40]. The authors of Ref. [40] have
also observed the Zk scaling (also with k close to 2) for
Wa/R(Z). Besides performing Dirac-Hartree-Fock-Coulomb
(DHFC) and Dirac-Kohn-Sham (DKS) calculations in a paired
GHF and paired GKS framework, which cannot account for
core-polarization effects, the authors of Ref. [40] employed
some approximate atom-based schemes to roughly estimate
part of the electron-correlation effect via scaling factors.
Our treatment, however, is based on a complex GHF (GKS)
framework and thus allows us to capture part of the electron-
correlation effect directly within the molecular calculations
(see also below), whereas some contributions are not included
due to calculation via off-diagonal matrix elements between
time-reversed wave functions. Our direct DFT-based estimates
for |Wa| in MgF, CaF, and SrF can reasonably well be repro-
duced by the indirect procedure employed in Ref. [40]. For BaF
and RaF we find, however, only a modest electron-correlation
contribution on the DFT level of theory, whereas in Ref. [40]
significant changes are reported for RaF. Even without the
subsequent attempts to account for further electron-correlation
effects, in Ref. [40] DHFC and DKS values for |Wa| in RaF
differ by more than 15% (and by about 30% for the LDA
XC functional) and in BaF only by 2%. As was mentioned,
the latter result (for BaF) is actually in agreement with the
earlier calculations in Ref. [41], in which the authors found
that the main contribution comes from the spin-polarization
effects, although further accounting for electron correlation
gives a minor contribution. We note in passing that in
Ref. [40] the data got mixed up for the calculations that do
not account for spin polarization (SCF calculations in the
notations of the authors of Ref. [41], Wa = 111 Hz), with
those that account for spin polarization [SCF-EO (SCF plus
effective operator accounting for spin polarization), Wa =
181 Hz] and those that account for electron correlation and
spin polarization (Restricted Active Space SCF (RASSCF)-
EO, Wa = 175 Hz). In Ref. [40] Faegri’s energy-optimized
basis sets were employed, which required augmenting with
additional functions to be used in calculations of properties
that depend on the behavior of the electronic wave function
near the nucleus. To check the influence of the basis set choice,
we performed calculations with two additional basis sets (see
below for the basis set specifications) for Ra together with
an uncontracted augmented correlation-consistent polarized
valence triple-zeta (aug-cc-pVTZ) basis set 11s6p3d2f on the
fluorine nucleus. The first Ra basis set (basis S in Table III) was
Faegri’s uncontracted basis set 25s21p14d9f recommended
for relativistic calculations [42] and another one (basis L)
was a large even-tempered basis set 36s33p22d15f generated
according to recommendation of the article [43]. The result of
the calculations with these basis sets clearly shows that with
the extension of the basis set from basis S to basis L the
difference between the GHF and GKS results of essentially
paired generalized SCF quality decreases from 38% to 20%
for the LDA XC functional, getting close to the values reported
by us (≈12%) for the basis sets we used herein and in
Ref. [7]. This provides some indication that the pronounced
electron-correlation effects reported in Ref. [40] for the DFT
framework might primarily be caused by the special choice of
basis set therein.
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TABLE IV. Calculated and scaled ab initio values for the parameter |Wa| in BaF, YbF, and RaF together with the scaling factor f =
[(AisoAd)CGHF/(AisoAd)PGHF]1/2. Additional ab initio results and calculation methods are taken from the corresponding references. A bond
length of 3.80 a0 was used in the calculation for YbF.

|Wa|/Hz

GHF Scaled ab initio f Method Reference

BaF 1.11 × 102 1.9 × 102 1.81 × 102 1.68 SCF-EO [41]
1.75 × 102 RASSCF-EO [41]

YbF 4.65 × 102 6.1 × 102 6.34 × 102 1.31 RASSCF-EO [46]
RaF 1.30 × 103 2.1 × 103 1.65
HgH 3.30 × 103 2.0 × 103 a 0.62
CnH 4.88 × 104 3.1 × 104 0.63

aSemiempirical estimate of Ref. [44] based on spectroscopic parameters of 199HgH and 201HgH:Wa = 1800 Hz and Wa = 1940 Hz, respectively.

