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Modified Rosen-Morse potential-energy model for diatomic molecules
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By employing the dissociation energy and the equilibrium bond length for a diatomic molecule as explicit
parameters, we generate an improved expression for the generalized Woods-Saxon potential. It is exactly
shown that the generalized Woods-Saxon potential and the well-known Rosen-Morse potential are the same
empirical potential-energy function for diatomic molecules. Based on the measure of inner-shell radii of two
atoms, we propose a modified Rosen-Morse potential-energy model. Evaluation of the average deviations from
the experimental data is carried out on six molecules. The modified Rosen-Morse potential is found to be
more accurate than the Morse and Rosen-Morse potentials in fitting experimental data for the six molecules
examined.
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I. INTRODUCTION

There has been a growing interest in constructing a
universal empirical potential-energy function for diatomic
molecules in chemistry physics [1–18]. The reason is that
the analytical potential-energy function is the most com-
prehensive and compact way to summarize what we know
about a molecule. The more parameters in an analytical
potential-energy function, the better that the function will fit
experimental data. However, the simple analytical potential
functions with fewer parameters have been used in many
computational chemistry software, programs such as SHAPES

[19], UFF [20], and ESFF [21]. The first simple empirical
analytical potential function proposed by Morse [1] has been
employed in a wide variety of problems in chemical physics,
such as molecular spectroscopy [22], molecular dynamics
simulation [23–27], adsorption [28], phase transition [29],
thermal transport [30], etc. Rong et al. [22] used the Morse
potential models to study transition frequencies and intensities
in a series of diatomic molecules and polyatomic molecules.
With the help of the Morse potential-energy model, Mauro
and Varshneya performed multiscale modeling of GeSe2 glass
structure [23]. Hu et al. used the Morse potential to treat the
bond stretch of iodine molecules, and investigated reversible
controlling the orientation of iodine molecules embedded
in the AlPO4-11 crystals [25]. In revealing the angular
symmetry of chemical bonds by atomic force microscopy,
Welker and Giessibl used the empirical Morse potential to
describe the bonding energy of a diatomic molecule [26].
Numerous contributions have been made to expand the
original Morse potential model and apply it in different
fields [31–40].

Efforts have been made to evaluate the accuracy of
numerous empirical analytical potential models in terms of
fitting experimental data [41–45]. Relationships of potential
parameters among various empirical potential functions have
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also been investigated [46–49]. Recently, equivalence of some
empirical analytical potential functions have received atten-
tion. By employing the dissociation energy and the equilibrium
bond length for a diatomic molecule as explicit parameters,
improved expressions have been generated for the Rosen-
Morse, Manning-Rosen, Schiöberg, and Tietz potential-energy
functions [50–52]. It is found that the Manning-Rosen
potential, Schiöberg potential, and Deng-Fan potential are
identical [50,51]. It is also found that the Wei potential and
the well-known Tietz potential function are the same solvable
empirical potential function [52].

Motivated by the recent works about the equivalence of
some empirical potential-energy functions, we attempt to
investigate the equivalence between the generalized Woods-
Saxon potential [53] and the well-known Rosen-Morse po-
tential [3] for diatomic molecules. Based on the concept of
inner-shell radii of two atoms, the modified Rosen-Morse
potential model is proposed and the accuracy tests are carried
out on six diatomic molecules.

II. EQUIVALENCE OF THE GENERALIZED
WOODS-SAXON POTENTIAL AND THE

ROSEN-MORSE POTENTIAL

An empirical internuclear potential function U (r) should
satisfy the following conditions:

dU (r)

dr

∣∣∣∣
r=re

= 0, (1)

U (∞) − U (re) = De, (2)

d2U (r)

dr2

∣∣∣∣
r=re

= ke = μω2
e , (3)

where De is the dissociation energy, re is the equilibrium bond
length, μ is the reduced mass of a diatomic molecule, and ωe

denotes the equilibrium harmonic vibrational frequency.
The well-known Woods-Saxon potential plays an important

role in nuclear physics since it can be used to model
the interaction between a neutron and heavy nucleus. The
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generalized Woods-Saxon potential is formed by the standard
Woods-Saxon potential with an extra term, which is given
by [54]

UGWS(r) = − U0

1 + e
r−r0

b

− Ce
r−r0

b(
1 + e

r−r0
b

)2 , (4)

where the parameter U0 is the potential depth, r0 is the width
of the potential, b is the surface thickness, which is adjusted
to the experimental values of ionization energies, and C is
an adjustable parameter proposed by Berkdemir et al. [54]
Gönül and Köksal [55] investigated the s-wave solutions of
the Schrödinger equation and Klein-Gordon equation with
the generalized Woods-Saxon potential. By using the super-
symmetric quantum-mechanics method, Berkdemir et al. [56]
studied approximately analytical solutions of the Schrödinger
equation with the centrifugal barrier term for the generalized
Woods-Saxon potential.

