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We show that the length of a qubit-qutrit separable state is equal to max(r,s), where r is the rank of the state
and s the rank of its partial transpose. We refer to the ordered pair (r,s) as the birank of this state. We also
construct examples of qubit-qutrit separable states of any feasible birank (r,s). We determine the closure of the
set of normalized two-qutrit entangled states having positive partial transpose (PPT) of rank 4. The boundary of
this set consists of all separable states of length at most 4. We prove that the length of any qubit-qudit separable
state of birank (d + 1,d + 1) is equal to d + 1. We also show that all qubit-qudit PPT entangled states of birank
(d +1,d + 1) can be built in a simple way from edge states. If V is a subspace of dimension k <dina2®d
space such that V contains no product vectors, we show that the set of all product vectors in V* is a vector bundle
of rank d — k over the projective line. Finally, we explicitly construct examples of qubit-qudit PPT states (both

separable and entangled) of any feasible birank.
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I. INTRODUCTION

Bipartite quantum states are key ingredients in many
fundamental applications and theoretical problems of quantum
information. Bell states are pure bipartite states and are useful
for teleportation [1] and dense coding [2]. It has been shown
by experiment [3,4] that Bell states violate the Bell inequality,
indicating nonlocality, which is an essential feature of quantum
physics. Unfortunately, there is no pure state existing in nature,
as it extremely quickly turns into a mixed state due to the
decoherence from the environment. Extraction of Bell states,
as an original quantum resource, from mixed states under local
operations and classical communication (LOCC) is known as
entanglement distillation. It is a central task in entanglement
theory [5]. This task is also the key method for constructing the
distillable key, which supports the security proof in quantum
cryptography [6]. Entanglement distillation is possible only
if the mixed state is entangled. An unentangled state, also
known as a separable state, is by definition a convex sum
of product states [7]. Such states can be prepared locally in
experiments. It is natural to pose the separability problem,
i.e., to ask whether a given state is separable. It is known
in computational complexity theory [8] that this problem is
nondeterministic polynomial-time hard. Actually, both the
entanglement distillation and separability problem cannot be
effectively solved, even for bipartite states (for recent progress
in a particular case see [9]).

For a bipartite state p acting on the Hilbert space
H :="Hs ® Hp, the partial transpose computed in an
orthonormal (o0.n.) basis {|a;)} of system A is defined by
ol = Zij lajXa;| ® (ai|lpla;). The dimensions of H, and
‘H p are denoted by M and N, respectively. We say that p is a
k x [ state if its local ranks are k and /, i.e., rank p4, = k and
rank pp = [. We say that p is a PPT [NPT] state if pT > 0 [p"
has at least one negative eigenvalue]. Evidently, a separable
state must be PPT. The converse is true only if MN < 6
[10,11], in which case the separability problem is solved. The
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first examples of two-qutrit PPT entangled states (PPTES)
were constructed in purely mathematical context by Choi
and Stgrmer in the 1980s [12,13]. They were introduced into
quantum information theory in 1997 [14]. The full description
of two-qutrit PPTES of rank 4 was constructed in 2011 in
Refs. [15,16] (independently). The most intriguing feature of
PPTES are that they are not distillable, i.e., they cannot be
converted into Bell states under LOCC. So PPTES are not
directly useful for entanglement distillation. Nevertheless,
some PPTES can be used to construct a distillable key [17].

In the bipartite setting, 2 x N states are related to many
problems in quantum information and have received a lot of
attention. First, one of the most known analytical formulas
for entanglement measures is the entanglement of formation
of two-qubit states [18]. Part of the derivation of this formula
relies on the observation that the two-qubit separable states
have lengths of at most 4. The length of a separable state p,
denoted by L(p), is defined as the minimal number of pure
product states whose mixture is p [19]. So it represents the
minimal physical efforts that realize p by the entanglement
of formation. Two separable states with different lengths are
not equivalent under stochastic local operations and classical
communications (SLOCC) [20].

On the other hand, the purification of a 2 x N separable
state p of rank r is a 2 x N X r tripartite pure state |[{). So
the tensor rank of the latter is not larger than the length of
p [21]. This connection is computationally operational, since
the tensor rank of |1) can be computed by efficient programs
[22,23].

Second, a first systematic study of 2 x N PPT states p was
published in 1999 [24]. Their main result is that p is separable
when its rank is equal to N. Recently, 2 x 4 extremal PPTES
for various biranks have been constructed in Ref. [25]. Such
states are extreme points of the set of PPT states and have
been studied in bipartite systems of arbitrary dimensions [26].
Entanglement witnesses for physically detecting entanglement
of p have also been studied [27].

