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Controlling the repulsive Casimir force with the optical Kerr effect

C. H. Raymond Ooi* and Y. Y. Khoo
Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia

(Received 4 September 2012; revised manuscript received 22 October 2012; published 17 December 2012)

The Casimir force between two plates can be controlled using combinations of dispersive metamaterials
and nonlinear materials with the optical Kerr effect. The force can be significantly varied and switched
between positive and negative values by changing the intensity of a laser pulse. The switching sensitivity
increases for small separation between the plates, providing new possibilities of integrating optical devices into
nanoelectromechanical systems.
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I. INTRODUCTION

The presence of the physical boundaries in a quantized
electromagnetic field leads to changes in the vacuum energy
level and may be observed as a vacuum force. This effect
was first postulated and theoretically derived by Casimir [1].
Since then, efforts have been made to investigate the Casimir
force for various geometries and boundary conditions [2–5].
Various corrections to the ideal cases, including temperature
corrections, have been considered [6–8]. However, in most
cases the force is found to be attractive [9].

With microelectromechanical systems (MEMS) and nano-
electromechanical systems (NEMS) becoming increasingly
complex, scaling issues had become the center of attention.
Scaling NEMS systems downward will inevitably bring up the
issue of Casimir interaction between metallic and dielectric
surfaces in close proximity, such as stiction [10–12]. This
problem may be avoided if the Casimir force is repul-
sive [9,13]. Therefore, repulsive Casimir force had received
renewed interest [14–16].

Recent advancement in the synthesis of artificial materials
with magnetic properties |μ| > 1 has led to new possibilities
for controllable electromagnetic properties. These metamate-
rials may have either negative permittivity ε or permeability μ

(single-negative materials) [17,18] or simultaneously negative
permittivity ε and permeability μ [19] over a band of frequency
(left-handed materials [LHM’s]) [20–24]. Casimir forces
involving metamaterials are of particular interest, as they
may be repulsive. In particular, the possibilities of quantum
levitation of an ultrathin conductor have been investigated
by having a LHM lens sandwiched between two perfectly
conducting plates [25]. Casimir force between LHM plates has
also been investigated [26–28]. Furthermore, it is also possible
to control the Casimir force by adjusting the frequency-
dependent electromagnetic properties of materials [9].

In this paper, we study the Casimir force between meta-
material plates driven by an external high-intensity laser
source which introduces the optical Kerr effect (OKE) on the
plates. This is a nonlinear optical effect due to the third-order
polarization in the presence of a strong laser field. Although
the OKE is well-known in nonlinear optics and intense laser
propagation [29], it has not been utilized to manipulate the
properties of the quantum vacuum. Recent work involving the
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magneto-optical Kerr effect involves polarization of light [30]
instead of a strong laser field. We show that it is possible to
gain control of the sign and magnitude of the Casimir force,
thus providing optical controllability over the Casimir force
between plates. Particular interest is focused on the repulsive
force by introducing artificial magnetic permeability realized
with metamaterials.

In Sec. II, we provide the Lifshitz theory that gives an
integral expression for the Casimir force for parallel plates with
arbitrary magnetic permeability and dielectric permittivity.
Section III describes how the OKE affects the force for parallel
plates composed of i) a purely magnetic or dielectric plate and a
perfectly reflecting plate, (ii) a metamaterial plate and perfectly
reflecting plate, or (iii) a piecewise-dispersive model for ε and
μ in one plate and a perfectly reflecting plate. In Sec. IV,
we elaborate on realistic linear and nonlinear responses that
include dispersion and absorption of a metamaterial plate
and a nonlinear Kerr material plate that produce a strong
intensity-dependent Casimir force. The results are summarized
in Sec. V.

II. BASIC THEORY

Based on the stress tensor method, the Casimir force
between two parallel, infinite plates A and B, separated by
a distance a in free space, may be expressed as [31,32]

Fc(a) = − h̄
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where k is the (tangential) component of the wave vector
parallel to the plate surface, ξ is the imaginary frequency where
ω = iξ , and r

j
p is the slab’s reflection coefficient for transverse

electric (TE) and transverse magnetic (TM) polarized waves.
The positive (negative) sign of Fc corresponds to attractive
(repulsive) force.
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We then consider the effect of semi-infinitely thick parallel
plates with respect to transmission of virtual photons, which
reduces the slab’s reflection coefficient to the single interface
reflection coefficients [9]:

r
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where nj = √
εjμj is the index of refraction for plate j =

A,B. It is noted that the Casimir force in Eq. (1) can be
negative (repulsive) only if the reflectivity of both plates A
and B differs in sign. This may occur only if both plates
have very different electromagnetic properties across some
resonances. A thorough treatment was done to investigate the
changes in the Casimir force due to changes in electromagnetic
properties of the respective plates [9]. It was noted that
if two plates have the same electromagnetic properties in
the lower-frequency region and opposite electromagnetic
properties in the higher-frequency region, the Casimir force
would vary from repulsive to attractive as the distance between
plates increases [9]. Conversely, if two plates have opposite
electromagnetic properties in the lower-frequency region and
similar electromagnetic properties in the higher-frequency
region, the Casimir force would vary from attractive to
repulsive as the distance between plates increases [9].

