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The task of privacy amplification, in which Alice holds some partially secret information with respect to an
adversary Eve and wishes to distill it until it is completely secret, is known to be solvable almost optimally
in both the classical and quantum worlds. Unfortunately, when considering an adversary who is limited only
by nonsignaling constraints such a statement cannot be made in general. We here consider systems which
violate the chained Bell inequality and prove that under the natural assumptions of a time-ordered nonsignaling
system, which allow past subsystems to signal future subsystems (using the device’s memory for example),
superpolynomial privacy amplification by any hashing is impossible. This is of great relevance when considering
practical device-independent key-distribution protocols which assume a superquantum adversary.
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I. INTRODUCTION

A. Device-independent key distribution

Key distribution is the task of creating a shared secret
string, called the key, between two parties. In contrast to
classical key-distribution protocols, which base their security
on the computational power of the adversary, quantum key-
distribution (QKD) protocols are resilient against quantum
adversaries with unbounded computational power. However,
in order to apply traditional QKD security proofs, such as
security proofs for the Bennett-Brassard 1984 (BB84) protocol
[1], one should be able to fully characterize the devices
on which the protocol is being executed. Failing to do so
can introduce security flaws which can be exploited by the
adversary [2]. Unfortunately, giving a full characterization of
quantum devices is usually an impractical task.

Due to this difficulty, in the past few years there has been
a growing interest in device-independent QKD (DIQKD). In
DIQKD protocols [3,4] we assume that the system on which
the protocol is being executed was made and given to the
honest parties Alice and Bob by a malicious adversary Eve.
We therefore ought to consider the system, which we know
nothing about, as a black box, and the security proof cannot
be based on the internal functioning of the device.

How can this be done? As was first shown in [5], security
proofs for DIQKD can be based on observed nonlocal
correlations between Alice and Bob, i.e., on the correlations
of the outputs they get from their systems. If the correlations
they observe violate some Bell inequality, such as the Clauser-
Horne-Shimony-Holt (CHSH) inequality [6] or other more
general chained Bell inequities [7,8], and if Alice and Bob
enforce a nonsignaling condition between them in order to
make sure that these correlations are indeed nonlocal, then
they can be sure that some secrecy is available to them [8].

The first DIQKD protocol which was proven secure was
a protocol by Barret, Hardy, and Kent (BHK) [9]. Although
this protocol cannot tolerate a reasonable amount of noise,
it showed that the task of DIQKD is in principle possible.
Moreover, the BHK protocol security proof applies not only
against quantum adversaries, but also against nonsignaling
adversaries.

When considering a nonsignaling adversary the only thing
which limits the adversary is the nonsignaling principle. That

is, the adversary has superquantum power; however, if Alice
and Bob enforce some local nonsignaling constraints then
these cannot be broken by the adversary. Such constraints can
be enforced by shielding and isolating the devices or by placing
them in a spacelike-separated way. For example, if Alice and
Bob perform their measurements in a spacelike-separated way,
then according to relativity theory, Alice cannot use her system
in order to signal Bob, and vice versa.

After the BHK protocol, several other DIQKD protocols,
such as [10,11], have been proven secure, but all using an
impractical assumption; in order to guarantee security each
subsystem used in the protocol must be isolated from all
other subsystems, such that they cannot signal each other. For
example, if Alice gets n systems from Eve, each producing one
bit, she must isolate each of these systems, in order to make
sure that no information leaks from one system to another.
Such a harsh constraint, which we call the full nonsignaling
constraint, eliminates the possibility of devices with memory.

Recently a new protocol, which does not share this draw-
back, was proven secure [12]. The sole assumption about the
nonsignaling constraints of the system in this protocol is that
Alice, Bob, and Eve cannot signal each other using the system,
which is a minimal requirement from any cryptographic
protocol.1 However, this protocol, like the BHK protocol,
cannot tolerate any reasonable amount of noise.

B. Privacy amplification

In this paper we consider a simpler problem, called privacy
amplification (PA). In the PA problem Alice holds some
information which is only partially secret with respect to an
adversary, Eve. Alice’s goal is to distill her information, to
a shorter string, which is completely (or almost completely)
secret. Note that in the PA problem we only want Alice to have
a secret key with respect to the adversary, while in QKD we

1If Alice’s system can signal Eve’s system then Alice’s secret can
leak to Eve completely. If Alice’s system can signal Bob’s system,
then the correlations they observe are not necessarily nonlocal and
could have been produced by a deterministic system. This implies
that Eve can get all the information that Alice and Bob have as well.
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also want Bob to hold the same key as Alice. Therefore PA is
easier than QKD.

In order to understand what exactly is the PA problem,
consider the following scenario. Assume that Alice has a
system, a black box, which produces for her a partially secret
bit or a string, X. By saying that X is partially secret we
mean that there is some entropy in X conditioned on Eve’s
knowledge about X. One would hope that by letting Alice
use several such systems, which will produce several partially
secret bits X1,X2, . . . ,Xn, she will have enough entropy in
order to produce a more secret bit or a string K out of them,
or in other words, she will be able to amplify the privacy
of her key. The idea behind the PA protocols is to apply
some hash function2 f : {0,1}n → {0,1}|K| (for |K| < n) to
X1,X2, . . . ,Xn in order to receive a shorter, but more secret,
bit string K . The amount of secrecy is usually measured by the
distance of the actual system of Alice and Eve from an ideal
system, in which K is uniformly distributed and uncorrelated
to Eve’s system. This will be defined formally in the following
section.