Third, all 2 x N NPT states are distillable [28], while the
distillability of 3 x 3 NPT states still remains as a major open
problem in entanglement theory.
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TABLE I. Lengths of separable 2 x 2 states p of birank (r,s),
2 < r < s < 4. (All such pairs that actually occur are listed.) Here
le) =10) + [1).

(r,s) L(p)
(2,2) 2 (see[18])

Example Reducibility

|00Y(00] + [11)(11] A, B reducible

(3,3) 3 (see[18]) |00X00| + |11X11| + |e,e)e,e| Irreducible
(3,4) 4 (see[18]) Example 2 Irreducible
(4,4) 4 (see[18]) 11 A, B reducible

Fourth, it has been shown that the 2 x N states contain
quantum correlation measured by quantum discord [29].

Motivated by a desire for deeper understanding of these
results and their possible applications to various quantum-
information tasks and to computational complexity, we con-
tinue in this paper the investigation of 2 x N separable states
and PPTES. After a preliminary technical Lemma 4, we prove
in Corollary 1 that given a 2 x N separable state o we can
subtract from it a pure product state to obtain another PPT state
of lower birank. This result is essential for the computation
of the length of a 2 x 3 separable state p of given birank
(7,s). Namely, we show in Proposition 3 that L(p) = max{r,s}.
We give in Table II concrete examples of separable states
p for all possible lengths and biranks. Similar results for
two-qubit separable states are shown in Table 1. By using these
results and Lemmas 5, 6, and 8, we determine the closure
of the set £ of normalized two-qutrit PPTES of rank 4 (see
Theorem 2). It turns out that this closure is the union of
& and the set S of separable states of length at most 4. In
Example 3, we construct a two-qutrit separable state p of rank
5, such that whenever ¢ = p — |e, f)e, f| is a PPT state of
birank equal to (r — 1,s), (r,s — 1), or (r — 1,5 — 1), then &
is necessarily entangled. This fact can be regarded in physics
as the loss of separability by subtraction of a pure product
state. In Theorem 3, we show that the 2 x N separable state of
birank (N 4 1,N + 1) has length N + 1. In the same theorem
we show that a 2 x N PPTES p of birank (N + 1,N + 1)
must be the B-direct sum of several pure product states and an
edge state o [30]. So two 2 x N PPTES p; and p; of birank
(N + 1,N + 1) are equivalent under SLOCC only if the edge
states o and 05, and the pure product states are simultaneously
equivalent under SLOCC. This is a method to the hard
problem of deciding equivalent mixed states. Furthermore,
the entanglement witness detecting the entanglement of the
edge state o would be able to detect the entanglement of the
PPTES p.

In Proposition 4 we study the set of all product vectors
contained in the orthogonal complement V+ of a completely
entangled space V of dimension kK < N. We show that this
set is a vector bundle of rank N — k over the projective
line. In the special case k = N — 1, its projectivization is
a rational normal curve, a well-known object in classical
algebraic geometry. In Propositions 5 and 6, we prove the
existence of 2 x N separable as well as PPT entangled states
having birank (r,s), where r and s are arbitrary integers in the
range N + 1,...,2N. The proofs are based on Proposition 4
and the recently constructed PPTES in Ref. [31]. Finally, in
Example 5, foreachm € {1,...,N — 1}, weconstructa2 x N
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NPT state whose partial transpose has exactly m negative
eigenvalues.

The paper is organized as follows. In Sec. II we state the
known facts which we often use in this paper. In Sec. III we
solve the length problem for 2 x 3 separable states. The main
result is presented in Proposition 3. In Sec. IV we determine
the closure of 3 x 3 PPTES of rank 4. The main result is stated
in Theorem 2. In Sec. V we study the 2 x N PPT states of
prescribed rank. The main results are presented in Theorem 3,
Proposition 4, and Propositions 5 and 6.

II. PRELIMINARIES

We shall write I; for the identity £ x k matrix. We denote
by R(p) and ker p the range and kernel of a linear map
p, respectively. From now on, unless stated otherwise, the
states will not be normalized. We shall denote by {|i)4 : i =
0,....M —1}and{|j)p: j=0,...,N — 1} o.n.bases of H4
and H g, respectively. The subscripts A and B will often be
omitted. For any bipartite state o we have

(PN = Tra(p") = Trap = ps, (1)

(0")a = Trp(p") = (Trpp)" = (pa)". )
Here the exponent T denotes transposition. Consequently,

rank(p') 4, = rank p, 5. 3)

If p is an M x N PPT state, then p" is too. If p is a PPTES,
sois pT, but they may have different ranks. An example is the
two-qubit separable state of birank (3,4) (see Table I).