III. INTENSITY-DEPENDENT CASIMIR FORCE

To allow optical control of the Casimir force, a laser beam
of intensity I (ω) is introduced to induce the OKE on both
plates. The effective index of refraction is then given by

nj (ω) = √
εj (ω)μj (ω) + η2,j (ω)I (ω), (3)

where η2,j is the coefficient of the Kerr effect and I (ω) =
If (ω), which indicates that the spectral shape f (ω) of the laser
pulse may also determine the ultimate dispersion of nj (ω).

From Eq. (2), we notice that the magnitude of the refractive
index may determine the sign of the reflectivity by competing
with the first term in the numerator. In turn, the Casimir force
between plates may be controlled by I (ω). For a broadband
pulse spanning over the resonant frequency of η2(ω), its
intensity can be taken to be constant. It is interesting that
the Casimir force may become time dependent if the OKE
is induced by a time-dependent laser pulse. The study of
the transient effect in the Casimir force requires a different
approach, i.e., in time domain; this is beyond the present
formalism.

In an effort to understand the Casimir force, we consider an
idealized magnetic plate driven by the intense laser field where
εA = 1, μA = 5, η2 is finite, placed parallel to a perfectly
conducting plate [rB

TE = −1, rB
TM = 1 (when Re εB � 1), η2 =

0] that can be realized. In Fig. 1(a), we have plotted the Casimir
force Fc between the plates as a function of intensity of the
impinging laser, for interplate distance a = 0.1λ0. Here the
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FIG. 1. (Color online) Casimir force between a perfect conductor
(rB

TE = −1, rB
TM = 1) and a plate with (a) ε = 1, μ = 5, and (b) ε = 5,

μ = 1, as a function of intensity of impinging laser η2(ω)I . Interplate
separation is a = 0.1λ0.

wavelength in vacuum is λ0 = 2πc/ω0 = 10−6 m, with ω0 =
2πc × 106 s−1, and Casimir forces are expressed in terms
of K = hc/(64π3λ4

0) � 10−3 Nm−2(energy density, J m−3 or
pressure, Nm−2).

The first plate is mainly magnetic, and we find the Casimir
force to be repulsive for any laser intensity. However, with
a laser intensity of about η2I ≈ 1, we noticed an optimum
repulsive force. The slight increase in the magnitude of the
force is caused by the TM reflectivity which decreases quicker
compared to the TE reflectivity. At higher intensities, the
Casimir force between plates becomes less repulsive.

A similar curve is plotted in Fig. 1(b), with the first
plate being substituted with εA = 5, μA = 1. Notice that the
attractive force between the plates increases slightly when
η2I ≈ 1, corresponding to a quicker onset in rTE compared
to rTM. We therefore notice that for ε > μ (ε < μ), rTE (rTM)
decreases more quickly compared to rTM (rTE ), giving a small
increase in magnitude on the original attractive (repulsive)
Casimir force. At higher intensities, the Casimir force between
plates become less attractive (repulsive).

When one of the plates is a metamaterial and the other
is a metal, the force is entirely repulsive for any spacing a

and intensity, as seen in Fig. 2. However, the Casimir force is
sensitive to the laser intensity only at small intensity and small
interplate spacing.
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FIG. 2. (Color online) Casimir force between a perfectly conduct-
ing plate and a metamaterial with ε = 1, and μ modeled by Eq. (5)
with parameters of ωPm

= 3ω0, ωTm
= 2ω0, and γm = 10−2ωTm

.