Since QKD in the presence of a nonsignaling adversary is
possible if we assume that Alice’s and Bob’s systems fulfill
the full nonsignaling conditions [10,11], PA is also possible
in this setting. However, it was already proven in [13] that
PA is impossible if we impose nonsignaling conditions only
between Alice and Bob,3 i.e., Alice and Bob cannot signal
each other, while signaling within their systems is possible.
Recently, the impossibility result of [13] was extended to an
even more general case [14].

A more realistic assumption to consider is that in addition
to the nonsignaling assumption between Alice and Bob, within
the system of the parties signaling is possible only from the past
to the future and not the other way around. These are natural
assumptions when considering a protocol in which Alice and
Bob each use just one device with memory. In that case, the
inputs and outputs of past measurements (which were saved
in the memory of the device) can affect the outputs of future
measurements. Such conditions, which we call time-ordered
nonsignaling conditions, are defined formally in Definition 2.

In contrast to the full nonsignaling conditions, the time-
ordered nonsignaling conditions are easy to ensure. Alice and
Bob can both shield their entire system (as has to be done
anyhow in order to make sure that no information leaks straight
to the adversary) and therefore signaling will be impossible
between them. Moreover, when running the protocol, they will
perform their measurements in a sequential manner; the first
system will be measured in the beginning, then the second
one, and so on. This will make sure (as long as we believe
that messages cannot be sent from the future to the past)
that signaling is possible only in the forward direction of
time. In fact, these are the nonsignaling conditions that one
“gets for free” when performing an experiment of QKD. For
example, an entanglement-based protocol in which Alice and
Bob receive entangled photons and measure them one after

2The hash function might also take a random seed of size m as an
additional input; in that case f : {0,1}n × {0,1}m → {0,1}|K|.

3In contrast to the QKD problem, when considering the PA problem
the only goal of Bob is to establish nonlocal correlations with Alice.

another using the same device will lead to the time-ordered
nonsignaling conditions. If Alice’s and Bob’s devices have
memory then information from past measurements can be
available for future measurements, i.e., signaling is possible
from the past to the future but not the other way around.

In this paper we ask the following question. Under the
assumption of a time-ordered nonsignaling system, is privacy
amplification against nonsignaling adversaries possible? We
give an example for a system which fulfils all the time-ordered
nonsignaling conditions, and in which superpolynomial PA
is impossible. More precisely, we prove that for protocols
which are based on a violation of chained Bell inequalities,
under the assumption of a time-ordered nonsignaling system,
superpolynomial PA is impossible by any hashing. That is,
when using n black boxes, each producing a partially secret
bit, the adversary can always get a great amount of information
about the hashing result; at least as high as �( 1

n
).

Although this proves that superpolynomial PA is impossible
under these conditions, it is still a partial answer to our question
for two reasons. First, there might still be some other system,
in which the secrecy is based on a different Bell inequality,
for which exponential PA is possible. Second, in this paper
we show that, independently of which hash function Alice is
using, Eve can bias the key by at least �( 1

n
); but can we find a

specific hash function for which she cannot do any better than
this? That is, is this result tight? Therefore, the question of
whether (linear) privacy amplification is at all possible remains
open.

II. PRELIMINARIES

A. Chained Bell inequalities

For two correlated random variables X,U we denote
the conditional probability distribution of X given U by
PX|U (x|u) = Prob (X = x|U = u). A bipartite system is de-
fined by the joint input-output distribution PXY |UV , where U

and X are usually Alice’s input and output, respectively, while
V and Y are Bob’s input and output. When considering a
tripartite system which includes Eve, PXYZ|UV W , Eve’s input
and output are W and Z.

Bell proved that entangled quantum states can display
nonlocal correlations under measurements [15]. We consider
the following Bell-type experiments. Alice and Bob share a
bipartite system PXY |UV where U ∈ {0,2, . . . ,2N − 2} and
V ∈ {1,3, . . . ,2N − 1}. We define a set of allowed input pairs
for Alice and Bob to be GN = {(u,v)|u ∈ U,v ∈ V,|u − v| =
1} ⋃{(0,2N − 1)}. For each measurement of Alice U , and
each measurement of Bob V , there are two possible outcomes,
0 or 1. That is, X,Y ∈ {0,1}. The relevant Bell inequality then
reads [7,8]

IN = P (X = Y |U = 0,V = 2N − 1)

+
∑
u,v

|u−v|

P (X �= Y |U = u,V = v) � 1. (1)

This implies that correlations which satisfy IN < 1 are
nonlocal and cannot be described by shared randomness of the
parties. For N = 2 this inequality is the CHSH inequality [6].
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For the maximally entangled state |�+〉 = 1√
2
(|00〉 +

|11〉), if Alice’s measurements are in the basis {cos θ
2 |0〉 +

sin θ
2 |1〉,sin θ

2 |0〉 − cos θ
2 |1〉} for θ = πU

2N
and Bob’s measure-

ments are in the same basis but for θ = πV
2N

then the correlations
they get satisfy

I �
N = 2Nsin2 π

4N
<

π2

8N
. (2)

This implies that I �
N can be made arbitrarily small for

sufficiently large N .4

In our proof we will assume that the systems violate the
chained Bell inequality. This is of course not the only possible
choice for QKD protocols, although it is the most common
one. Moreover, note that since for these types of system PA
is impossible, we cannot treat in general any system which
produces some secrecy as a black box, and therefore PA in
general is impossible.

