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Calculation of the parity-violating 5s-6s E1 amplitude in the rubidium atom

V. A. Dzuba, V. V. Flambaum, and B. Roberts
School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia

(Received 31 October 2012; published 21 December 2012)

Currently, the theoretical uncertainty limits the interpretation of the atomic parity-nonconservation (PNC)
measurements. We calculate the PNC 5s-6s electric dipole transition amplitude in rubidium and demonstrate that
rubidium is a good candidate to search for new physics beyond the standard model since accuracy of the atomic
calculations in rubidium can be higher than in cesium. PNC in cesium is currently the best low-energy test of the
standard model; therefore, similar measurements for rubidium present a good option for further progress in the
field. We also calculate the nuclear spin-dependent part of the PNC amplitude, which is needed for the extraction
of the nuclear anapole moment from the PNC measurements.
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I. INTRODUCTION

The study of parity nonconservation in atoms is a
low-energy, relatively inexpensive alternative to high-energy
searches for new physics beyond the standard model (see,
e.g., [1–3]). For example, parity nonconservation in cesium is
currently the best low-energy test of the electroweak theory
[1,3]. This is due to the high accuracy of the measurements [4]
and their interpretation [5] (see also [6–8]). The uncertainty
of the measurements is 0.35% [4], while the uncertainty of
the calculations is on the level of 0.4%–0.5% [5–7]. This
means that the interpretation of the measurements is limited
by the accuracy of atomic calculations. The situation is similar
for other atoms. For example, the accuracy of the parity-
nonconservation (PNC) measurements for thallium is 1% [9],
while the accuracy of the calculations is 2.5%–3% [10,11]. It
is believed that a good option for further progress may come
with the PNC measurements for atoms or ions with electron
structure similar to cesium but with higher nuclear charge
Z. Higher Z would lead to a larger PNC effect and would
probably lead to better accuracy in the measurements. The
PNC measurements have been considered for the Ba+ ion
[12,13] and are under progress for the Fr atom [14] and
Ra+ ion [15]. However, the accuracy of the calculations for
these systems is unlikely to be better than for cesium. On
the contrary, higher Z means larger relativistic effects such
as Breit and quantum electrodynamics (QED) corrections,
larger uncertainty due to the neutron skin effect, etc. Since
the accuracy of the calculations is a limiting factor even for
cesium, it does make sense in our view to look in the opposite
direction and to consider PNC in rubidium. Rubidium is an
alkali atom next to cesium but with smaller Z. The PNC
amplitude in rubidium is only seven times smaller than in
cesium. Depending on the accuracy of the measurements
which can be achieved for rubidium, the study of the PNC
in this atom might be a good alternative for further progress in
the area.

Rubidium was considered for anapole moment measure-
ments in Ref. [16]. Corresponding atomic calculations were
reported in Refs. [17,18]. The calculations of the spin-
independent PNC amplitude of the 5s-6s electric dipole
transition in Rb were performed in our early work [10] with
2% accuracy. Only correlation corrections were considered,
while Breit, QED, and other small corrections were ignored.

In this paper we perform a more detailed analysis of the PNC
amplitude in Rb. This includes more accurate treatment of the
correlations and a detailed consideration of the Breit, QED,
and neutron skin corrections.

II. CALCULATIONS

The Hamiltonian describing parity-nonconserving
electron-nucleus interaction can be written as a sum of the
nuclear-spin-independent (SI) and the nuclear-spin-dependent
(SD) parts (we use atomic units: h̄ = |e| = me = 1):

ĤPNC = ĤSI + ĤSD = GF√
2

(
−QW

2
γ5 + κ

I
α I

)
ρ(r), (1)

where GF ≈ 2.2225 × 10−14 a.u. is the Fermi constant of the
weak interaction, QW is the nuclear weak charge, α = ( 0 σ

σ 0 )
and γ5 are the Dirac matrices, I is the nuclear spin, and ρ(r)
is the nuclear density normalized to 1.

Within the standard model the weak nuclear charge QW is
given by [19]

QW ≈ −0.9877N + 0.0716Z. (2)

Here N is the number of neutrons, and Z is the number of
protons.

To calculate the PNC amplitude we use the methods devel-
oped in our previous works [6,26]. The all-order correlation
potential �̂ [27] is used to construct the so-called Brueckner
orbitals (BO) for the external electron. BO are found by solving
the Hartree-Fock-like equations with an extra operator �̂:

(Ĥ0 + �̂ − εa)ψ (BO)
a = 0. (3)

Here Ĥ0 is the relativistic Hartree-Fock Hamiltonian, and
index a numerates valence states. The BO ψ (BO)

a and energy
εa include dominating higher-order correlations. The parity-
nonconserving weak interaction as well as the electric dipole
interaction of the atom with laser light are included in the
framework of the time-dependent Hartree-Fock approximation
[26], which is equivalent to the well-known random-phase
approximation (RPA).