Here, we adopt the generalized Woods-Saxon potential to
model the interaction for diatomic molecules. Substituting the
expression of the generalized Woods-Saxon potential UGWS(r)
given in Eq. (4) into condition (1), we obtain

re = r0 + ln

(
−U0 − C

U0 + C

)
b. (5)

By using condition (2) and expression (5), we obtain the
relation

0 −

⎡
⎢⎣− U0

1 − U0−C

U0+C

+ C (U0 − C)

(U0 + C)
(

1 − U0−C

U0+C

)2

⎤
⎥⎦ = De. (6)

Solving Eqs. (5) and (6) for U0 and C, we obtain

U0 = De

(
1 − e

2(re−r0)
b

)
, (7)

C = De

(
e

2(re−r0)
b + 2e

re−r0
b

)
. (8)

We add one term De to the right hand of expression (4).
This only produces an energy of zero at the potential minimum,
i.e., UGMS (re) = 0, and does not affect the physical properties
of the original generalized Woods-Saxon potential-energy
function. Substituting expressions (7) and (8) into expression
(4) and making some algebraic simplifications, we can rewrite
the generalized Woods-Saxon potential in the following
form:

UGWS (r) = De

(
1 − e

re−r0
b + 1

e
r−r0

b + 1

)2

. (9)

In 1932, Rosen and Morse [32] proposed a potential
function for polyatomic molecules,

UMR(r) = B tanh(r/d) − C sec h2(r/d). (10)

This potential function possesses a minimum value at
r0 = − tanh−1(B/2C) in the case of |B| < 2C. The Rosen-
Morse potential can be used to study polyatomic vibrational
states such as the vibrational states of the NH3 molecule [3].

It can also be used to model the diatomic interactions [45].
The Rosen-Morse potential can also be expressed in the form
of [50]

URM (r) = De

(
1 − e2re/d + 1

e2r/d + 1

)2

. (11)

If we replace 1/b by 2/d , expression (9) becomes entirely
the form of expression (11). Thus one can say that the
generalized Woods-Saxon potential and the standard Rosen-
Morse potential are the same empirical potential function for
diatomic molecules.

III. MODIFIED ROSEN-MORSE
POTENTIAL-ENERGY MODEL

Frost and Musulin [56] suggested that there exists an
approximation universal relation between a reduced potential-
energy function and a reduced internuclear distance for
diatomic molecules. The reduced potential-energy function
Ureduced (r) and reduced internuclear distance rreduced are
defined as [56]

Ureduced (r) = U (r)

De

, (12)

rreduced = r − rij

re − rij

, (13)

where rij is a constant for a given diatomic molecule and is a
measure of the inner-shell radii of two atoms. The parameter
rij can be calculated by using the relation [56]

rij = re −
√

KDe

ke

, (14)

where the parameter K is a dimensionless constant, which is
given by

K = d2Ureduced(r)

dr2
reduced

∣∣∣∣
rreduced=1

. (15)

Considering the effect of inner-shell radii of two atoms
for diatomic molecules, we modify the standard Rosen-
Morse potential-energy function. The standard Rosen-Morse
potential-energy function should be replaced by its modified
version,

UMRM(r) = De

(
1 − e

2(re−rij )

d + 1

e
2(r−rij )

d + 1

)2

. (16)

The potential parameter rij appearing in expression (16) is
given in expression (14). In the presence of K as a constant,
expression (16) has also three independent parameters. The
modified Rosen-Morse potential function is still a three-
parameter potential-energy model.

In 1929, Morse [1] proposed the first three-parameter
empirical potential-energy function for diatomic molecules,
which is given by

UM (r) = De

(
1 − eαre

eαr

)2

. (17)

The Morse potential function has been widely used in many
fields.
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IV. EVALUATION OF THE GOODNESS-OF-FIT
TO THE EXPERIMENTAL DATA

In this section, we assess the accuracy of the Morse, Rosen-
Morse, and modified Rosen-Morse empirical potential-energy
functions for diatomic molecules. Employing condition (3), we
can obtain the expressions for the parameter α and d appearing
in the Morse potential UM (r), Rosen-Morse potential URM (r),
and modified Rosen-Morse potential UMRM (r), respectively,

αM =
√

ke

2De

, (18)

dRM = 2

[√
ke

2De

+ 1

re

W

(
re

√
ke

2De

e
−re

√
ke

2De

)]−1

, (19)

dMRM = 2

[√
ke

2De

+ 1

re − rij

W

×
(

(re − rij )

√
ke

2De

e
−(re−rij )

√
ke

2De

)]−1

, (20)

where W is the Lambert W function, which satisfies
z = W (z) eW (z).