B. Nonsignaling systems

Denote Alice’s and Bob’s system by PXY |UV . A minimal
requirement needed for any useful system is that Alice cannot
signal to Bob using the system, and vice versa, otherwise
the measured Bell violation will have no meaning. This can
be ensured by placing Alice and Bob in spacelike-separated
regions or by shielding their systems.

Definition 1 (nonsignaling between Alice and Bob). A
2n-party conditional probability distribution PXY |UV over
X,Y,U,V ∈ {0,1}n does not allow for signaling from Alice
to Bob if

∀ y,u,u′,v,∑
x

PXY |UV (x,y|u,v) =
∑

x

PXY |UV (x,y|u′,v)

and does not allow for signaling from Bob to Alice if

∀ x,v,v′,u,∑
y

PXY |UV (x,y|u,v) =
∑

y

PXY |UV (x,y|u,v′).

This definition implies that Bob (Alice) cannot infer from
his (her) part of the system which input was given by Alice
(Bob). The marginal system each of them sees is the same for
all inputs of the other party and therefore the system PXY |UV

cannot be used for signaling.
In this paper we consider the conditions that we call time-

ordered nonsignaling conditions.
Definition 2 (time-ordered nonsignaling system). For any

i ∈ {2, . . . ,n}, denote the set {1, . . . ,i − 1} by I1 and the set
{i, . . . ,n} by I2, and for i = 1, I1 = φ and I2 = [n]. A 2n-party
conditional probability distribution PXY |UV over X,Y,U,V ∈
{0,1}n is a time-ordered nonsignaling system (does not allow

4However, as N gets larger it becomes difficult to close the detection
loophole [16] in the performed experiments, which is essential for any
protocol that is based on nonlocal correlations.
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FIG. 1. Time-ordered nonsignaling condition for i = 3. Signaling
is impossible in the direction of the straight arrow.

for signaling from the future to the past) if for any i ∈ [n],

∀ xI1 ,y,uI1 ,uI2 ,u
′
I2
,v,∑

xI2

PXY |UV

(
xI1 ,xI2 ,y

∣∣uI1 ,uI2 ,v
)

=
∑
xI2

PXY |UV

(
xI1 ,xI2 ,y

∣∣uI1 ,u
′
I2
,v

)
,

∀ x,yI1 ,u,vI1 ,vI2 ,v
′
I2
,∑

yI2

PXY |UV

(
x,yI1 ,yI2

∣∣u,vI1 ,vI2

)

=
∑
yI2

PXY |UV

(
x,yI1 ,yI2

∣∣u,vI1 ,v
′
I2

)
.

Figure 1 illustrates these conditions. Note that the condi-
tions of Definition 1 follow from these conditions.

C. Nonsignaling adversaries

When modeling a nonsignaling adversary, the question in
mind is as follows: given a system PXY |UV shared by Alice
and Bob, for which some arbitrary nonsignaling conditions
hold, which extensions to a system PXYZ|UV W , including the
adversary Eve, are possible? The only principle which limits
Eve is the nonsignaling principle, which means that for any
of her measurements w, the conditional system P

Z(w)=z
XY |UV , for

any z ∈ Z, must fulfill all of the nonsignaling conditions
that PXY |UV fulfills, and in addition PXYZ|UV W cannot allow
signaling between Alice and Bob together and Eve.

We adopt here the model given in [10,13,17] of nonsignal-
ing adversaries. Because Eve cannot signal to Alice and Bob
(even together) by her choice of input, we must have, for all
x,y,u,v,w,w′,
∑

z

PXYZ|UV W (x,y,z|u,v,w) =
∑

z

PXYZ|UV W (x,y,z|u,v,w′)

= PXY |UV (x,y|u,v).

We can therefore see Eve’s input as a choice of a convex
decomposition of Alice’s and Bob’s system and her output as
indicating one part of this decomposition. Formally, we can
define every strategy of Eve as a partition of Alice’s and Bob’s
system in the following way.

Definition 3 (partition of the system). A partition of a given
multipartite system PXY |UV , which fulfills a certain set of
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nonsignaling conditions C, is a family of pairs (pz,P z
XY |UV ),

where
(1) pz is a classical distribution (i.e., for all z pz � 0 and∑
z pz = 1);
(2) for all z, P z

XY |UV is a system that fulfills C;
(3) PXY |UV = ∑

z pzP z
XY |UV .

In our scenario the goal of the adversary is to gain infor-
mation about f (X), for some function5 f : {0,1}n → {0,1}.
Note that since the adversarial strategy can be chosen after all
public communication between Alice and Bob is done, any
additional random seed cannot help Alice and Bob. Therefore
it is enough to consider deterministic functions in this case.