Let us now recall some basic results from quantum
information regarding the separability and PPT properties of
bipartite states. Let us start with the basic definition.

Definition 1. We say that two n-partite states p and o
are equivalent under stochastic local operations and classical
communications (SLOCC equivalent or just equivalent) if
there exists an invertible local operator (ILO) A = ®l’.’=1 A; e
GL := GL4 (C) x --- x GL4,(C) such that p = Ao AT [20].

In most cases of the present work, we will have n = 2.
It is easy to see that any ILO transforms PPT, entangled, or
separable state into the same kind of states. The length of a
separable state is invariant under ILO and is nonincreasing
under all local operations. We shall often use ILOs to simplify
the density matrices of states. We say that a subspace of H is
completely entangled (CES) if it contains no product vectors.
We require product vectors to be nonzero. For counting
purposes we do not distinguish product vectors which are
scalar multiples of each other.

We recall that D =dd,...d, — Y i d;+n—1 is the
maximal dimension of CES in d; ® - -- ® d,, [32]. It follows
easily from [26, Theorem 60] that any CES is contained in one
of dimension D.

The first assertion of the following theorem is ([9], Theorem
23). The second one follows from its proof where only
parameter @ was shown to be real and nonzero. The stronger
claim that (like b,c,d) a can also be chosen to be positive has
been proved in Ref. ([33], Theorem 7).

Proposition 1. (M = N = 3) Any 3 x 3 PPTES p of rank
4 is SLOCC equivalent to one which is invariant under
partial transpose, i.e., there exist A,B € GL3;(C) such that
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0 :=AQ® BpAl ® BT satisfies the equality o' = . More-
over, we may assume that o = CTC, where C = [CyC,C5]
and

0 a b 00 o
00 1 00 o

“=lo ool ©“Floo 1 |
0 0 0 10 —1/d
0 —1/b 0
0o 1 0

C, = 1 ¢ ol a,b,c,d > 0. @
¢ 0 o

This equation will be used to show that separable states of
length at most 4 are in the closure of the set of non-normalized
3 x 3 PPTES of rank 4 in Lemma 5. To prove this lemma we
will need the definition of the term “general position” ([26],
Definition 7).

Definition 2. We say that a family of product vectors
{I¥;) = |¢;) ® |x;) : i € I} isin general position (in H) if for
any J C I with [J| < M the vectors |¢;), j € J are linearly
independent, and for any K C I with |K| < N the vectors
|xx), k € K are linearly independent.

The next result is from ([34], Theorem 1). It is useful in the
characterization of the length of 2 x 3 separable states.

Theorem I. The M x N states of rank less than M or N are
1 distillable, and consequently, they are NPT.

The next result follows from ([9], Theorem 10), Ref. [35],
and Theorem 1, see also ([9], Proposition 6 (ii)).

Proposition 2. Let p be an M x N state of rank N.

(1) If p is PPT, then it is a sum of N pure product
states. Consequently, rank p > max(rank p4, rank pp) for any
PPTES p, and any bipartite PPT state of rank <3 is separable.

(ii) If p is NPT, then it is 1 distillable.

We shall apply Proposition 2 to the problems of computing
the length of separable states to find the closure of the set of
3 x 3 PPTES of rank 4 and to characterize 2 x N separable
states studied in Secs. III-V. So it is an important fact which
we use throughout this paper.

Another useful concept (based on ([9], Definition 11)) in
this paper is that of reducible and irreducible states, which we
are going to introduce now.

Definition 3. A linear operator p: H — H is an A-direct
sum of linear operators p;: H — H and p,: H — 'H, written as
p = p1 Ba p2, if R(pa) = Rl(p1)al ® R[(p2)al. A bipartite
state p is A reducible if it is an A-direct sum of two
states; otherwise p is A irreducible. One defines similarly
the B-direct sum p = p; @p p2, the B-reducible and the
B-irreducible states. A state p is reducible if it is either A
or B reducible. A state p is irreducible if it is both A and B
irreducible.

The next result is from ([26], Lemma 15).

Lemma 1. Let p; and p, be linear operators on H.

() If p = p1 Bp p2, then p" = p Bp p}.

@ii) If p; and p, are Hermitian and p = p; @4 p», then
p" = pl Bapl.

(iii) If a PPT state p is reducible, then so is p!.

Let us recall a related result ([9], Corollary 16).

Lemma 2. Let p =), p; be an A- or B-direct sum of the
states p;. Then p is separable [PPT] if and only if each p; is
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separable [PPT]. Consequently, p is a PPTES if and only if
each p; is PPT and at least one of them is entangled.

