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Exact nonrelativistic polarizabilities of the hydrogen atom with the Lagrange-mesh method
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Exact analytical expressions of the dipole polarizabilities of the nonrelativistic hydrogen atom in spherical
coordinates are derived with the help of the Lagrange-mesh numerical method. This method can provide exact
energies and wave functions for well-chosen conditions of calculation. Exact dipole polarizabilities are obtained
after an unambiguous rounding up to at least principal quantum numbers around n = 30. The scalar polarizability
of any nl level is given by n4[4n2 + 14 + 7l(l + 1)]/4 and its tensor polarizability is given by −n4[3n2 − 9 +
11l(l + 1)]l/4(2l + 3), which allows the calculation of the polarizability of any hydrogen state nlm.
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I. INTRODUCTION

The nonrelativistic hydrogen atom is one of the most studied
and best-known problems of quantum mechanics [1]. Since
the wave functions are known exactly, many of its properties
can be derived analytically. An interesting example is given
by static dipole polarizabilities for which a general analytical
expression as a function of the quantum numbers nlm related to
spherical coordinates requires very complicated calculations
(see references in Ref. [2]). A polarizability is the response
of the electron cloud to some external field [3,4] that can be
represented as a multipole operator. Polarizabilities appear in,
e.g., the Stark effect, interactions between an electron and an
atom, and van der Waals forces.

The dipole polarizability of the ground state of the hydrogen
atom has been known for a long time [5]. In parabolic
coordinates, the general analytical expression for the hydrogen
atom is well known [4] as

α(n1n2m) = 1
8n4[17n2 − 3(n1 − n2)2 − 9m2 + 19], (1)

in atomic units, where n1n2m are the parabolic quantum
numbers and the principal quantum number is given by n =
n1 + n2 + |m| + 1. These polarizabilities allow calculating the
Stark effect at the second order of perturbation theory. The
results are valid when the electric field is not too large but large
enough so that the fine-structure splitting can be neglected.
The calculation of these polarizabilities involves states of
mixed parity resulting from the famous degeneracy of the
nonrelativistic hydrogen atom. First-order perturbation theory
mixes the degenerate states which enter into the second-order
polarizabilities.

For the spherical quantum numbers nlm, the situation is
different. Polarizabilities α(nlm) can be defined mathematically
for each unmixed state nlm. They are useful in different
respects. They provide exact limits for vanishing frequencies
of the dynamical polarizabilities which are useful in various
processes [2,4]. They are also a useful testing ground for
numerical techniques [6,7], in particular because of the simi-
larity of simple models of alkali-metal atoms with hydrogen.
However, contrary to the alkali-metal case, the hydrogen atom
polarizabilities are unrealistic in the sense that degenerate
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states are excluded. Rigorous treatments must take into account
transitions towards states with the same principal quantum
number n. These states are separated by the small spin-orbit
and Lamb-shift splittings. The nonrelativistic polarizabilities
are then useful as a good approximation of the part of the
realistic polarizabilities involving different principal quantum
numbers and the continuum [8].

For ns states, a general analytical result has been derived
by McDowell [9],

α(ns) = 1
4n4(2n2 + 7). (2)

For |m| = n − 1, l is also equal to n − 1 and one deduces from
Eq. (1) [4]

α(n,l=n−1,|m|=n−1) = 1
4n4(n + 1)(4n + 5). (3)

General expressions have been derived by Krylovetsky,
Manakov, and Marmo but are not easily accessible (see
references in Ref. [2]). For m = 0, they obtain

α(nl0) =n4 n2[19l(l+1)−12]+13l(l+1)[3l(l+1)+2]−42

4(2l−1)(2l+3)
.

(4)

Otherwise, explicit values of static polarizabilities of the
hydrogen atom are given for a limited number of states in
Refs. [6,7].

The Lagrange-mesh method is an approximate variational
method involving a basis of Lagrange functions and using
the associated Gauss quadrature for the calculation of matrix
elements [10–12]. Lagrange functions are continuous func-
tions that vanish at all points of a mesh but one. The principal
simplification appearing in the Lagrange-mesh method is that
the potential matrix is diagonal and only involves values of
the potential at mesh points. The kinetic-energy matrix can be
calculated exactly or approximated with the Gauss quadrature.
The remarkable property of the Lagrange-mesh method is that
the accuracy of the variational method is essentially preserved
despite the use of the Gauss quadrature [13].