In order to demonstrate the possibility of laser control of the
Casimir force, we take an ideal, piecewise-dispersive material
with material constants given by

ε =
{

10, ω < ωT ,

1, ω � ωT ,
μ =

{
0.5, ω < ωT ,

100, ω � ωT .
(4)

This material is noted to be mainly magnetic at high frequency,
while being electric at low frequency, and can be influenced
by the Kerr effect. The Casimir force between this plate and
a perfectly conducting plate, which will not be influenced by
the OKE (rTE = −1, rTM = 1, η2 = 0), is plotted in Fig. 3(a)
for ωT = 0.8ω0. It is noted that the Casimir force is negative
and depends most sensitively on intensity at short distances.
In Fig. 3(b), we have plotted the dependence of the Casimir
force on laser intensity for different distances between plates.
It is noted that an increase in laser intensity to η2I ≈ 40
is sufficient to change the Casimir force from attractive to
repulsive, for a ≈ 0.2λ0. Thus, by introducing materials with
piecewise dispersion, nonlinear response to laser field, such as
the OKE, can be used to tailor the transient variations of the
force magnitude and even the sign.

IV. COMPLEX LINEAR AND NONLINEAR
COEFFICIENTS

In this section, we consider the Casimir force for practical
materials with actual dispersion (and absorption) taken into
consideration. We let one of the plates be a Kerr material
and the other plate be a metamaterial. Since the Casimir
effect is a broadband response it must be integrated over all
frequencies. Thus we must take into account the dispersion
and absorption in the dielectric permittivity ε and magnetic
permeability μ such that the real and imaginary parts of the
complex refractive index obey the Kramers-Kronig relation
and does not violate causality. Similarly, the nonlinear Kerr
coefficient η2 is complex and depends on frequency ω.

For the metamaterial plate, we use the complex linear
response functions modeled by a Drude-Lorentz type of single
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FIG. 3. (Color online) Casimir force Fc between a perfect
conducting plate and a piecewise-dispersive dielectric-magnetic plate
of Eq. (4), as a function of separation between the plates and
laser intensity. (a) 3D plot and (b) curves for different specific
spacings.

resonance,

{ε,μ} = 1 + ω2
Pv

ω2
Tv

− ω2 − iγvω
, η2 = 0, (5)

where v = e,m refers to ε and μ, respectively, while ω2
Pv

, ω2
Tv

,
and γv are the plasma frequency, the resonance frequency,
and the damping frequency, respectively. The metamaterial is
modeled using Eq. (5) with parameters ωpe

= 0.5ω0, ωTe
=

10−3ω0, ωPm
= 3ω0, ωTm

= 2ω0, and γe(m) = 10−2ωTe(m) .
The Kerr material is chosen to be a chalcogenide glass,

As2Se3, due to its high nonlinear refractive index. The linear
refractive index n0 of the glass with dispersion is modeled
using the Wemple equation [33] based on a single electronic
oscillator model,

n2
0 (ω) − 1 = EdEs

E2
s − (h̄ω)2 − ih̄2ωγ

, (6)

where Es is the Sellmeier gap and Ed is the electronic
oscillator energy. For As2Se3, Es = 4.1 eV, while Ed ≈ 26 eV
for many chalcogenides [34]. We take the damping factor,
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FIG. 4. (Color online) (a) n0 of As2Se3 as modeled using the
Wemple equation. (b) η2 of As2Se3 as modeled using Eq. (7).

γ = 10−2Es/h̄. The dispersion and absorption of n0 are plotted
in Fig. 4(a).

The complex nonlinear refractive index η2 is modeled using
the theory by Lenz et al. [35],

η2
(
ω

) = C
(
n2

0 + 2
)3 (

n2
0 − 1

) (
d

n0Es

)2

G

(
h̄(ω + iγ )

Eg

)
,

(7)

where C = 1.7 × 10−18, d is the mean anion-cation bond
length of the bonds that are primarily responsible for the non-
linear response (in units of nanometers), and Eg is the optical
gap. For As2Se3, d = 0.243 nm [34]. It is noteworthy that
Es ∼ 2.5Eg [34], which gives Eg = 1.64 eV. The dispersion
of the Kerr coefficient is contained in the function G, which
may be estimated with a two-band model. The expressions
for G (x), as given in the Appendix, include contributions
from two photon absorption, the Raman effect, the linear Stark
effect, and the quadratic Stark effect [36]. The dispersion and
absorption of η2 is plotted in Fig. 4(b).

Using the complex expressions of ε,μ,n0 (ω) and η2 (ω)
for both plates, the Casimir force between these plates is
then plotted in Fig. 5(a), and the two-dimensional version

FIG. 5. (Color online) Casimir force Fc between an As2Se3 plate
and a metamaterial with complex permeability and permittivity given
in Eq. (5) as a function of separation between plate and intensity of
laser.

is seen in Fig. 5(b). Here, we notice that the Casimir force
changes from attractive to repulsive at laser intensity of
I = 1.5 × 1018 W/m2. This unique feature is not present in
the dispersionless case of Figs. 1 and 2. The switching feature
remains for smaller interplate spacings, but the feature is lost
in the piecewise-dispersive case (Fig. 3), which uses Eq. (4).

