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Variational solution of the congruently transformed Hamiltonian for many-electron systems
using a full-configuration-interaction calculation
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The congruent transformation of the electronic Hamiltonian is developed to address the electron correlation
problem in many-electron systems. The central strategy presented in this method is to perform transformation
on the electronic Hamiltonian for the approximate removal of the Coulomb singularity. The principle difference
between the present method and the transcorrelated method of Handy and Boys [Proc. R. Soc. London, Ser. A
310, 43 (1969)] is that the congruent transformation preserves the Hermitian property of the Hamiltonian. The
congruent transformation is carried out using explicitly correlated functions and the optimum correlated transform
Hamiltonian is obtained by performing a search over a set of transformation functions. The ansatz of the transfor-
mation function is selected to facilitate analytical evaluation of all the resulting integrals. The ground-state energy
is obtained variationally by performing a full-configuration-interaction (FCI) calculation on the congruently
transformed Hamiltonian. Computed results on well-studied benchmark systems show that for identical basis
functions, the energy from the congruently transformed Hamiltonian is significantly lower than that from the
conventional FCI calculation. Since the number of configuration state functions in the FCI calculation increases
rapidly with the size of the one-particle basis set, the results indicate that the congruently transformed Hamiltonian
provides a viable alternative to obtain FCI quality energy using a smaller underlying one-particle basis set.
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I. INTRODUCTION

The form of the many-electron wave function in the
proximity of the electron-electron and electron-nuclear coa-
lescence points plays a critical role in accurate determination
of the ground-state and excited-state energies. Although, the
precise structure of the many-electron wave function continues
to be elusive, the form of the exact wave function at the
coalescence point is well understood and is given by the Kato
cusp condition [1–4]. In the many-electron wave function,
the electron-nuclear cusp condition can be incorporated by
using Slater-type orbitals (STOs). For calculations involving
Gaussian-type orbitals (GTOs), one-electron basis can be
improved iteratively by adding GTOs with increasing angular
momentum quantum number [5]. The subject of convergence
of the single-particle basis has been analyzed extensively
using both analytical and numerical techniques [6–8]. The
electron-electron cusp has been the focus of intense research
because of its direct relation to the electron correlation
problem and the accurate description of the Coulomb and
Fermi holes [9–13]. However, unlike the electron-nuclear
cusp, atom-centered basis functions are not ideal for the
accurate description of the many-electron wave function near
the electron-electron cusp [14–16]. Indeed it has been shown
that the slow convergence of a full-configuration-interaction
(FCI) calculation with respect to the one-particle basis is
related to the inadequate treatment of the electron-electron
cusp [15]. The solution is to include explicit r12 dependence in
the form of the wave function, and there is a large assortment
of quantum chemical methods that have incorporated this
approach. For example, in the variational Monte Carlo (VMC)
method, the Jastrow function is used for including explicit
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r12 terms in the trial wave function [2,4]. The form of the
Jastrow function is chosen to ensure that the electron-electron
and electron-nuclear Kato cusp conditions are satisfied. The
parameters in the Jastrow function are obtained by minimizing
the linear combination of energy and its variance. Because of
the complicated mathematical form of the Jastrow function
it is not possible to evaluate the integral over the electronic
coordinates analytically, and a stochastic numerical method
is used for computation of the energy. Recently, Morales
et al. [17] performed highly accurate multideterminant VMC
calculations on water. Detailed reviews of various applications
of quantum Monte Carlo (QMC) methods in physics and
chemistry can be found in Refs. [18–20]. Explicitly correlated
methods have also been developed for post Hartree-Fock
schemes such as perturbation theory (MP2-R12), coupled-
cluster methods (CC-R12), and multireference configuration-
interaction schemes (R12-MRCI). These methods introduce
the electron-electron interparticle distance directly into the
calculation in order to increase the accuracy of the calculations.
The field of explicitly correlated methods for electronic struc-
ture calculation has been reviewed and a detailed description of
various methods can be found in Refs. [14,15,21]. A common
feature of the R12 and F12 methods discussed above is that
they all involve analytical computation of the r12 correlation
function. Recently, Chinnamsetty and co-workers [22] have
presented an interesting study that compares and contrasts
QMC with various F12 methods.