In the RPA method, a single-electron wave function in
external weak and E1 fields is

ψ = ψ0 + δψ + Xe−iωt + Yeiωt + δXe−iωt + δYeiωt , (4)
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where ψ0 is the unperturbed state, δψ is the correction due to
weak interaction acting alone, X and Y are corrections due to
the photon field acting alone, δX and δY are corrections due
to both fields acting simultaneously, and ω is the frequency of
the PNC transition. The corrections are found by solving the
system of RPA equations self-consistently for the core states

(Ĥ0 − εc)δψc = −(ĤW + δV̂W )ψ0c,

(Ĥ0 − εc − ω)Xc = −(ĤE1 + δV̂E1)ψ0c,

(Ĥ0 − εc + ω)Yc = −(Ĥ †
E1 + δV̂

†
E1)ψ0c, (5)

(Ĥ0 − εc − ω)δXc = −δV̂E1δψc − δV̂WXc − δV̂E1Wψ0c,

(Ĥ0 − εc + ω)δYc = −δV̂
†
E1δψc − δV̂WYc − δV̂

†
E1Wψ0c,

where index c numerates core states, ĤW is either ĤSI or
ĤSD [see Eq. (1)], δV̂W and δV̂E1 are corrections to the core
potential due to the weak and E1 interactions, respectively,
and δV̂E1W is the correction to the core potential due to the
simultaneous action of the weak field and the electric field of
the photon.

The PNC amplitude between valence states a and b in the
RPA approximation is given by

EPNC = 〈ψb|ĤE1 + δV̂E1|δψa〉 + 〈ψb|ĤW + δV̂W |Xa〉
+ 〈ψb|δV̂E1W |ψa〉

= 〈ψb|ĤE1 + δV̂E1|δψa〉 + 〈δψb|ĤE1 + δV̂E1|ψa〉
+ 〈ψb|δV̂E1W |ψa〉. (6)

To include correlations in the calculation of the PNC amplitude
one needs to use BO for the valence states a and b in (6). The
corrections δψa and δψb to BO a and b are also found with
the use of the correlation potential �̂:

(Ĥ0 − εa + �̂)δψa = −(ĤW + δV̂ )ψ0a. (7)

Note that the correlation potential �̂ is the energy-dependent
operator. To calculate a BO and corrections to it one should
use the correlation potential at the energy of this state, i.e.,
�̂ ≡ �̂(εa) in (3) and (7).

The way to calculate the PNC amplitude described above
does not involve direct calculation of the electric dipole transi-
tion amplitudes or weak matrix elements or even the energies,
apart from the energies of the 5s and 6s states. However, it is
instructive to make comparisons with available experimental
data to have an idea of the accuracy of the calculations. For this
purpose we have performed the calculations of the energies and
magnetic dipole hyperfine-structure constants of the lowest s

and p1/2 states of Rb as well as the electric dipole transition
amplitudes between these states. The calculations are done
with the use of the same approach and the same all-order
operator �̂ as for the PNC calculations [28]. The results for
the energies and the hyperfine structure are presented in Table I,
results for E1 transition amplitudes are given in Table II.
Comparison with experimental data shows that the accuracy
of the calculations is about 0.1% for the energies, 0.4%–0.6%
for the hyperfine structure (hfs) and about 0.3% for the E1
transition amplitudes. If we assume that the square root of the
product of hfs constants of s and p states can be used as a test
for the weak matrix elements (〈s|W |p〉 ∼ √

AsAp), then the
accuracy for the weak matrix elements is also on the level of
0.3%. Note, however, that the accuracy of this test is limited.

TABLE I. Ionization energies and hyperfine-structure constants
A for low states of 85Rb.

State Energies (cm−1) A (MHz)

Expt.a Calc. Expt. Calc.

5s1/2 33691 33666 1011.9b 1016
5p1/2 21113 21145 120.5c 120.1
5p3/2 20874 20902
4d3/2 14336 14362
4d5/2 14335 14360
6s1/2 13558 13509 239.18(3)d 239.2
6p1/2 9976 9973 39.11(3)e 38.87
6p3/2 9898 9894

aReference [20].
bReference [21].
cReference [22].
dReference [23].
eReference [24].

For example, the value of the ratio 〈s|W |p〉/√AsAp is 4%
different in Hartree-Fock and RPA approximations. This is
because core polarization effects are significantly different for
weak and hfs interactions. Only s and p1/2 states contribute
to the core polarization for the weak matrix elements. In the
case of hfs interaction the p3/2 states also give a significant
contribution. Since weak matrix elements are simpler, the
accuracy for them is expected to be higher than for the
hyperfine structure.