To estimate spin-polarization contributions within the GHF
approach we use scaling relations from the semiempirical
molecular model by Kozlov [44], which is known to repro-
duce ab initio parameters of the (P,T )-odd spin-rotational
Hamiltonian for ground states of BaF, YbF, and some other
molecules with an accuracy of 10%–15%. For this model some
simple (approximate) relations can be established between the
parameters of the electronic structure, required for calculations
of Wa of the linear diatomic molecules employed in the
current work in their �1/2 ground states, and the hyperfine
coupling tensor terms Aiso (isotropic) and Ad (dipole). For
our purpose and the current set of molecules, however, it is
more important that the relation between Wa obtained for
different approximations (e.g., complex and paired generalized
Hartree-Fock wave functions, CGHF and PGHF, respectively)
is approximately equal to the ratio between the square root of
the products of Aiso and Ad [see Eqs. (33), (34), and (10) in
Ref. [44]; assuming that the signs of Aiso and Ad are identical]:

WCGHF
a

W PGHF
a

≈
[

(AisoAd)CGHF

(AisoAd)PGHF

]1/2

. (8)

Thus, by calculating the hyperfine tensors both taking
into account the spin polarization (in our case as diagonal
matrix elements within the complex GHF scheme) and not
doing so (as nondiagonal matrix elements, leading to results
of essentially paired GHF quality) we can restore spin-
polarization contributions, which are expected to be most
important for RaF. The results of this scaling are presented
in Table IV. One can observe that for molecules with a
valence electronic structure similar to that of RaF the relative
deviation of our scaling for Wa parameters is better than 10%
when judged from the corresponding RASSCF-EO results or
about 10% in comparison with the semiempirical estimates for
HgH by Kozlov [44]. This finding is particularly encouraging
for the identification of promising molecular candidates. We
expect, however, that the theoretical uncertainty of our value
for Wa in RaF is in general somewhat higher than 10%, as the
semiempirical model itself provides results with an accuracy
of 10%–15% (see above). The uncertainty of the Wa parameter
for RaF should therefore rather be 15%, which is indeed an
estimate, and not a rigorous error bound. Thus, for reliable
estimates of electron-correlation and spin-polarization effects
on the value of Wa (and other properties depending on the
behavior of the wave function near the nucleus) in RaF one

has to employ high-order correlation calculations, for instance
similar to those in Ref. [45]. It is also interesting to note that
in the group-XII monohydrides series the spin-polarization
contribution should suppress rather than enhance the NSD-PV
interaction, at least for the two heavy representatives reported
in Table IV.

Finally, we emphasize that although the treatment of
relativistic effects in the four- and two-component frameworks
is different, deviations between results for NSD-PV operators
are not expected to be significantly larger than 3% for the
heavier nuclei (rows 4–7) when judged on the basis of earlier
calculations [26,29], provided appropriate basis sets are used
(see also the discussion in Ref. [3]).

V. CONCLUSIONS

We have reported herein a numerical study on nuclear-
charge-dependent scaling of molecular properties in open-
shell diatomic molecules. After we have accounted for a
relativistic enhancement factor R(Z), which grows nonpoly-
nomially with the nuclear charge Z, we obtain an approximate
Z2 scaling behavior for the nuclear-spin-dependent parity-
violating parameter Wa computed at the respective equilibrium
structure. This term contributes to the effective spin-rotational
Hamiltonian used for high-resolution studies which aim for
the first detection of molecular parity violation. The present
confirmation of a simple scaling law is excellent news as it
allows for quick estimates of parity-violating effects in a whole
series of diatomic molecules. Within the complex generalized
Kohn-Sham framework employed in this work, part of the
electron-correlation effect on this molecular property can be
accounted for, although some contributions are still missing.
Spin-polarization effects can approximately be included within
a simple but powerful molecular scaling scheme utilized
previously for semiempirical estimates. For high-accuracy cal-
culations, more sophisticated molecular electron-correlation
approaches are clearly needed, but given the present ex-
perimental status, the current approximate approaches allow
promising molecular candidates such as RaF to be identified,
as was proposed in Ref. [7].
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