A different strategy known as the transcorrelated method
was developed by Handy and Boys in 1969 [23]. The basic
idea of the transcorrelated method is to remove the electron-
electron Coulomb singularity by performing similarity trans-
formation on the Hamiltonian using an explicitly correlated
function. The method was later extended by Ten-no to treat the
electron-electron cusp using Guassian geminal functions and
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was applied to chemical systems [8,24]. The transcorrelated
method has also been combined with other methods such
as QMC [25] and coupled-cluster theory [26] and has been
used to study electron correlation in periodic systems [27].
One of the defining characteristics of this method is that the
transcorrelated Hamiltonian is not Hermitian and therefore
is not required to be bounded from below by the exact
ground-state energy. The correlation function can be obtained
either by minimizing the energy variance of the transcorrelated
Hamiltonian [28,29] or by requiring the correlation function
to satisfy the electron-electron cusp condition.

The focus of the present work is to address the non-
Hermitian property of the transcorrelated Hamiltonian by re-
placing the similarity transformation with congruent transfor-
mation [30–32]. By performing congruent transformation, we
preserve the Hermitian property of the electronic Hamiltonian
which allows us to use a standard electronic structure methods
such as the configuration-interaction method to minimize
the total energy. The remainder of the paper describes the
theoretical development and the implementation details of the
method. The derivation of the congruently transformed Hamil-
tonian is presented in Sec. II. The details of performing FCI
calculations using the congruently transformed Hamiltonian
and interfacing it with existing FCI methods are presented
in Secs. II A and II B. Benchmark calculations using the
congruently transformed Hamiltonian are presented in Sec. III.
The analysis of the results and the conclusions are presented
in Sec. IV.

II. CONGRUENTLY TRANSFORMED HAMILTONIAN

The congruently transformed (CT) Hamiltonian H̃ is
defined by performing the following transformation [30–32]:

H̃ = G†HG, (1)

where G is an explicitly correlated function which will be
defined later. The expectation value of the CT Hamiltonian
with respect to any trial wave function is given as

ẼT[�T,G] = 〈�T|H̃ |�T〉
〈�T|1̃|�T〉 , (2)

where 1̃ = G†1G. The above expression is mathematically
equivalent to calculating the expectation value of the electronic
Hamiltonian using a correlated wave function and is bounded
from below by the exact ground-state energy Eexact � ẼT.
The optimized energy associated with the CT Hamiltonian
is obtained by performing a minimization with respect to the
trial wave function and the explicitly correlated function:

ECT = min
�T

min
G

ẼT[�T,G]. (3)

The optimization of the correlation function G and the trial
wave function �T is conducted in two steps. In the first step,
the form of the trial function is kept fixed to a single Slater
determinant and the parameters of the geminal functions are
determined by minimizing the geminal parameters and the
molecular orbitals. In the second step, the minimized geminal
function Gmin is kept fixed and the trial wave function �T is
minimized. The steps involved are described by the following

equations:

Ẽ[Gmin] = min
G,�SD

ẼT[�SD,G], (4)

ECT = min
�T

ẼT[�T,Gmin]. (5)

The optimization of the correlation function and the trial wave
function are described in the following subsections.

A. Optimization of the correlation function

The choice of the correlation function G plays an important
part in the implementation of the method for practical
applications. In principle, a variety of correlated functions
such as two- and three-body Jastrow functions can be used.
However, the matrix elements associated with these functions
cannot be integrated analytically and one has to use numerical
techniques such as the VMC method to calculate the integrals.
In the present work, Gaussian-type geminal (GTG) functions
are used for the correlated functions. The GTG functions were
introduced by Boys [33,34] and Singer [35] and have been used
extensively in explicitly correlated methods [36–41]. Slater de-
terminants augmented with GTG functions have been used to
study electron-electron and electron-proton systems. Explicit
correlation has also been included in the multiconfiguration
self consistent field (MCSCF) wave function by augmenting
it with the geminal correlation function [42]. The integrals
involving GTG functions with GTOs can be performed ana-
lytically and have been derived earlier [33,34,43,44]. The form
of the correlated function used in the following calculations is
defined as