III. LENGTHS OF SEPARABLE STATESIN2® 3

We shall need the following result from ([24], Corollary
1, Lemma 2). Their proof is based on their Lemma 1 and
is valid for arbitrary M,N. If a Hermitian operator p is
not invertible, then p~' will denote its pseudoinverse. (If
p = pilviX¥il, pi > 0,is the spectral decomposition, then
p~t =X o 1wl

Lemma 3. Let p be a (non-normalized) bipartite PPT
state of birank (r,s) and let o = p — Ale, fXe, f|, where
le, f) is a product vector and A is a real number. Set Ay =
(e, flp~"le, f))"" and A1 = [{e*, f1(p") " ]e*, £)]~". Then &
is a PPT state if and only if |e, f) € R(p), |e*, f) € R(p"),
and A < min(ig,A1). Moreover, if o is a PPT state, then its
birankis (r,s), (r — 1,s),(r,s — 1), or(r — 1,5 — 1), according
to whether A < min(Ag,A1), A = A9 <A, A =A; < Ag, Or
A=Ao= A1

Alternatively, this lemma follows from the following
simple fact: If p > 0 acts on H, A € R, and |¢) € R(p)
is a nonzero vector, then p — A|¢p)}¢p| > 0 if and only
if AM@lp~'¢) < 1. Indeed, p — Al@)¢p| > 0 is equivalent
to id —Ap~2|p)Nplp~/* > 0. It remains to observe that
02 |¢X¢p|p~1/? is a Hermitian operator of rank 1 with the
nonzero eigenvalue (@lp~"1¢).

Next we strengthen part (i) of ([24], Lemma 11).

Lemma 4. (N > M = 2) Let V[W] be a subspace of the
2 ® N Hilbert space H of dimension k[/] with k +1 > 3N.
Then for each unit vector |a) € H 4 there exist infinitely many
pairwise nonparallel unit vectors | y) € Hp suchthat|a,y) € V
and |a*,y) € W. Moreover, the set S of all such pairs (|a),|y))
is connected.

Proof. For the first assertion we essentially follow the
proof of ([24], Lemma 11). Let f; ( =1,...,2N —k) and
gj(j =1,...,2N — 1) be linear functions H — C such that
V =nN;ker f and W = N, ker g;. Let S4 [Sg] denote the unit
sphere of H 4 [Hpg]. Let us fix |a) € S4. We have |a,y) € V
if and only if f;(la,y)) = 0 for all i, and |a*,y) € W if and
only if g;(la*,y)) = 0 for all j. Since k + 1 > 3N, we have
(2N —k)4+ (2N —1) < N and so the space of solutions of
the system of these 4N — k — [ homogeneous linear equations
for the unknown vector |y) has (complex) dimension d, >
k+1—3N > 1. Hence, the set S, of all |y) € Sp such that
la,y) € V and |a*,y) € W is the unit sphere in some complex
subspace of H of dimension d,. In particular, S, is connected.

Note that S is a closed subset of the product S4 x Sp and
so it is compact. Let p;: § — S4 be the restriction of the first
projection map S4 X Sg — S4. We have just shown that p; is
onto and that all of its fibers are connected. This implies that
S itself is connected. |

We remark thatin fact S is areal algebraic subset of S4 x Sp
and that Dim S > 2(k +1 — 3N) — 1.

From the lemma we deduce an important corollary.

Corollary 1. Let pbe a2 x N separable state of birank (7,s)
with r < s.

(1) If r =5 and 2r > 3N, then there is a product vector
le, f) such that o := p — |e, f)e, f] is a PPT state of birank
r—1,r —1).
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TABLE II. Lengths of separable 2 x 3 states p of birank (r,s) with 3 <r < s < 6. (All such pairs that actually occur are listed.) In
the example of birank (4,6), we have |f) =10} — [1), |g) = |0) + |1) + |2), |ao,bo) = Fli], |a1,b1) = F[—i], where F[x]:=((1+x)/
x=D,D"®(-1,(x — D/(x+1),x — 7. Another example of birank (4,6) is constructed in Example 4.

(r,s) L(p) Example Reducibility
3,3) 3 (see Proposition 2) [00)00] 4 |T1)11| + [12)12] A, B reducible
4,4) 4 (see Proposition 3) [00)00] 4+ |01X0T1] + [11)(11] 4+ [12)12] A, B reducible
4,5) 5 (see Proposition 3) Example 1 B reducible
(4,6) 6 (see Proposition 3) [00)X00| + [11)11] + |e,2Xe,2| + | f,gX f.g| + lao,bo)ao,bo| + |ai,bi)Xay,b| Irreducible
(5,5) 5 (see Proposition 3) |00X00] 4 |01XO01| + [02)02] 4+ |11)}11] + [12)12] A, B reducible
(5,6) 6 (see Proposition 3) Example 1 B reducible
(6,6) 6 (see Proposition 3) I1®1 A,B reducible

(i1) If r < s then there is a product vector |e, ) such that
o :=p —le, f)e, f|is a PPT state of birank (r,s — 1).