In order to quantify how good a strategy w is, i.e., how
much information Eve gains about f (X) by using w, we
use the variational distance between the real system and the
ideal system, in which f (X) is uniformly distributed and
independent of the adversary’s system.

Lemma 1. (Lemma 3.7 in [17].) For the case K = f (X),
where f : {0,1}n → {0,1}, U = u, V = v, and where the
strategy w is defined by the partition {(pz,P z

XY |UV )}z∈{0,1} such
that Prob[K = 0|Z = 0] � 1

2 , the distance from uniform of
f (X) given the strategy w is

d(K|Z(w))

= pz=0 (Prob[K = 0|Z = 0] − Prob[K = 1|Z = 0])

− 1
2 (Prob[K = 0] − Prob[K = 1]).

III. MAIN RESULT

In order to show an impossibility result we give a con-
crete adversarial strategy against any almost balanced hash
functions. Eve will create a time-ordered nonsignaling system
between Alice, Bob, and herself, such that when she inputs the
hash function f which was chosen by Alice on her side of the
system, the output will be a guess at f (x). We prove that this
guess is correct with probability of at least 1

2 + c
n

, where c is
some constant and n is the number of systems shared by Alice
and Bob. Against functions which are not almost balanced
Eve can just use a trivial strategy and guess the value of the
function without using her part of the system at all.

As noted before, in order to prove an impossibility result it is
enough to prove it for a specific system. We assume that when
the adversary is not present, Alice and Bob share n independent
maximally entangled states and perform the measurements
which achieve the violation of Eq. (2). We denote the system
of each entangled pair by PXiYi |UiVi

for i ∈ [n] and the whole
system by PXY |UV = ∏

i∈[n]PXiYi |UiVi
.

Let f : {0,1}n → {0,1} be an almost balanced function.
Showing a strategy is giving a partition of Alice’s and Bob’s
system, as in Definition 3. Our partition will have two parts,
P 0

XY |UV and P 1
XY |UV , each occurring with probability 1

2 and
PXY |UV = 1

2P 0
XY |UV + 1

2P 1
XY |UV . In our partition P 0

XY |UV is
biased towards f (x) = 0 and P 1

XY |UV towards f (x) = 1. That
is, if Eve gets an outcome of z = 0 (1) when measuring her

5It is enough to consider the case where Alice wants to create just one
secret bit. An impossibility result for one bit implies an impossibility
result for several bits.

part of the system she knows that Alice’s output x is more
likely to be a preimage of 0 (1) according to f .

In this section we explain the idea and the intuition
behind the adversarial strategy and the main principles of the
proof. For the formal proof and technical details please see
Appendix C. We start by describing how Eve can bias the
system towards f (x) = 0, i.e., what is P 0

XY |UV .
Assume for the moment that for some given prefix of x,

x1,...,i−1, and function f we have

Prob
xi+1,...,n

[f (x1,...,i−10xi+1,...,n) = 0]

> Prob
xi+1,...,n

[f (x1,...,i−11xi+1,...,n) = 0].

This implies that, for this specific prefix x1,...,i−1, if Eve can
guess the ith bit xi then she can also guess the output bit of
f . Therefor Eve can definitely benefit from biasing the ith bit
towards 0.

Can the ith subsystem be biased without changing the
correlations Alice and Bob observe? The following lemma
answers this question.

Lemma 2. For any i ∈ [n], the system PXiYi |UiVi
, for which

IN (PXiYi |UiVi
) = I �

N , can be biased towards 0 (or 1) by c(I �
N ) =

I �
N

2N
.
We denote the biased system by P

zi=σ
XiYi |UiVi

for σ ∈ {0,1}.
The biased system is given in Appendix A.

Therefore, in our adversarial strategy, if the value of the
ith bit xi , given the prefix x1,...,i−1, has enough influence over
the outcome of f (we will soon define how much is enough),
although the suffix is unknown, then the ith system is being
biased by c(I �

N ). Note that for any prefix x1,...,i−1 a different
system PXiYi |UiVi

should be biased.
Next we say how Eve determines which subsystem

PXiYi |UiVi
to bias for every x. For every function f , index

i ∈ [n], and prefix x1,...,i−1 define

Δi(x1,...,i−1) ≡ ∣∣ Prob
xi+1,...,n

[f (x1,...,i−10xi+1,...,n) = 0]

− Prob
xi+1,...,n

[f (x1,...,i−11xi+1,...,n) = 0]
∣∣.

Δi(x1,...,i−1) quantifies how much influence the ith bit has
over f given the prefix x1,...,i−1.6 For every x, Eve will bias
the subsystem with the pivotal index, as we now define.

Definition 4 (pivotal index7). Given f : {0,1}n → {0,1}, for
any x, the pivotal index i(x) ∈ [n] is the smallest index such
that Δi(x)(x1,...,i−1) � 2

3n
.

Consider for example the function presented in Fig. 2. The
pivotal indices are marked in the binary tree of the function by
a circle. For strings x with prefix x1 = 0 the pivotal index is
i(x) = 2, while for strings with prefixes x1x2 = 10 and x1x2 =
11 the pivotal index is i(x) = 3.