III. RESULTS AND DISCUSSION

The value of the spin-independent PNC amplitude for the
5s–6s transition in 87Rb (without Breit, QED, and neutron skin
corrections) is

|EPNC| = 1.400 × 10−12eaB(−QW/N ). (8)

This is in very good agreement with the value

|EPNC| = 1.39(2) × 10−12eaB(−QW/N)

presented in our early calculations [10].
Below we will discuss and compare different contributions

to the spin-independent PNC amplitudes in rubidium and
cesium and point to some advantages of using rubidium in
searching for new physics beyond the standard model. The
contributions are presented in Table III. We use the 87Rb
isotope as an example.

a. Correlations. The total correlation correction to the PNC
amplitude is small for both atoms. It is 2% for cesium and 4%
for rubidium. The small value of the correlation correction
is the result of strong cancellation between different terms.

TABLE II. Electric dipole transition amplitudes (reduced matrix
elements in a.u.) for low states of Rb.

Transitions Expt.a Calc.

5s1/2-5p1/2 4.231(3) 4.246
5s1/2-5p3/2 5.977(4) 5.994

aReference [25].
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TABLE III. Contributions to the parity-nonconserving elec-
tric dipole transition 5s-6s in 87Rb and 6s-7s in 133Cs
[10−12ieaB (−QW/N )].

Rb Cs

Contribution a.u. % a.u. %

RPA 1.345 97% 8.899 99%
Correlations 0.054 4% 0.173 2%
Subtotal 1.400 101% 9.072 101%
Breit − 0.006 − 0.4% − 0.055 − 0.6%
QED − 0.003 − 0.2% − 0.029 − 0.3%
Neutron skin − 0.0008 − 0.06% − 0.018 − 0.2%
Total 1.390 100% 8.970 100%

This is illustrated by the data in Table IV, where correlation
corrections are presented for each term in (6). In Table IV
we use the notation d̃ = ĤE1 + δV̂E1 for short. The largest
correlation corrections are for those terms which have δψ

weak correction to the ground state. Corresponding corrections
for Rb are larger than for Cs. Indeed, the closer the valence
electron is to the core, the larger the correlation correction
is. The ionization potential for Rb is larger than for Cs. This
means that the valence electron in Rb is closer to the core than
in Cs. Also, the cancellation between the contributions of δψa

and δψb in Rb is not as strong as in Cs.
Note that the strong cancellations between correlation

corrections to different terms in (6) do not mean poor numerical
accuracy. The theoretical uncertainty of the PNC amplitudes
is mostly due to missed terms, while the numerical accuracy
for all terms in (6) is high.

Table IV does not include non-Brueckner correlation
corrections, such as structure radiation, weak correlation
potential, and renormalization of the wave functions [6].
These corrections are suppressed by a small parameter
Evalence/Ecore ∼ 1/10, where Evalence and Ecore are typical ex-
citation energies of the valence and core electrons. Moreover,
their total contribution is practically zero for Cs [6] due to
cancellation between different terms. It is expected to be very
small for Rb as well since all other relative contributions to
EPNC in Rb and Cs are similar. These terms can be calculated

TABLE IV. Correlation corrections 	 to the PNC amplitude,
with a comparison between rubidium and cesium. Units are
10−12ieaB (−QW/N ). Indices a and b stand for 7s and 6s for Cs
and for 6s and 5s for Rb.

Approximation 〈δψa|d̃|ψb〉 〈ψa |d̃|δψb〉 〈ψa|δV̂E1W |ψb〉 Total

Cesium
RPA − 3.041 11.965 − 0.0249 8.899
BOa − 3.358 12.454 − 0.0242 9.072
	 − 0.316 0.489 − 0.001 0.173
	 (%) − 3.5% 5.4% 0.0% 2.0%

Rubidium
RPA − 0.408 1.756 − 0.003 1.345
BOa − 0.463 1.866 − 0.003 1.400
	 − 0.055 0.011 0.000 0.055
	 (%) − 3.9% 7.8% 0.0% 4.0%

aBrueckner orbitals with core polarization.

if progress is made with the measurements. At the moment we
just assume that they do not contribute to the PNC amplitude
or its uncertainty.