Strikingly, for well-chosen conditions of the calculation,
the Lagrange-mesh method with exact expressions for the
overlaps and kinetic-energy matrix elements can provide the
exact values of the hydrogen energies and wave functions and
thus, as explained below, of polarizabilities. Since computers
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have a limited number of digits, the numerical results differ
from the exact values by rounding errors.

The aim of this paper is to derive exact analytical dipole
polarizabilities by fitting numerical results obtained with a
variational calculation using a Lagrange basis, which is exact
in principle. The rounding required because of the limited
accuracy of the computer can be performed unambiguously up
to high values of n. In passing, it is observed that a calculation
with the simplest version of the Lagrange-mesh method leads
to numerical values of the polarizabilities more accurate than
those of the variational calculation, despite additional Gauss
quadrature approximations.

In Sec. II, general expressions for the polarizabilities
induced by multipole fields are summarized and analyzed.
In Sec. III, the Lagrange-Laguerre basis is introduced and
the corresponding variational calculation is shown to lead to
exact results. The difference with the Lagrange-mesh method
is explained. Numerical results for the dipole polarizabilities
are presented in Sec. IV and their exact analytical expressions
are deduced. Concluding remarks are presented in Sec. V.

II. POLARIZABILITIES OF THE HYDROGEN ATOM

The wave functions of the nonrelativistic hydrogen atom are
separated in spherical coordinates as r−1ψnl(r)Ylm(�). The
radial functions ψnl with principal quantum number n are
eigenfunctions of the radial Hamiltonian of the hydrogen atom
for partial wave l,

Hl = 1

2

[
− d2

dr2
+ l(l + 1)

r2

]
− 1

r
(5)

(in atomic units), and correspond to energy −1/2n2.
The polarizabilities are often defined by series involving

the continuum. These series can be summed in a compact
form with the method of Dalgarno and Lewis [14]. Let us
consider the polarization by a multipole operator rλC(λ)

μ , where
C(λ)

μ (�) = √
4π/(2λ + 1)Y (λ)

μ (�). For partial wave l, the radial

functions ψ
(1)
nll′ at the first order of perturbation theory are

solutions of the inhomogeneous radial equations

(Hl′ − E) ψ
(1)
nll′ (r) = rλψnl(r), (6)

where ψnl is the radial wave function of the studied state. The
polarizability of state lm for component μ of the multipole
operator is given by

α
(nlm)
λμ = (2l + 1)

∑
l′

(
l λ l′
m μ −m − μ

)2

α
(nll′)
λ . (7)

This expression allows a calculation for any μ and m from 3jm

coefficients and λ + 1 reduced polarizabilities. These reduced
polarizabilities read

α
(nll′)
λ = 2(2l′ + 1)

(
l′ λ l

0 0 0

)2 ∫ ∞

0
ψ

(1)
nll′ (r)rλψnl(r)dr.

(8)

The sum in Eq. (7) is thus restricted to |l − λ| � l′ � l + λ,
with l + λ + l′ even and l′ � |m + μ|. The average or scalar

polarizabilities defined by

α
(nl)
λ = 1

2l + 1

l∑
m=−l

α
(nlm)
λμ (9)

do not depend on μ and can easily be calculated with

α
(nl)
λ = 1

2λ + 1

l+λ∑
l′=|l−λ|

′
α

(nll′)
λ , (10)

where the prime means that the sum runs by steps of 2 and
contains in general λ + 1 terms.

The right-hand side of Eq. (6) is a polynomial of degree
n + λ multiplied by exp(−r/n). It behaves near the origin
as rλ+l+1. The solution of such an equation is elementary. It
is a polynomial of degree n + λ + 1 multiplied by the same
exponential. It behaves near the origin as rl′+1. Hence the
integrand in Eq. (8) is a polynomial of degree 2n + 2λ + 1
multiplied by exp(−2r/n) and the integral can be calculated
exactly.