G =
N∑

i<j

g(i,j ), (6)

g(i,j ) =
Ng∑
k=1

bke
−γkr

2
ij , (7)

where N is number of electrons and Ng is the number of
Gaussian functions. The geminal coefficients {bk,γk} in the
GTG function are determined variationally. In the limit of
G → 1, the energy Ẽ[Gmin] becomes equal to the Hartree-
Fock (HF) energy:

EHF = lim
G→1

Ẽ[Gmin]. (8)

As a consequence, the HF energy is the upper bound to the
geminal minimization process:

Ẽ[Gmin] � EHF. (9)

The transformed Hamiltonian is expanded as the sum of two-
to six-particle operators as shown below:

H̃ =
∑
i<j

∑
k

∑
m<n

g(m,n)h1(k)g(i,j )

+
∑
i<j

∑
k<l

∑
m<n

g(i,j )r−1
kl g(m,n), (10)

= O2 + O3 + O4 + O5 + O6, (11)

where the operators {On, n = 2, . . . ,6} are defined by col-
lecting all two-, three-, four-, five-, and six-particle oper-
ators obtained by expanding the summation in Eq. (10).
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Specifically,

O2 =
∑
i<j

h2(i,j ), (12)

O3 =
∑

i<j<k

h3(i,j,k), (13)

O4 =
∑

i<j<k<l

h4(i,j,k,l), (14)

O5 =
∑

i<j<k<l<m

h5(i,j,k,l,m), (15)

O6 =
∑

i<j<k<l<m<n

h6(i,j,k,l,m,n). (16)

The exact forms of the operators {hn,n = 2, . . . ,6} have been
derived earlier and are not duplicated here [45]. It should be
emphasized that the operators {hn,n = 2, . . . ,6} are defined
so that they are completely symmetric with respect to all n!
permutation of the indices:

Pkhn = hn, where Pk ∈ Sn. (17)

The operator Pk is the permutation operator that belongs to
the complete symmetric group Sn. An important feature of
this method is the availability of the analytical gradients of
the total energy with respect to the geminal parameters. The
gradients can be computed analytically and are given by the
following expressions:

∂g(1,2)

∂bk

= e−γkr
2
12 , (18)

∂g(1,2)

∂γk

= −bkr
2
12e

−γkr
2
12 . (19)

The atomic orbital (AO) integrals involving the gradients of the
GTG functions are performed analytically and are computed
with other AO integrals.

B. Optimization of the trial wave function

The optimization of the trial wave function �T is performed
by performing a FCI calculation on the CT Hamiltonian. The
FCI wave function is constructed by performing all possible
excitations from the reference wave function [46]. This can be
represented by the following expression,

�FCI = C0� +
Nocc∑
a

Nvir∑
p

Cp
a �p

a +
Nocc∑
a<b

Nvir∑
p<q

C
pq

ab �
pq

ab

+
Nocc∑

a<b<c

Nvir∑
p<q<r

C
pqr

abc �
pqr

abc + · · · , (20)

where we have retained Nvir in the expression to emphasize
that only a finite number of terms are evaluated. This point is a
subject of discussion later in the derivation. The occupied and
virtual orbitals are represented by (a,b,c, . . .) and (p,q,r, . . .),
respectively, and the CI coefficients are represented by
(Cp

a , . . .) and are obtained variationally by minimizing the
total energy. The construction of the full set of excitations and
the determination of the CI coefficients are the two principle
computational challenges associated with the FCI method.
For very small molecules, the CI matrix can be explicitly
constructed and diagonalized; however, this simple approach

becomes prohibitively expensive as the system size increases.
Currently, there are various computational techniques for effi-
cient calculation of the expansion coefficients [12,47–51]. The
calculation requires matrix elements involving the operators
{〈�k|Oα|�k′ 〉,α = 2, . . . ,6} which are derived below.

The matrix elements involving the two-particle operators
are evaluated as

〈�0|O2|�0〉 = 1

2!

2!∑
k=1

Nocc∑
i1i2

(−1)pk 〈i1i2|h2|Pki1i2〉, (21)

〈�0|O2

∣∣�p
a

〉 = 1

1!

2!∑
k=1

Nocc∑
i1

(−1)pk 〈ai1|h2|Pkpi1〉, (22)

〈�0|O2

∣∣�pq

ab

〉 =
2!∑

k=1

(−1)pk 〈ab|h2|Pkpq〉. (23)

The matrix elements involving the three-particle operators
are evaluated as

〈�0|O3|�0〉 = 1

3!