The data in Table IV show that the correlation correction
to the PNC amplitudes are similar in cesium and rubidium.
Therefore, similar uncertainty is expected. The uncertainty for
cesium is 0.4% – 0.5% [5,6]. It is natural to expect the same
uncertainty for rubidium.

b. Breit interaction. In was demonstrated in [29] that Breit
interaction gives a significant contribution to the PNC in
many-electron atoms. The contribution of Breit interaction is
about −0.6% to the PNC amplitude in Cs [29,30] (see also
Table III). To calculate Breit correction in Rb we use the
same approach as in our previous works [30,31]. The Breit
Hamiltonian includes magnetic and retardation terms. The
Coulomb interaction everywhere in the calculations is replaced
by the sum of Coulomb and Breit terms V → VC + VB .
The second-order correlation correction operator �̂ is used
to calculate Brueckner orbitals. The correction is found as
a difference between two results for Eq. (6), one with the
Breit interaction included and another when it is not included.
The resulting Breit correction is about −0.4% of the PNC
amplitude in Rb. Its relative value is about 1.5 times smaller
than in Cs. Therefore, the uncertainty associated with this
correction is also smaller for Rb than for Cs.

c. QED corrections. The quantum electrodynamics cor-
rections to the EPNC for rubidium are calculated using the
sum-over-states method. The sum which needs to be evaluated
is

EPNC =
∑

n

[ 〈6s|d̃|np1/2〉〈np1/2|H̃W |5s〉
E5s − Enp

+ 〈6s|H̃W |np1/2〉〈np1/2|d̃|5s〉
E6s − Enp

]
. (9)

Here the tilde means that core polarization is taken into account
(e.g., d̃ = ĤE1 + δV̂E1). Correlations are taken into account by
using Brueckner orbitals for all ns and np1/2 states.

We have considered three QED contributions to the PNC
amplitude: the corrections to energy denominators, E1 dipole
matrix elements (d̃), and weak-interaction matrix elements
(H̃W ). Corrections to the weak matrix elements have been con-
sidered previously [32,33] (see also [34]). From these works,
we determine the QED contribution to the PNC amplitude
coming from corrections to the weak matrix elements to be
−0.30(2)%.

For the corrections coming from the energy denominators
and dipole amplitudes, we use the “radiative potential” method
proposed in [8]. By calculating the dominating terms in
Eq. (9) both with and without QED corrections, we determine
the correction coming from the energy denominators to be
−0.25% and from the dipole amplitudes to be +0.31%, giving
a combined shift of +0.06(3)% for dipoles and energies.

Therefore, we find the total QED shift to the 5s-6s PNC
amplitude in rubidium to be −0.24(4)%. As expected, the Rb
result is smaller than that in the Cs atom. More importantly,
omitted higher-order corrections in Zα should be much smaller
in Rb.

d. Neutron skin. The neutron skin correction to the PNC
amplitude is due to the fact that nuclear density in the weak
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interaction Hamiltonian (1) is not the same as nuclear charge
distribution. This density is dominated by neutrons, and if
the neutron distribution radius differs from the radius of the
proton distribution, this would lead to a correction to the
PNC amplitude. It was found from an analysis of data for
antiprotonic atoms [35] that the root-mean-square radii of the
proton and neutron distributions differ by

	rnp = (−0.04 ± 0.03) + (1.01 ± 0.15)
N − Z

A
fm. (10)

Using these data to correct nuclear density in (1) and
recalculating the PNC amplitude lead to −0.2% correction for
Cs and −0.06% correction for Rb (see Table III). Here again
the correction is much smaller for Rb than for Cs, leading to
smaller uncertainty in the PNC amplitude.

Combining all corrections, we obtain the final value of the
5s-6s nuclear-spin-independent PNC amplitude in 87Rb,

|EPNC| = 1.390(7) × 10−12eaB (−QW/N), (11)

and for 85Rb,

|EPNC| = 1.333(7) × 10−12eaB (−QW/N). (12)

We assume the 0.5% uncertainty as has been discussed above.
The nuclear spin-dependent PNC amplitudes for transitions

between different hyperfine-structure components of the 5s

TABLE V. PNC amplitudes (z components) for the |5s,F1〉 →
|6s,F2〉 transitions in 85Rb and 87Rb. Units are 10−11iea0. The
uncertainty is 0.5%.

Isotope QW I F1 F2 PNC amplitude

85Rb −44.76 2.5 2 2 0.0911(5)[1 + 0.1533(8)κ]
2 3 −0.1018(5)[1 − 0.2063(10)κ]
3 2 −0.1018(5)[1 + 0.2501(13)κ]
3 3 −0.1366(7)[1 − 0.1095(5)κ]

87Rb −46.74 1.5 1 1 0.0713(4)[1 + 0.1049(5)κ]
1 2 −0.1235(6)[1 − 0.1247(6)κ]
2 1 −0.1235(6)[1 + 0.1667(8)κ]
2 2 −0.1426(7)[1 − 0.0629(3)κ]

and 6s states of 85Rb and 87Rb are presented in Table V. They
are calculated using the same approximation as for the spin-
independent PNC amplitudes, constructing Brueckner orbitals
with the use of the all-order correlation potential �̂ and the
RPA method for the core polarization. Therefore, the same
uncertainty of 0.5% is assumed.
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