Taking the experimental values of De, re, and ωe as inputs,
and choosing K = 4.00 as a rounded average value [56], we
determine the potential parameters α and d for three potential
functions. The experimental values of De, re, and ωe for six
diatomic molecules are listed in Table I. Diatomic interaction
potentials can be inferred from the spectroscopy data by
three general methods: (1) the Wentzel-Kramers-Brillouin
(WKB) Rydberg-Klein-Rees (RKR) approach [57–59], (2)
the WKB-based Dunham approach [60], and (3) the direct
potential fit (DPF) method [35]. The diatomic potential curve
can be deduced from spectroscopic measurements through
the RKR approach. Steele et al. [42] pointed out that a more
stringent criterion is the ability of a function to predict the
potential-energy curve, as judged by agreement with known
RKR points. The DPF approach greatly reduces the numbers
of parameters required to reproduce the data, and it directly
provides a quantum-mechanically accurate physical model for
the system [38]. The RKR and DPF approaches are applicable
normally to electronic states that are well characterized
spectroscopically over a wide range of vibrational energy
[18]. In the present work, we apply the experimental RKR
and DPF data for the diatomic potential-energy curves. The
experimental RKR data points and the experimental DPF data

TABLE I. Experimental molecular parameters for diatomic
molecules.

De re ωe

Molecule State (cm−1) (Å) (cm−1) Ref.

ICl A′ 3�2 4 875.52 2.665 224.57 [13]
I2 XO+

g 12 547.335 2.666 40 214.520 8 [13]
Cs2 X 1�+

g 3 649.5 6.648 0 42.020 3 [13]
MgH X 2�+ 11 104.7 1.729 682 1 492.776 34 [18]
7Li2 X 1�+

g 8 600 2.673 011 351.390 [18]
6Li2 X 1�+

g 8 516.77 2.673 02 379.455 515 [31]

FIG. 1. (Color online) Experimental RKR data points and
potential-energy functions for the A′ 3�2 state of ICl.

points for the six diatomic molecules are taken from the
literature: ICl [13], I2 [13], Cs2 [13], MgH [38], 7Li2 [61],
6Li2 [61]. The experimental RKR data points for the A′ 3�2

state of ICl are shown in Fig. 1, which also contains the curves
plotted by employing the Morse, Rosen-Morse, and modified
Rosen-Morse potential-energy functions. An outlook for the
range covered by the experimental RKR data points tells us
that the modified Rosen-Morse potential model performed
better than the original Rosen-Morse potential for the A′ 3�2

state of ICl. Prior to this, the Morse potential model has been
regarded as the most accurate three-parameter potential-energy
model [45,62].

To evaluate the goodness of fit, we calculated the average
deviations from the experimental data for the Morse, Rosen-
Morse, and modified Rosen-Morse potentials. The average
deviation also applied by Zavitsas [12] and Hajigeorgiou [18]
is defined as

σavg = 100

∑
[|Uexp t(r) − Ucalc(r)|]

NpDe

, (21)

where Np is the number of experimental data points, and
Uexpt (r) and Ucalc (r) are the experimentally determined
potential and the empirical potential, respectively.

Table II lists the average deviations of the energies
calculated using the three potential-energy functions. Com-
parisons of the average deviations listed in Table II tell
us that the modified Rosen-Morse potential is superior

TABLE II. Comparison of average deviations between experi-
mental energies and energies calculated with the three empirical
potential models for the six molecules.a

Molecule ICl I2 Cs2 MgH 7Li2
6Li2

State A′ 3�2 XO+
g X 1�+

g X 2�+ X 1�+
g X 1�+

g

Morse 7.77 7.67 16.67 8.84 7.76 3.37
Rosen-Morse 7.56 7.31 14.23 6.56 3.83 1.90
Modified Rosen- 1.40 2.48 5.55 4.22 2.86 1.12
Morse

aAll quantities are the average absolute deviations as a percentage of
the dissociation energy.
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to the standard Rosen-Morse and the Morse potential
to model diatomic interaction for six diatomic molecules
examined.

V. CONCLUSIONS

In this work, we construct the improved expression for the
generalized Woods-Saxon potential-energy function by using
the dissociation energy and the equilibrium bond length as
explicit parameters. We show that the generalized Woods-
Saxon potential function and the well-known Rosen-Morse
potential function are the same empirical potential-energy
function for diatomic molecules. Basing on the measure of
inner-shell radii of two atoms, we construct the modified
Rosen-Morse potential model. Choosing the experimental
values for the dissociation energy, equilibrium bond length,
and equilibrium harmonic vibrational frequency as inputs, we
calculate the average deviations of the energies calculated

with three potential models from the experimental data for
six diatomic molecules. The results show that the modified
Rosen-Morse potential is superior to the original Rosen-Morse
potential and the Morse potential in fitting experimental data
for the six molecules examined.
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[11] D. Schiöberg, Mol. Phys. 59, 1123 (1986).
[12] A. A. Zavitsas, J. Am. Chem. Soc. 113, 4755 (1991).
[13] H. Wei, Phys. Rev. A 42, 2524 (1990).
[14] D. O. N. Gardner and L. v. Szentpály, J. Phys. Chem. A 103,
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