To understand the range of frequencies responsible for
the change of sign of the Casimir force, the derivative of
the force with respect to frequency is plotted (Fig. 6) for
(a) a = 0.2λ0 and (b) a = λ0. For a = 0.2λ0, as the intensity
increases, the Casimir force derivative around the frequency
range (2 × 1014 − 2 × 1015 Hz) decreases toward negative
values, corresponding to the infrared-optical region of electro-
magnetic spectrum. The decrease in the Casimir attraction in
this region thus leads to an overall Casimir repulsion. However,
for a = λ0 [Fig. 6(b)], the Casimir attraction decreases on a
lower range of frequencies (1014 − 1015 Hz) as the intensity
increases. Hence we deduce that the increase in the plates’
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FIG. 6. (Color online) Variation of dFc/dξ at different frequen-
cies ξ , for different intensities of impinging laser I . The interplate
distance is (a) a = 0.2λ0, (b) a = λ0. The Casimir force decreases
with frequency for sufficiently large laser intensity.

separation will increase the contribution of lower frequencies
to the change of the Casimir force.

As a note of feasibility, the intensity of the laser source
required (I ≈ 1018 W/m2) is achievable with normal diode
lasers, which is far less than the current ultrahigh laser
intensity I ≈ 1026 W/m2 [37], thus enabling practical control
over the Casimir force via optical means. For laser intensity

I = 1018 W/m2 (around the Casimir switching intensity),
the radiation pressure is P = I

c
= 3 × 109 Nm−2, which is

significantly larger than the typical Casimir force, in the order
103K ∼ 1 Nm−2, dominates the contribution to the net force
if the laser is directed normal to the outer sides of the plates.
However, it is the nonlinear optical properties of the inner
sides of the plates that need to be controlled. Therefore, the
laser has to induce the optical Kerr effect on the inner surfaces
of the parallel plates. As such, the laser should be directed
parallel to the plates and guided along the inner surface of
the plates. Thus, the radiation pressure and the heating effect
would be negligible.

In addition, there is laser heating if the laser frequency
spectrum falls within the resonant frequencies of the materials
in the plates. For a broadband laser pulse, there could be
some heating since the laser spectrum contains the resonant
frequency of the materials in the plates. The heating leads to
thermal expansion and the change in the plate spacing. This
is when efficient nonlinear optics at the low-intensity level
is useful for laser nanophotonics applications. An alternative
solution is to use a laser with a spectrum lying outside the
resonant region so that the heating may be avoided. Thus there
are elaborate physical processes involved when heating and
radiation pressure are included, in addition to the Casimir
force, but this is beyond the present scope and will be detailed
in future work.

V. CONCLUSION

We have analyzed the possibility of controlling the Casimir
force using combinations of metamaterials and nonlinear ma-
terials exhibiting optical nonlinear Kerr effect. We have shown
that the force can be significantly varied and switched between
positive and negative values by changing the intensity of the
laser. The ability to alter the force due to the quantum vacuum
by changing nonlinear optical properties of matter with intense
laser sources provides new possibilities of using laser optics to
control quantum electrodynamics phenomena. Potential appli-
cations include manipulating nanoresonators and integrating
optical devices into nanoelectromechanical systems. The
physics of the dynamical Casimir force with laser pulse will be
explored in future work using another approach since Eq. (1)
does not provide transient information for the Casimir force.
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APPENDIX: TERMS IN G(x)

The expressions due to contributions of various physical processes to G (x) in Eq. (7) are given below [36]:

Two-photon absorption :
1

(2x)6

[
−3

8
x2(1 − x)−1/2 + 3x(1 − x)1/2 − 2(1 − x)3/2 + 2	(1 − 2x)(1 − 2x)3/2

]

Raman :
1

(2x)6

[
− 3

8
x2(1 + x)−1/2 − 3x(1 + x)1/2 − 2(1 + x)3/2 + 2(1 + 2x)3/2

]
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Linear Stark :
1

(2x)6
[2 − (1 − x)3/2 − (1 + x)3/2]

Quadratic Stark :
1

210x5

[
(1 − x)−1/2 − (1 + x)−1/2 − x

2
(1 − x)−3/2 − x

2
(1 + x)−3/2

]