3!∑
k=1

Nocc∑
i1i2i3

(−1)pk 〈i1i2i3|h3|Pki1i2i3〉, (24)

〈�0|O3

∣∣�p
a

〉 = 1

2!

3!∑
k=1

Nocc∑
i1i2

(−1)pk 〈ai1i2|h3|Pkpi1i2〉, (25)

〈�0|O3

∣∣�pq

ab

〉 =
3!∑

k=1

Nocc∑
i1

(−1)pk 〈abi1|h3|Pkpqi1〉, (26)

〈�0|O3

∣∣�pqr

abc

〉 =
3!∑

k=1

(−1)pk 〈abc|h3|Pkpqr〉. (27)

The matrix elements involving the four-particle operators
are evaluated as

〈�0|O4|�0〉 = 1

4!

4!∑
k=1

Nocc∑
i1i2i3i4

(−1)pk 〈i1i2i3i4|h4|Pki1i2i3i4〉,
(28)

〈�0|O4

∣∣�p
a

〉 = 1

3!

4!∑
k=1

Nocc∑
i1i2i3

(−1)pk 〈ai1i2i3|h4|Pkpi1i2i3〉, (29)

〈�0|O4

∣∣�pq

ab

〉 = 1

2!

4!∑
k=1

Nocc∑
i1i2

(−1)pk 〈abi1i2|h4|Pkpqi1i2〉, (30)

〈�0|O4

∣∣�pqr

abc

〉 =
4!∑

k=1

Nocc∑
i1

(−1)pk 〈abci1|h4|Pkpqri1〉, (31)

〈�0|O4

∣∣�pqrs

abcd

〉 =
4!∑

k=1

(−1)pk 〈abcd|h4|Pkpqrs〉. (32)

The matrix elements involving the five-particle operators
are evaluated as

〈�0|O5|�0〉= 1

5!

5!∑
k=1

Nocc∑
i1i2i3i4i5

(−1)pk 〈i1i2i3i4i5|h5|Pki1i2i3i4i5〉,
(33)

〈�0|O5

∣∣�p
a

〉 = 1

4!

5!∑
k=1

Nocc∑
i1i2i3i4

(−1)pk 〈ai1i2i3i4|h5|Pkpi1i2i3i4〉,
(34)
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〈�0|O5

∣∣�pq

ab

〉 = 1

3!

5!∑
k=1

Nocc∑
i1i2i3

(−1)pk 〈abi1i2i3|h5|Pkpqi1i2i3〉,
(35)

〈�0|O5

∣∣�pqr

abc

〉 = 1

2!

5!∑
k=1

Nocc∑
i1i2

(−1)pk 〈abci1i2|h5|Pkpqri1i2〉,
(36)

〈�0|O5

∣∣�pqrs

abcd

〉 =
5!∑

k=1

Nocc∑
i1

(−1)pk 〈abcdi1|h5|Pkpqrsi1〉,
(37)

〈�0|O5

∣∣�pqrst

abcde

〉 =
5!∑

k=1

〈abcde|h5|Pkpqrst〉. (38)

The matrix elements involving the six-particle operators are
evaluated as

〈�0|O6|�0〉

= 1

6!

6!∑
k=1

Nocc∑
i1i2i3i4i5i6

(−1)pk 〈i1i2i3i4i5i6|h6|Pki1i2i3i4i5i6〉,
(39)

〈�0|O6

∣∣�p
a

〉
= 1

5!

6!∑
k=1

Nocc∑
i1i2i3i4i5

(−1)pk 〈ai1i2i3i4i5|h6|Pkpi1i2i3i4i5〉,
(40)

〈�0|O6

∣∣�pq

ab

〉
= 1

4!

6!∑
k=1

Nocc∑
i1i2i3i4

(−1)pk 〈abi1i2i3i4|h6|Pkpqi1i2i3i4〉, (41)

〈�0|O6

∣∣�pqr

abc

〉
= 1

3!

6!∑
k=1

Nocc∑
i1i2i3

(−1)pk 〈abci1i2i3|h6|Pkpqri1i2i3〉, (42)

〈�0|O6

∣∣�pqrs

abcd

〉
= 1

2!