An unusual problem arises in the calculation of the
static polarizabilities for the hydrogen atom because of the
degeneracies in the level scheme. The differential equation (6)
has no solution when transitions are possible toward a
degenerate state. For dipole polarizabilities, this occurs when
l′ = l − 1 and |m + μ| � l′ or when l′ = l + 1 and n > l + 1.
Degenerate energies must be excluded from the calculation
of polarizabilities. By projecting out the degenerate state [7],
Eq. (6) is modified into

(Hl′ − E) ψ
(1)
nll′ (r) = rλψnl(r) − 〈ψnl′ |rλ|ψnl〉ψnl′ (r). (11)

The reduced polarizability is obtained with Eq. (8) where ψ
(1)
nll′

is the solution of Eq. (11), orthogonalized to ψnl′ . For particular
cases, analytical calculations are quite feasible but the structure
of a general formula is not obvious.

III. LAGRANGE-MESH AND VARIATIONAL METHODS

The Lagrange-Laguerre mesh points xi are defined for i = 1
to N by [10]

LN (xi) = 0, (12)

where LN (x) is a Laguerre polynomial of degree N . The
corresponding Gauss-Laguerre quadrature

∫ ∞

0
g(x) dx ≈

N∑
k=1

λkg(xk) (13)

involves the Gauss-Laguerre weights λk [15]. It is exact if g(x)
is a polynomial of degree at most 2N − 1 times exp(−x) [16].
The regularized Lagrange functions read [12,17]

fi(x) = (−1)ix−1/2
i

xLN (x)

x − xi

e−x/2. (14)

These basis functions are polynomials of degree N multiplied
by exp(−x/2). They vanish at the origin. They satisfy the
Lagrange property

fi(xj ) = λ
−1/2
i δij . (15)
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At the Gauss approximation, the matrix elements of a
function V (x) are diagonal,

∫ ∞

0
fi(x)V (x)fj (x) dx ≈

N∑
k=1

λkfi(xk)V (xk)fj (xk)

= V (xi)δij , (16)

because of the Lagrange properties (15). Matrix elements of
x−1 and x−2 are exact since they involve polynomials of
respective degrees 2N − 1 and 2N − 2, but not those of 1
since they involve a polynomial of degree 2N . This basis is
thus not orthonormal [13],

Nij = 〈fi |fj 〉 = δij + (−1)i−j

√
xixj

, (17)

where the Dirac notation represents an integral from 0 to ∞.
The matrix elements Tij = 〈fi |T |fj 〉 of T = −d2/dx2 read at
the Gauss approximation [17]

T G
i �=j = (−1)i−j xi + xj√

xixj (xi − xj )2
(18)

and

T G
ii = − 1

12x2
i

[
x2

i − 2(2N + 1)xi − 4
]
. (19)

The superscript G indicates the use of the Gauss approxi-
mation in a case where it is not exact. Here it is not exact
since the integrand is a polynomial of degree 2N times
exp(−x). However, the exact matrix elements of T can be
obtained as

Tij = T G
ij − (−1)i−j 1

4
√

xixj

, (20)

with a simple correction to the Gauss approximation [11,13].
The regularized Lagrange-Laguerre basis plays a special

role for the hydrogen atom since, for some well-chosen scaling
parameter h, the exact radial wave functions can be expressed
exactly as a finite combination of these Lagrange functions.
The radial functions ψl are expanded as

ψl(r) = h−1/2
N∑

i=1

clifi(r/h). (21)

This expression is a polynomial of degree N times
exp(−r/2h). For h = n/2, the functions ψ

(1)
nll′ (r) and ψnl(r)

can be reproduced exactly by expansion (21) if N is large
enough.