Luckily, for every function f : {0,1}n → {0,1} for which
|Probx [f (x) = 0] − Probx [f (x) = 1] | � 1

3 and every x ∈
{0,1}n there exists such a pivotal index i(x) for which
Δi(x)(x1,...,i−1) � 2

3n
and therefore for every x there exists

6Note that the influence towards f (x) = 0 and f (x) = 1 is the same.
7The terms “pivotal” and “influence” are taken from the field of

Boolean function analysis.
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FIG. 2. Binary tree with pivotal nodes. The pivotal nodes are
marked with circles.

some bit xi(x) which can give non-negligible information to
Eve about the final output.

Lemma 3. Let f : {0,1}n → {0,1} be an almost bal-
anced function, i.e., |Probx[f (x) = 0] − Probx[f (x) = 1]| �
1
3 . Then for any x there exists a pivotal index i(x) such that
Δi(x)(x1,...,i−1) � 2

3n
.

Lemma 3 is proven in Appendix B. Putting everything
together, Eve’s strategy is as follows. For every x the i(x)th
subsystem, where i(x) is the pivotal index of x, is biased. It is
biased by c(I �

N ) towards 0 if Probxi+1,...,n
[f (x1,...,i−10xi+1,...,n) =

0] > Probxi+1,...,n
[f (x1,...,i−11xi+1,...,n) = 0] and towards 1 oth-

erwise. The system P 0
XY |UV which results from such a strategy

is given in Eq. (C1) in Appendix C.
The strategy for biasing the system towards f (x) = 1

is symmetric to the strategy we described for f (x) = 0.
The only difference is that Eve will bias the ith system
by c(I �

N ) towards 0 if Probxi+1,...,n
[f (x1,...,i−10xi+1,...,n) = 0] <

Probxi+1,...,n
[f (x1,...,i−11xi+1,...,n) = 0] and towards 1 otherwise,

and not the other way around. The fact that these two symmet-
ric systems put together a legal partition, as in Definition 3, is
proven in Appendix C.

Since Eve biases a different subsystem PXi(x)Yi(x)|Ui(x)Vi(x) for
every x, it is not clear that the system P 0

XY |UV is indeed time-
ordered nonsignaling. The key idea for proving such a thing is
that for every x, the location of the pivotal index i(x) depends
only on the prefix of x until this index exactly. Intuitively, in
our case this corresponds to the fact that signaling is possible
from past measurements to future measurements, or in other
words, the fact that in any given time the prefix of x can be
saved in Alice’s device. This is proven formally in Appendix C.

How much information does this strategy give Eve? For
every x the i(x)th subsystem is biased by c(I �

N ). However,
the advantage Eve gets from this shift in the probabilities
is only c(I �

N )Δi(x)(x1,...,i−1) since the pivotal bit does not
determine f (x) exactly.8 Moreover, since P 0

XY |UV and P 1
XY |UV

8When we shift some probability π around from a cell which has
probability p1 to result in f (x) = 0 (over the suffix) to a cell which
has probability p2 to result in f (x) = 0 the advantage we get from
shifting π is π (p2 − p1). In our case, p2 − p1 is exactly Δi(x)(x1,...,i−1)
in our case.

are symmetric and both occur with the same probability 1
2 they

both contribute the same amount of knowledge to Eve.
As mentioned before, for any function for which

|Probx[f (x) = 0] − Probx[f (x) = 1]| > 1
3 Eve can just guess

the value of the function with a constant success probability
of at least 2

3 . Therefore these kinds of functions do not bother
us. Altogether we get the following theorem.

Theorem 1. There exists a time-ordered nonsignaling
system PXY |UV as in Definition 2 such that for any hash
function f : {0,1}n → {0,1} there exists a strategy w, for
which the distance from uniform of f (x) given w is at
least c(I �

N ) 2
3n

, i.e., d(f (x)|Z(w)) � c(I �
N ) 2

3n
∈ Ω( 1

n
) where

IN (PXY |UV ) = I �
N and c(I �

N ) = I �
N

2N
.9

Proof. If f : {0,1}n → {0,1} is an almost balanced function
as in Lemma 3 then w is the strategy described above, for
which d(f (x)|Z(w)) � c(I �

N ) 2
3n

. Otherwise, the strategy is to
guess f (x). For this trivial strategy we have d(f (x)|Z(w)) �
2
3 − 1

2 � c(I �
N ) 2

3n
. �

A. Concluding remarks and open questions

In this paper we showed that when considering systems
which can signal only forward in time and nonsignaling adver-
saries, then superpolynomial privacy amplification by any hash
function is impossible. For protocols which are based on the
violation of the chained Bell inequalities, we presented a spe-
cific adversarial strategy which uses the memory of the device
in order to gain information about the value of the function.