6!∑
k=1

Nocc∑
i1i2

(−1)pk 〈abcdi1i2|h6|Pkpqrsi1i2〉, (43)

〈�0|O6

∣∣�pqrst

abcde

〉 =
6!∑

k=1

Nocc∑
i1

〈abcdei1|h6|Pkpqrsti1〉, (44)

〈�0|O6

∣∣�pqrstu

abcdef

〉 =
6!∑

k=1

〈abcdef |h6|Pkpqrstu〉. (45)

The computation of matrix elements in the above expressions
require atomic orbital integrals involving the GTG functions.
One of the advantages of using the GTG functions is that
all the AO integrals needed for the CT Hamiltonian (CTH)
calculation can be computed analytically. Boys and Singer
have derived the integrals involving GTG functions with s-type
GTOs. Persson and Taylor [44] have extended the method
for higher angular momentum by using the Hermite-Gaussian

expansion approach. Recently, Höfener and co-workers [52]
have also derived the geminal integrals by extending the Obara-
Saika techniques for calculating the GTG integrals.

The solution for the CI coefficients requires diagonalization
of the CI Hamiltonian matrix. However, the lowest eigenvalue
and eigenfunction can be obtained without explicit construc-
tion and storage of the CI matrix. There are various efficient
methods such as the Davidson diagonalization to perform this
task [53]. Recently, Alavi et al. [54–58] have developed the
FCI-QMC method which allows very efficient evaluation of
the FCI wave function.

In the present calculation, the FCI eigenvector was obtained
by performing Nesbet’s update scheme [59] and was selected
because of its ease of implementation. In the Nesbet method,
an expansion coefficient cμ is updated by �cμ:

cμ = cμ + �cμ, (46)

where the update is calculated as

�cμ = σμ

E1̃μμ − H̃μμ

, (47)

σμ =
∑

i

H̃μici − E
∑

i

1̃μici . (48)

The energy is updated at each step using

�E = σμ�cμ

D + �D
, (49)

�D = �cμ

[
2
∑

i

Sμici + Sμμ�cμ

]
. (50)

The FCI energy can be recovered from the CT calculation by
setting G = 1:

EFCI = lim
G→1

ECT. (51)

From the above relationship, we expect that the CTH energy
calculated with Gmin will be lower than the FCI results. In
the following section, we perform CTH calculations on well-
studied two-electron systems and compare calculated energies
with reported benchmark values.

1 2 3 4 5
Number of geminals

1.99

2

2.01

2.02

2.03

2.04

2.05

En
er

gy
 (h

ar
tre

e)

CTH
FCI
Exact result

FIG. 1. (Color online) Comparison of the exact ground-state
energy of the Hooke’s atom with the results from CTH and FCI
calculations.
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TABLE I. Geminal parameters for Hooke’s atom using the
6-311G basis set.

Number bk γk

1 1.0000 0.0000
2 −0.6090 0.1050
3 −0.0709 2.350
4 0.0216 0.175
5 −0.0132 1.120

III. CALCULATIONS AND RESULTS
OF BENCHMARK SYSTEMS

The Hooke’s atom is one of the few correlated two-electron
systems for which the Schrödinger equation can be solved
analytically. This feature has made it a testing ground for a
wide variety of methods [60–63]. The Hooke’s atom consists
of two electrons in a parabolic potential. The Hamiltonian of
that system can be written as

Ĥ = − 1
2∇2

1 − 1
2∇2

2 + 1
2kr2

1 + 1
2kr2

2 + 1
r12

, (52)