The exact variational equations for orbital momentum l

with basis (21) read

N∑
j=1

(Hlij − ENij )clj = 0 (22)

for i = 1 to N , where

Hlij = 1

2h2
Tij +

[
l(l + 1)

2h2x2
i

− 1

hxi

]
δij (23)

is the matrix element 〈fi |Hl|fj 〉 calculated exactly with
Eq. (20) for the kinetic energy. A crucial property is that the

Gauss quadrature is exact for the Coulomb and centrifugal
terms. The system (22) is then an exact variational calculation
with a basis chosen in a space supporting the exact solution
for n = 2h if 2h is an integer. Each eigenvalue −1/2n2 can
be reproduced exactly but for different values of the scaling
parameter h. When the energy is exact, the corresponding
expansion (21) is exact. In this case, the notations En,
cnl , and ψnl referring to the exact wave function can be
used.

Like in Eq. (21), the functions ψ
(1)
nll′ are expanded as

ψ
(1)
nll′ (r) = h−1/2

N∑
j=1

c
(1)
nll′j fj (r/h). (24)

Eq. (6) leads to the algebraic system

N∑
j=1

(Hl′ij − EnNij )c(1)
nll′j = (hxi)

λcnli , (25)

where Hl′ij is the matrix element (23) with l replaced by l′.
For h = n/2, it can give the exact solution corresponding to
ψnl if N is large enough. With the Gauss quadrature, Eq. (8)
provides the reduced polarizabilities

α
(nll′)
λ = 2(2l′ + 1)

(
l′ λ l

0 0 0

)2

hλ

N∑
j=1

c
(1)
nll′j x

λ
j cnlj . (26)

The Gauss quadrature is exact for N � n + λ + 1. Since in
this case the cnlj and c

(1)
nll′j provide the exact functions ψnl and

ψ
(1)
nll′ , the polarizabilities are exact.
The algebraic system (25) becomes singular when transi-

tions are possible toward a degenerate state. The degeneracy
problem can easily be solved numerically with the Lagrange-
mesh method by removing the degenerate eigenvalue. When
solving system (25), the inverse of the matrix in the left-hand
member is replaced according to

(Hl′ − EnN )−1 →
∑

k

′v(k)(E(k) − En)−1v(k)T , (27)

where E(k) and v(k) are the eigenvalues and eigenvectors of the
generalized eigenvalue problem (Hl′ − E(k)N )v(k) = 0 and T

means transposition. The prime in the sum indicates that the
term with |E(k) − En| < ε is dropped, where ε is, for example,
chosen as 10−10 in double precision.

A standard Lagrange-mesh calculation would involve the
Gauss approximation everywhere, i.e., the replacements

Nij → δij and Tij → T G
ij (28)

in Eqs. (22), (23), (25), and (27). We shall see that this
approximation essentially leads to the same results despite
the Gauss approximation. In fact, we shall even observe that it
is more accurate. The propagation of rounding errors is indeed
less important in the standard Lagrange-mesh calculation,
probably because the overlap matrix N is diagonal and the
eigenvalue problem is not generalized.
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TABLE I. Energies and scalar and tensor dipole polarizabilities obtained in a variational calculation with N =
n + 2 Lagrange-Laguerre basis functions and h = n/2 for principal quantum numbers n � 4. Atomic units are used.

nl h N En α
(nl)
0 α

(nl)
2

1s 0.5 3 −0.499 999 999 999 999 7 4.500 000 000 000 0
2s 1.0 4 −0.124 999 999 999 999 9 120.000 000 000 000 0
2p −0.124 999 999 999 999 8 175.999 999 999 999 −19.999 999 999 999
3s 1.5 5 −0.055 555 555 555 555 52 1012.500 000 000 018 0
3p −0.055 555 555 555 555 59 1295.999 999 999 986 −161.999 999 999 997
3d −0.055 555 555 555 555 64 1862.999 999 999 988 −485.999 999 999 997
4s 2.0 6 −0.031 250 000 000 000 00 4991.999 999 999 993 0
4p −0.031 249 999 999 999 98 5887.999 999 999 932 −780.799 999 999 996
4d −0.031 249 999 999 999 95 7680.000 000 000 189 −1920.000 000 000 067
4f −0.031 249 999 999 999 90 10 367.999 999 999 27 −3647.999 999 999 685

IV. NUMERICAL AND DEDUCED ANALYTICAL DIPOLE
POLARIZABILITIES

For dipole polarizabilities, the subscripts λ = 1 and μ = 0
are dropped. Expression (7) is usually written as