It is not yet clear whether our result is tight. We showed
that, independently of which hash function Alice is using, Eve
can bias the key by at least �( 1

n
). For some bad choices of

hash functions Eve can get even more information than �( 1
n

)
by using the same strategy. For example, if the chosen hash
function is the XOR, then by using the exact same strategy, but
with a different analysis, Eve can bias the final key bit by a
constant. When using the MAJORITY function this strategy can
only give her �( 1√

n
) bias. Is this the best Eve can do? Can we

find a specific hash function for which she cannot do any better
than this? The question whether linear privacy amplification is
possible or not therefore remains open.
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APPENDIX A: PROOF OF LEMMA 2

We now prove the following lemma:
Lemma 4. For any i ∈ [n], the system PXiYi |UiVi

, for
which IN (PXiYi |UiVi

) = I �
N , can be biased towards 0 (or 1) by

c(I �
N ) = I �

N

2N
.

Proof. In order to prove this we define the system P
zi=0
XiYi |UiVi

which is biased towards 0 by c(I �
N ). We do so by shifting

9Remember that n is the number of systems while N is the number
of possible measurements for each system. For any given protocol N

is constant and therefore so also is I �
N .
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2

FIG. 3. (Color online) The unbiased system PXiYi |UiVi
for which I �

N = 2Nsin2 π

4N
. The empty squares in the figure are not relevant for the

correlations and therefore are not considered in cryptographic protocols.

probabilities around in the original unbiased system PXiYi |UiVi
.

The original system PXiYi |UiVi
, as in Fig. 3, describes the mea-

surements statistics of the maximally entangled state |�+〉 =
1√
2
(|00〉 + |11〉) in the basis {cos θ

2 |0〉 + sin θ
2 |1〉,sin θ

2 |0〉 −
cos θ

2 |1〉}, where for Alice θ = πU
2N

, U ∈ {0,2, . . . ,2N − 2} and
for Bob θ = πV

2N
, V ∈ {1,3, . . . ,2N − 1}.

In order to bias this system towards 0 we shift probabilities
within each individual square in the figure, such that each

0 1

0

1

cos2( π
4N )

2

sin2( π
4N )

2

sin2( π
4N )

2

cos2( π
4N )

2

=⇒

0 1

0

1

1
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sin2 π
4N
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2 −
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2
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0

1

sin2( π
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2

cos2( π
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2

cos2( π
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2
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2

=⇒
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0

1

sin2 π
4N

1
2

cos2( π
4N )

2 −
sin2( π

4N )
2

0

FIG. 4. (Color online) The biased system P
zi=0
XiYi |UiVi

. Here are the
same squares of Fig. 3 after the probability shift.

square will be biased toward 0 by sin2( π
4N

). We do so by
shifting in every row probability of 1

2 sin2( π
4N

) out from the
cell with xi = 1 and into the cell with xi = 0, as indicated in
Fig. 4. Each square corresponds to a different measurement
made by Alice and Bob, and therefore for every measurement
the bias is the same and equivalent to c(I �

N ) = 1
2N

I�
N .

Note that by shifting probabilities in this way we do not
change the correlations of the system, i.e., IN (P zi=0

XiYi |UiVi
) = I �

N .

The system P
zi=1
XiYi |UiVi

, which is biased towards 1, is
symmetric. That is, we shift the same amount of probability
but in the opposite direction (from xi = 0 to xi = 1). This also
implies that 1

2P
zi=0
XiYi |UiVi

+ 1
2P

zi=1
XiYi |UiVi

= PXiYi |UiVi
. �

APPENDIX B: PROOF OF LEMMA 3

For convenience we rewrite Lemma 3 here again.
Lemma 5. Let f : {0,1}n → {0,1} be an almost balanced

function for which |Probx[f (x) = 0] − Probx[f (x) = 1]| �
1
3 . Then for any x there exists a pivotal index i(x) such that
Δi(x)(x1,...,i−1) � 2

3n
, where

Δi(x1,...,i−1) ≡ ∣∣ Pr
xi+1,...,n

[f (x1,...,i−10xi+1,...,n) = 0]

− Pr
xi+1,...,n

[f (x1,...,i−11xi+1,...,n) = 0]
∣∣.

Proof. Let π0(x1,...,i−1) = Probxi,...,n
[f (x) = 0] where x =

x1,...,i−1xi,...,n and note the following properties:

π0(x1,...,i−1) = 1
2

[
π0(x1,...,i−10) + π0(x1,...,i−11)

]
,

π0(φ) � 1
3 ,

π0(x1,...,n) ∈ {0,1} .

Assume without loss of generality that π0(x1,...,n) = 0 [the
proof is symmetric for the case π0(x1,...,n) = 1].
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Let maxi∈[n]|π0(x1,...,i) − π0(x1,...,i−1)| � ζ . This implies
the following:

1
3 � |π0(φ) − π0(x1,...,n)| � nζ

and therefore ζ � 1
3n

. That is, there exists j ∈ [n]
such that |π0(x1,...,j ) − π0(x1,...,j−1)| � 1

3n
and since we

assumed π0(x1,...,n) = 0 we can farther write π0(x1,...,j−1) �
π0(x1,...,j ) + 1

3n
. Moreover, since

π0(x1,...,j−1) = 1
2 [π0(x1,...,j−10) + π0(x1,...,j−11)]

= 1
2 [π0(x1,...,j−1xj ) + π0(x1,...,j−1xj )],

we get that π0(x1,...,j−1xj ) � π0(x1,...,j−1xj ) + 2
3n

and there-
fore for any x there exists an index i(x) = j for which
Δi(x)(x1,...,i−1) � 2