where all the quantities are expressed in atomic units. The
interaction between an electron and the nucleus is described
with the harmonic potential. For k = 0.5 a.u., the Schrödinger
equation can be solved exactly and the ground-state energy is
equal to 2.0 hartrees [64]. The Hooke’s atom provides an ideal
ground for testing the CTH method. The CTH calculations
were performed using the 6-311G basis and the geminal
parameters were obtained variationally from the solution of
Eq. (4). The energy was converged with respect to the number
of geminal parameters Ng, and the results are presented in
Fig. 1. It is seen that the energy was converged after the
addition of four geminal parameters and the optimized geminal
parameters are listed in Table I. Comparing the energy with
the exact result of 2.0 hartrees, it is seen that the Ẽ[Gmin] is
slightly higher by 0.770 mhartrees (or 0.483 kcal/mol). The
optimized Slater determinant � obtained in the previous step
is used as the reference wave function for the CTH calculations
and the results are summarized in Fig. 1. For G = 1, the CTH
energy is identical to the FCI energy. However, inclusion of
additional geminal terms makes the CTH energy lower than
the energy from the FCI calculation. It is seen that the CTH
energy is in good agreement with the exact analytical results
and is higher by 0.000 296 hartrees; these results are provided
in Table II.

The CTH calculations were also carried out for the helium
atom and the results are presented in Fig. 2. The calculations
were performed using different basis functions, and the results
were compared with HF and FCI values. It is seen that for
small basis sets, the Ẽ energy is lower than the FCI energy.
We expect this because of the inclusion of the optimized
geminal terms. The key result from Fig. 2 is that for small

TABLE II. Difference between exact and calculated energy of the
Hooke’s atom using the CTH method.

Hartree kcal/mol kJ/mol eV cm−1

0.000 296 0.186 0.777 0.008 05 65.0

Basis set 

-2.9

-2.88

-2.86

-2.84

-2.82

En
er

gy
 (h

ar
tre

e)

HF
FCI
CTH

ST
O-

3G

3-
21

G

6-
31

G

6-
31

1G
**

cc
-p

VT
Z

au
g-

cc
-p

VT
Z

FIG. 2. (Color online) Effect of basis set on the ground-state
energy of helium for HF, FCI, and CTH methods.

basis sets the CTH method provides a substantial lowering
of energy with respect to the corresponding FCI values. The
CTH calculations with respect to a small basis provide a wave
function that is comparable to the FCI wave function at much
larger basis functions. Since the cost of the FCI expansion
increases sharply with the size of the underlying one-particle
basis, the CTH method provides an appealing alternative
for obtaining accurate results when an FCI calculation is
prohibitively expensive. The dependence of the CTH energies
on the number of geminal parameters is shown in Fig. 3 and the
optimized geminal parameters for the helium atom are listed
in Table III.

IV. DISCUSSION AND CONCLUSIONS

The first geminal parameter is always set to b1 = 1 and
γ1 = 0 and is never optimized during the calculations. When
all the other Ng − 1 geminal parameters are set to zero,
these values of b1 and γ1 represent the G = 1 limit. Geminal

1 2 3 4 5
Number of geminals

-2.9

-2.89

-2.88

-2.87

En
er

gy
(h

ar
tre

e)

CTH
FCI

FIG. 3. (Color online) Convergence of the CT Hamiltonian
energy of the helium atom with respect to the number of geminal
functions. The calculations were performed with the 6-311G basis
set.
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TABLE III. Geminal parameters for the helium atom using 6-311G.

Number bk γk

1 1.000 000 0.000 00
2 −0.320 260 0.578 16
3 −0.063 365 10.3760
4 0.020 918 0.835 36
5 −0.029 282 0.087 99

parameters from b2, . . . ,bNg and γ2, . . . ,γNg are optimized to
obtain Gmin as described in Eq. (4). This procedure ensures
that the optimized energy is always bounded from above by
the HF energy. Figures 1 and 2 show the effect of inclusion of
additional geminal parameters and it is seen that the second
geminal parameter lowers the energy significantly. This is
an important result and clearly indicates the importance of
the geminal function in construction of the CTH. The set of
{bk} was optimized without any constraint and it is seen from
Tables I and III that the overall geminal parameter is negative.
This is an expected result and is in agreement with previous
work on explicitly correlated methods [52,65,66]. The negative
values of geminal parameters indicate the role of the geminal
function in providing a better description of the Coulomb hole.