α(nlm) = α
(nl)
0 + α

(nl)
2

3m2 − l(l + 1)

l(2l − 1)
, (29)

where α
(nl)
0 and α

(nl)
2 are known as the scalar and tensor

polarizabilities, respectively [4]. The average polarizability
defined in Eq. (9) is the scalar polarizability α

(nl)
0 . Exact

expressions for α
(nl)
0 and α

(nl)
2 will be deduced from accurate

numerical results.
As we have seen, when 2h takes an integer value n, the

wave function ψnl given by Eq. (21) is exact. The exact wave
functions in the right-hand side of Eq. (6) are exponentials
exp(−r/n) multiplied by polynomials. The exact solution of an
inhomogeneous equation such as Eq. (6) is also a polynomial
times the same exponential (see examples in Ref. [6]). Hence,
this equation can also be solved exactly, i.e., the coefficients
c

(1)
nll′j obtained from system (25) give the exact functions

ψ
(1)
nll′ (r) when h = n/2. The reduced polarizabilities (8) are

then obtained with the Gauss quadrature (26) which is exact
for N � n + λ + 1. With an infinite number of digits, the
polarizability would be exact. Here they will contain rounding
errors related to the double-precision computer accuracy.

The variational energies for n � 4 are presented in Table I.
The scalar and tensor dipole polarizabilities obtained with
the variational calculation are also displayed in Table I. The
conditions of the calculation are N = n + 2 and h = n/2. The
obtained values are close to integers or simple fractions, which
can easily be guessed. The 1s polarizability has been known
for a long time [5]. For l = 0, the results agree with the
exact values (2) of Ref. [9]. For l = n − 1, they also agree
with the exact values (3). The 2p0 and 3d0 polarizabilities
calculated with Eq. (29) and Table I reproduce those obtained
from a numerical calculation with B splines in Ref. [6]. It
is remarkable that the Lagrange-mesh method with four and
five mesh points gives a better accuracy than 80 B splines
in Ref. [6]. Other cases do not seem to be available in the
literature.

With the standard double precision, exact scalar polariz-
abilities can be obtained up to n = 30, at least, as exemplified

by Table II. Strikingly, the Lagrange-mesh results, obtained
with the Gauss approximation, are more accurate than the
variational ones; i.e., they are closer to integer values. The
tensor polarizabilities can be obtained with the same accuracy
and hence the polarizabilities of any state nlm as a function of
m. Scalar polarizabilities can be safely obtained up to n = 40.
However, beyond n ≈ 30, multiprecision should be used to
avoid ambiguities in the non-necessarily integer values of the
tensor polarizabilities.

From small subsets of values, analytical expressions for
the polarizabilities can easily be extracted. These formulas
can be tested with all other values. The two reduced dipole
polarizabilities read

α(nll+1) = l + 1

4(2l + 1)
n4[6(2n2 + 7)

+ (5n2 + 58)l + 24l2 + 3l3] (30)

and

α(nll−1) = l

4(2l + 1)
n4[7n2 + 5 − (5n2 + 19)l + 15l2 − 3l3].

(31)

They allow calculating the separate contributions of l′ = l + 1
and l′ = l − 1 for any nlm state and μ = −1, 0, or 1.

TABLE II. Typical scalar dipole polarizabilities α
(nl)
0 for n = 30

levels. Comparison of variational and Lagrange-mesh results with
exact formula (32).

n l Variational Lagrange mesh Eq. (32)

30 0 731 834 999.9998 731 835 000.0002 731 835 000
1 734 669 999.9984 734 670 000.0000 734 670 000
2 740 339 999.9730 740 340 000.0000 740 340 000
3 748 845 000.0436 748 845 000.0001 748 845 000
4 760 184 999.9699 760 184 999.9999 760 185 000

25 1 653 210 000.1764 1 653 210 000.0003 165 3210 000
26 1 726 919 998.8397 1 726 920 000.0004 1 726 920 000
27 1 803 465 000.8468 1 803 464 999.9983 1 803 465 000
28 1 882 845 000.0327 1 882 845 000.0014 1 882 845 000
29 1 965 059 999.9875 1 965 059 999.9998 1 965 060 000