3n
. �

APPENDIX C: FORMAL DEFINITION OF
THE STRATEGY

As explained in the main text, Eve’s strategy is to use a
partition {( 1

2 ,P z
XY |UV )}z∈{0,1} for which PXY |UV = 1

2P 0
XY |UV +

1
2P 1

XY |UV . The systems P 0
XY |UV and P 1

XY |UV are obtained by
biasing one individual subsystem PXi(x)Yi(x)|Ui(x)Vi(x) for each

x. For any i ∈ [n] let P
zi=0
XiYi |UiVi

and P
zi=1
XiYi |UiVi

be the biased
systems as defined in Appendix A. The system P 0

XY |UV is then
formally defined by

P 0
XY |UV (x,y|u,v) =

i(x)−1∏
j=1

PXj Yj |Uj Vj
(xj ,yj |uj ,vj )P zi=σ

Xi(x)Yi(x)|Ui(x)Vi(x)
(xi(x),yi(x)|ui(x),vi(x))

n∏
j=i(x)+1

PXj Yj |Uj Vj
(xj ,yj |uj ,vj ), (C1)

where i(x) is the pivotal index of x as in Definition 4 and

σ =
{

0, Probxi+1,...,n
[f (x1,...,i−10xi+1,...,n) = 0] > Probxi+1,...,n

[f (x1,...,i−11xi+1,...,n) = 0],
1 otherwise.

That is, if f (x) is more likely to result in f (x) = 0 if xi(x) = 0 then Eve biases the i(x)th system towards 0 and if not then
towards 1. Note that since Eve manipulates the i(x)th system only if Δi(x)(x1,...,i−1) � 2

3n
, Probxi+1,...,n

[f (x1,...,i−10xi+1,...,n) = 0]
never equals Probxi+1,...,n

[f (x1,...,i−11xi+1,...,n) = 0].
The complementary system P 1

XY |UV is defined in the exact same way but with σ instead of σ .
In order to prove the legality of the strategy we first prove that P 0

XY |UV is a probability distribution.
Lemma 6. The system P 0

XY |UV is a probability distribution. That is,
(1) for all x,y,u,v, P 0

XY |UV (x,y|u,v) � 0,
(2) the system is normalized: for all u,v,

∑
x,yP

0
XY |UV (x,y|u,v) = 1.

Proof. Each of the multiplicands in Eq. (C1) is non-negative and therefore for all x,y,u,v it also holds that P 0
XY |UV (x,y|u,v) �

0. Furthermore, since
P

zi=σ
Xi(x)Yi(x)|Ui(x)Vi(x)

(xi(x),yi(x)|ui(x),vi(x)) + P
zi=σ
Xi(x)Yi(x)|Ui(x)Vi(x)

(xi(x),yi(x)|ui(x),vi(x))

= PXi(x)Yi(x)|Ui(x)Vi(x) (xi(x),yi(x)|ui(x),vi(x)) + PXi(x)Yi(x)|Ui(x)Vi(x) (xi(x),yi(x)|ui(x),vi(x)) (C2)

(cf. Fig. 4) we also have

P 0
XY |UV (x,y|u,v) + P 0

XY |UV (xi(x),y|u,v) = PXY |UV (x,y|u,v) + PXY |UV (xi(x),y|u,v),

where xi(x) is the string x with the i(x)th bit flipped, i.e., xi(x) = x1, . . . ,xi(x)−1xi(x)xi(x)+1, . . . ,xn. This implies that∑
x,y

P 0
XY |UV (x,y|u,v) =

∑
x,y

PXY |UV (x,y|u,v) = 1. �
The same proof holds for P 1

XY |UV as well. The fact that P 0
XY |UV and P 1

XY |UV are probability distributions is not enough. We also
need to prove that they are complementary systems, i.e., PXY |UV = 1

2P 0
XY |UV + 1

2P 1
XY |UV .

Lemma 7. PXY |UV = 1
2P 0

XY |UV + 1
2P 1

XY |UV .
Proof. For simplicity we drop the subscript XY |UV from all the systems. For example, P (x,y|u,v) should be understood as

PXY |UV (x,y|u,v) while P zi=σ (xi(x),yi(x)|ui(x),vi(x)) should be understood as P
zi=σ
Xi(x)Yi(x)|Ui(x)Vi(x)

(xi(x),yi(x)|ui(x),vi(x)).

2P (x,y|u,v) − P 0(x,y|u,v) = 2
n∏

j=1

P (xj ,yj |uj ,vj ) − P 0(x,y|u,v)

=
n∏

j=1
j �=i(x)

P (xj ,yj |uj ,vj )[2P (xi(x),yi(x)|ui(x),vi(x)) − P zi=σ (xi(x),yi(x)|ui(x),vi(x))]

=
n∏

j=1
j �=i(x)

P (xj ,yj |uj ,vj )P zi=σ (xi(x),yi(x)|ui(x),vi(x)) = P 1(x,y|u,v).
�
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i(x) ∈ I1

I1 I2

i(x)

i(x) ∈ I2

I1 I2

i(x)
FIG. 5. Two possible cases: i(x) ∈ I1 or i(x) ∈ I2.