The analytical forms of the GTG functions are inherently
approximate and are not capable of describing the cusp
correctly because their first derivative vanishes in the limit
of ree = 0: (

∂G

∂ree

)
ree=0

= 0. (53)

To assess the quality of the CTH energy, it is important to
estimate how much of an error this feature introduces in the
calculated energy. For the Hooke’s atom this can be done in a
a straightforward manner since the analytical solution of the
Schrödinger equation is known. From Table II, it is seen that
the CTH energy is close to the exact ground-state energy and is
higher by 0.296 mhartrees or 0.186 kcal/mol. This difference
between the CTH and the exact energy represents the upper
bound in the error that one can expect for this system by
approximating the cusp with GTG functions. For the helium
atom, the situation is less straightforward because we do not
have access to the exact solution. Instead, we compared the
CTH energies with other high-level methods from previous
studies [67–75] that include the exact cusp condition in the
wave function. In order to achieve the best CTH energy, the
calculation was performed with an aug-cc-pVTZ basis set
and geminal parameters were optimized with respect to the
aug-cc-pVTZ basis. Comparing the CTH method with the
highly accurate iterative complement interaction (ICI) method
by Nakashima and Nakatsuji [70,71], it is seen that CTH

energy is higher than the ICI energy by 0.429 kcal/mol. A
comparison of the CTH calculation to the ICI method and
other highly accurate results can be seen in Table IV. The
impact of the electron-electron cusp on ground-state energy
was investigated in detail by Prendergast and co-workers [12]
using CI and QMC methods. Their study concluded that one
can still expect to get a mhartree level of accuracy even in
situations where the exact cusp condition is not satisfied. Our
study using GTG functions also confirms this observation. The
use of GTG functions in the CTH method represents a trade-off
between the implementation of the exact cusp condition and
analytical expression for computing Gaussian-type geminal
integrals.

One of the objectives of the CTH method is to address
the factorial scaling of the FCI calculation with respect to
the basis size. As discussed above, the CTH method can give
results that are comparable to FCI calculations at larger basis
functions. As the system size increases, the computation cost of
the CTH method is dominated by the calculation and storage of
the many-particle integrals. Therefore, additional optimization
techniques must be used for efficient implementation of the
CTH method. Some of the many-particle integrals can be
factorized as products of lower-dimensional integrals. For
example, five- and six-particle integrals of the form

〈i1i2i3i4i5i6|g(1,2)r−1
34 g(5,6)|j1j2j3j4j5j6〉

= 〈i1i2|g(1,2)|j1j2〉〈i3i4|r−1
34 |j3j4〉

×〈i5i6|g(5,6)|j5j6〉 (54)

can be factored exactly in term to lower-dimensional integrals.
The many-particle integrals that cannot be factorized exactly
into lower-dimensional integrals can be approximately factor-
ized by using the resolution of identity (RI) approach that has
been used extensively in R12 and F12 methods [77–80]. The
RI scheme not only reduces the complexity of evaluating the
integrals but also helps in reducing the memory requirement
for storing the integrals. We have implemented the RI-CTH
method and have performed calculations on a series of ten
isoelectronic systems. However, the implementation details are
beyond the present discussion and are presented in a separate
article [81].

In addition to the RI extension, the CTH method can also
be used for computation of excited-state energies. One of the
key aspects of the correlation function used in the congruent
transformation is that it is a completely symmetric operator
and belongs to the A1 irreducible representation. The CTH
and identity operators retain their A1 symmetry. Consequently,
eigenfunctions of different symmetries are orthogonal to each
other and the CTH method can be used for computation
of excited states with symmetry different than that of the
ground-state wave function. Excited states that are of the same

TABLE IV. Comparison of ground-state energy (in hartrees) of the helium atom.

E Function Ref.

−2.900233 FCI [76]
−2.903041 CTH This work
−2.903 724 377 034 119 598 311 592 245 194 404 446 696 9 Free ICI [70,71]
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symmetry as the ground-state pose additional challenges and
will be investigated in future studies.

In conclusion, the congruent transformation of the elec-
tronic Hamiltonian using a Gaussian-type geminal function is
presented as a general method for calculating accurate ground-
state energy. The form of the CTH can be systematically
improved by using the geminal function. It was found that a
small number of geminal functions are needed to converge
the energy. Furthermore, the addition of just one geminal
parameter results in a substantial improvement in the accuracy
of the wave function. For a given finite basis set the CTH

energy was found to be lower that the FCI calculation on an
untransformed Hamiltonian. The results indicate that the CTH
provides a viable alternative for obtaining FCI quality energy
using a smaller underlying one-particle basis set.
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