062514-4



EXACT NONRELATIVISTIC POLARIZABILITIES OF THE . . . PHYSICAL REVIEW A 86, 062514 (2012)

The scalar dipole polarizability of level nl is given by three
times the sum of expressions (30) and (31),

α
(nl)
0 = 1

4n4[4n2 + 14 + 7l(l + 1)]. (32)

For l = 0, the formula (2) of McDowell [9] is recovered. See
Table II for a comparison with numerical results at n = 30.
The tensor dipole polarizability of level nl reads

α
(nl)
2 = − n4l

4(2l + 3)
[3n2 − 9 + 11l(l + 1)]. (33)

These results reproduce those of Krylovetsky, Manakov, and
Marmo [2]: combining Eqs. (29), (32), and (33) for m = 0
provides Eq. (4). For l = n − 1, the sum α

(n,n−1)
0 + α

(n,n−1)
2

agrees with Eq. (3). The 2p0 and 3d0 polarizabilities of
Ref. [6] (216 and 2349, respectively) are easily reproduced
with Eq. (29).

V. CONCLUDING REMARKS

The central results of this work are the analytical expres-
sions (30) to (33). They allow a simple calculation of the

dipole polarizability for any state nlm of the hydrogen atom.
The computer-aided technique used to derive these analytical
formulas is unusual. In a numerical sense, they are fully
established since they agree with all results obtained with a
numerical method which would be exact in a computation with
an infinite number of digits. The roundings made necessary by
the limited computer accuracy are unambiguous for all states
up to n = 30 at least. Expressions (32) and (33) are confirmed
by Ref. [2].

This is a special example of use of the Lagrange-mesh
method. To ensure the exactness of the energies and wave
functions, the calculations are performed with the exact
overlap and kinetic-energy matrix elements. As already
noticed in other cases [13,18], calculations with the usual
Gauss quadrature approximation for these matrix elements
lead to the same results with often a better accuracy. An
excellent accuracy has also been obtained in calculations of
polarizabilities of the confined hydrogen atom [19] and the
hydrogen molecular ion [20]. The originality here is that a
rare case where the method is exact leads to general analytical
results.
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[16] G. Szegö, Orthogonal Polynomials (Am. Math. Soc, Providence,

RI, 1967).
[17] D. Baye, J. Phys. B 28, 4399 (1995).
[18] D. Baye and M. Vincke, Phys. Rev. E 59, 7195 (1999).
[19] D. Baye and K. D. Sen, Phys. Rev. E 78, 026701 (2008).
[20] H. Olivares-Pilón and D. Baye, J. Phys. B 45, 235101 (2012).

062514-5

http://dx.doi.org/10.1088/0953-4075/38/3/N01
http://dx.doi.org/10.1088/0953-4075/38/3/N01
http://dx.doi.org/10.1098/rspa.1937.0097
http://dx.doi.org/10.1088/0953-4075/43/20/202001
http://dx.doi.org/10.1088/0953-4075/43/20/202001
http://dx.doi.org/10.1103/PhysRevA.68.044503
http://dx.doi.org/10.1103/PhysRevA.68.044503
http://dx.doi.org/10.1063/1.2185639
http://dx.doi.org/10.1103/PhysRevA.78.042504
http://dx.doi.org/10.1063/1.433455
http://dx.doi.org/10.1088/0305-4470/19/11/013
http://dx.doi.org/10.1088/0953-4075/26/5/006
http://dx.doi.org/10.1002/pssb.200541305
http://dx.doi.org/10.1103/PhysRevE.65.026701
http://dx.doi.org/10.1103/PhysRevE.65.026701
http://dx.doi.org/10.1098/rspa.1955.0246
http://dx.doi.org/10.1098/rspa.1955.0246
http://dx.doi.org/10.1088/0953-4075/28/20/005
http://dx.doi.org/10.1103/PhysRevE.59.7195
http://dx.doi.org/10.1103/PhysRevE.78.026701
http://dx.doi.org/10.1088/0953-4075/45/23/235101