We have only left to show that the system P 0
XY |UV is a time-ordered nonsignaling system.

Lemma 8. The system P 0
XY |UV is time-ordered nonsignaling as in Definition 2.

Proof. For the conditions on Bob’s side of the system we first note the following. In the system P
zi=σ
Xi(x)Yi(x)|Ui(x)Vi(x)

we shift
probabilities only within the same row. Moreover, we shift the probability in the exact same way on identical rows (cf. Fig. 4:
the first row in the upper boxes is identical to the second row in the lower boxes). It then follows from Lemmas 4.4, 4.5, and 4.6
in [14] that full nonsignaling conditions hold for Bob’s side (i.e., every subset of his systems cannot signal any other subset of
systems). In particular, the time-ordered nonsignaling conditions hold.

For simplicity we drop the subscript XY |UV from all the systems as in the previous proof. We now want to prove that the
conditions on Alice’s side hold, i.e., that for any sets I1,I2 as in Definition 2

∀ xI1 ,y,uI1 ,uI2 ,u
′
I2
,v,

∑
xI2

P 0
(
xI1 ,xI2 ,y

∣∣uI1 ,uI2 ,v
) =

∑
xI2

P 0(xI1 ,xI2 ,y|uI1 ,u
′
I2
,v). (C3)

For any xI1 there are two possible cases as indicated in Fig. 5; the pivotal index i(x) is either in I1 or in I2. We show that in both
cases the time-ordered nonsignaling conditions on Alice’s side hold.

First assume that for the pivotal index i(x) ∈ I1. For any u, u′, and v, for any x let

x ′
j =

{
xj , uj �= u′

j ∧ vj = 2N − 1,

xj otherwise,

and x ′ = x ′
1, . . . , x ′

n. Furthermore, note that for the unbiased system PXY |UV we have PXY |UV (x,y|u′,v) = PXY |UV (x ′,y|u,v).
Since i(x) ∈ I1 we have

P 0
(
xI1 ,xI2 ,y|uI1 ,u

′
I2
,v

) =
i(x)−1∏
j=1

P (xj ,yj |uj ,vj )P zi=σ (xi(x),yi(x)|ui(x),vi(x))
n∏

j=i(x)+1

P (xj ,yj |u′
j ,vj )

=
i(x)−1∏
j=1

P (xj ,yj |uj ,vj )P zi=σ (xi(x),yi(x)|ui(x),vi(x))
n∏

j=i(x)+1

P (x ′
j ,yj |uj ,vj ) = P 0(xI1 ,x

′
I2
,y|uI1 ,uI2 ,v

)

and therefore Eq. (C3) holds as well.
For the second case, assume that i(x) /∈ I1. ∀ xI1 ,y,uI1 ,uI2 ,u

′
I2
,v, denote by u′ = uI1u

′
I2

. Then∑
xI2

P 0(xI1 ,xI2 ,y|uI1 ,u
′
I2
,v

)

=
∑
xI2

i(x)−1∏
j=1

P (xj ,yj |u′
j ,vj )P zi=σ (xi(x),yi(x)|u′

i(x),vi(x))
n∏

j=i(x)+1

P (xj ,yj |u′
j ,vj )

=
∑

xI2/i(x)

i(x)−1∏
j=1

P (xj ,yj |u′
j ,vj )[P zi=σ (xi(x),yi(x)|u′

i(x),vi(x)) + P zi=σ (xi(x),yi(x)|u′
i(x),vi(x))]

n∏
j=i(x)+1

P (xj ,yj |u′
j ,vj )

=
∑

xI2/i(x)

i(x)−1∏
j=1

P (xj ,yj |u′
j ,vj )[P (xi(x),yi(x)|u′

i(x),vi(x)) + P (xi(x),yi(x)|u′
i(x),vi(x))]

n∏
j=i(x)+1

P (xj ,yj |u′
j ,vj )

=
∑
xI2

n∏
j=1

P (xj ,yj |u′
j ,vj ) =

∑
xI2

P
(
xI1 ,xI2 ,y|uI1 ,u

′
I2
,v

)
,

where the third equality is due to Eq. (C2). Now since the unbiased system P fulfills all nonsignaling conditions, and in particular it
is also time-ordered nonsignaling, we have

∑
xI2

P (xI1 ,xI2 ,y|uI1 ,u
′
I2
,v) = ∑

xI2
P (xI1 ,xI2 ,y|uI1 ,uI2 ,v). Adding everything together

062333-8
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we get ∑
xI2

P 0(xI1 ,xI2 ,y|uI1 ,u
′
I2
,v

) =
∑
xI2

P
(
xI1 ,xI2 ,y|uI1 ,u

′
I2
,v

)

=
∑
xI2

P
(
xI1 ,xI2 ,y|uI1 ,uI2 ,v

)

=
∑
xI2

P 0(xI1 ,xI2 ,y|uI1 ,uI2 ,v
)
.

Therefore for both cases Eq. (C3) holds and the system P 0
XY |UV is time-ordered nonsignaling. The same proof holds for P 1

XY |UV

as well. �
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