Divergent term :
1

(2x)6

[
− 2 − 35x2

8
+ x

8
(3x − 1)(1 − x)−1/2 − 3x(1 − x)1/2

+ (1 − x)3/2 + x

8
(3x + 1)(1 + x)−1/2 + 3x(1 + x)1/2 + (1 + x)3/2

]
,

where 	 is the Heaviside step function.
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[31] M. S. Tomaš, Phys. Rev. A 66, 052103 (2002).
[32] C. Genet, A. Lambrecht, and S. Reynaud, Eur. Phys. J. Special

Topics 160, 183 (2008).
[33] S. H. Wemple and M. DiDomenico, Phys. Rev. B 3, 1338 (1971).
[34] R. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. Shaw, and

I. Aggarwal, J. Opt. Soc. Am. B 21, 1146 (2004).
[35] G. Lenz, J. Zimmermann, T. Katsufuji, M. Lines, H. Hwang,

S. Spälter, R. Slusher, S. Cheong, J. Sanghera, and I. Aggarwal,
Opt. Lett. 25, 254 (2000).

[36] M. Sheik-Bahae, D. Hutchings, D. Hagan, and E. Van Stryland,
IEEE. J. Quantum. Electron. 27, 1296 (1991).

[37] S. W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov,
G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and
V. Yanovsky, Opt. Lett. 29, 2837 (2004).

062509-6

http://dx.doi.org/10.1103/PhysRev.174.1764
http://dx.doi.org/10.1103/PhysRevLett.99.080401
http://dx.doi.org/10.1103/PhysRevLett.99.080401
http://dx.doi.org/10.1103/PhysRevLett.105.070404
http://dx.doi.org/10.1103/PhysRevLett.105.070404
http://dx.doi.org/10.1103/PhysRevLett.101.160403
http://dx.doi.org/10.1103/PhysRevLett.101.160403
http://dx.doi.org/10.1103/PhysRevLett.104.040403
http://dx.doi.org/10.1103/PhysRevLett.105.040403
http://dx.doi.org/10.1103/PhysRevA.81.022114
http://dx.doi.org/10.1103/PhysRevA.81.022114
http://dx.doi.org/10.1063/1.368410
http://dx.doi.org/10.1063/1.368410
http://dx.doi.org/10.1109/JPROC.2003.818321
http://dx.doi.org/10.1103/PhysRevLett.87.211801
http://dx.doi.org/10.1109/JSTQE.2007.893082
http://dx.doi.org/10.1109/JSTQE.2007.893082
http://dx.doi.org/10.1103/PhysRevLett.105.090403
http://dx.doi.org/10.1103/PhysRevLett.89.033001
http://dx.doi.org/10.1103/PhysRevLett.89.033001
http://dx.doi.org/10.1038/nature07610
http://dx.doi.org/10.1038/nature07610
http://dx.doi.org/10.1103/PhysRevLett.76.4773
http://dx.doi.org/10.1103/PhysRevLett.76.4773
http://dx.doi.org/10.1109/22.798002
http://dx.doi.org/10.1364/JOSAB.29.002691
http://dx.doi.org/10.1364/JOSAB.29.002691
http://dx.doi.org/10.1103/PhysRevLett.84.4184
http://dx.doi.org/10.1103/PhysRevLett.90.107401
http://dx.doi.org/10.1126/science.1139266
http://dx.doi.org/10.1126/science.1139266
http://dx.doi.org/10.1103/PhysRevLett.102.023901
http://dx.doi.org/10.1103/PhysRevLett.95.137404
http://dx.doi.org/10.1088/1367-2630/9/8/254
http://dx.doi.org/10.1103/PhysRevA.77.015803
http://dx.doi.org/10.1103/PhysRevA.77.015803
http://dx.doi.org/10.1103/PhysRevLett.100.183602
http://dx.doi.org/10.1103/PhysRevLett.100.183602
http://dx.doi.org/10.1103/PhysRevLett.103.120401
http://dx.doi.org/10.1103/PhysRevLett.103.120401
http://dx.doi.org/10.2528/PIER11081712
http://dx.doi.org/10.2528/PIER11081712
http://dx.doi.org/10.1103/PhysRevA.66.062102
http://dx.doi.org/10.1103/PhysRevA.66.062102
http://dx.doi.org/10.1103/PhysRevA.66.052103
http://dx.doi.org/10.1140/epjst/e2008-00722-y
http://dx.doi.org/10.1140/epjst/e2008-00722-y
http://dx.doi.org/10.1103/PhysRevB.3.1338
http://dx.doi.org/10.1364/JOSAB.21.001146
http://dx.doi.org/10.1364/OL.25.000254
http://dx.doi.org/10.1109/3.89946
http://dx.doi.org/10.1364/OL.29.002837