Proof. We have p = Zf;l la;,b;Xa;,b;| where k =
L(p). The real-valued function g defined on the
set of product vectors by g(le, f)) = (e,flp " le,f) —
(e*, f1(p")~'e*, f) is continuous. Note that > g(ai b)) =
Tr(pp™") = Tr[p" (") 1 =r — .

In case (i) we have ), g(|a;,b;)) = 0, and so g(|a;,b;)) >
0 > g(la;j,b;) for some i and j. By Lemma 4, the set S of
normalized product vectors |e, ) € R(p) such that |e*, f) €
R(p") is connected. Consequently, we have g(le, f)) =0
for some product vector |e,f). The assertion now fol-
lows from Lemma 3 by using this vector and setting A =
(e, flp e, SN

In case (ii) we have ), g(la;,b;)) < 0 and so there exists an
index i such that g(|a;,b;)) < 0, i.e., ({a;,bi|p~ " |a;, ;)™ >
[(af,bi|(pr)’1|al.*,bi)]’1. Hence the assertion follows from
Lemma 3. |

Proposition 3. If p is a2 x 3 separable state of birank (r,s),
then L(p) = max(r,s).

Proof. Without any loss of generality, we may assume that
r < s. We recall that L(p) > s always holds, and that any
PPT state in 2 ® 3 is separable. By Theorem 1, we have
r = 3.

If r = 3 then Proposition 2 shows that also s = 3 and that
L(p) =3.

Letr =4.1f s = 4 then L(p) = 4 by Theorem 3. If s = 5
or 6 we can apply Corollary 1 (ii) once or twice, respectively,
to reduce these cases to s = 4.

Let r = 5. If also s =5 then we can apply Corollary 1
(i) to obtain that p = o + |e, f)e, f|, where o is a separable
state of birank (4,4). Hence, L(c) =4 and so L(p) =5. If
s = 6 we can apply Corollary 1 (ii) to reduce it to the case
s =235. |

In Table I, we recall the well-known facts concerning the
lengths of separable 2 x 2 states [18,36] (see also ([37],
Sec. II)). Our results concerning the lengths of separable 2 x 3
states are summarized in Table II. In particular, note that we
have proved that L(p) < 6 for all separable states on 2 ® 3.
Thus ([38], Conjecture 10) is valid in this case. By inspecting
these two tables, it appears that there exist separable states
p of birank (r,s) when rank p > max(rank p,, rank pg). In
Proposition 5 below, we shall prove that this is indeed the case
for 2 x N separable states. However, it is false for separable
states in general, see Proposition 6.

IV. CLOSURE OF 3 x 3 PPTES OF RANK FOUR

The equivalence classes of states are just the orbits under
the action of the group G = GL3(C) x GL3(C). The set &’
of non-normalized 3 x 3 PPTES of rank 4 is G-invariant and
the quotient space £/ G parametrizes the set of equivalence
classes of 3 x 3 PPTES of rank 4. We equip £'/G with the
quotient topology and let 7w : & — £'/G be the projection
map. In this section we shall determine the closure £ of the set
£’ in the ordinary (Euclidean) topology. Note that the closure
£ of £ is the intersection & N H, where H is the space of
normalized Hermitian matrices.

A quantum state p belongs to the closure £ of the set £ if
and only if there exists an infinite series of states p;, 0, ... €
&’ such that lim,;_, || oi — p|l = 0. So this closure is a set of
states attached to the set of two-qutrit PPTES of rank 4. The
former can be investigated by using the properties of the latter.
We observe that if o € &' \ &', then o must be separable and
both ¢ and o must have rank at most 4. This observation
can be used to show that there exist separable states of rank 4
which are not in £’. We give an example by modifying ([26],
Example 40).

Example 1. The separable 2 x 3 state o = [00)00| +
[02)02] + 2|11)(11] 4 (]01) 4 |10))({01| 4+ (10]) has birank
(4,5). We have L(o) = L(c") > ranko! = 5. Since o —
|02)(02] is a two-qubit separable state, its length is at most
4 [18,36]. Hence, L(c) must be 5. As o has rank 5, o ¢ g,

Similarly, the separable 2 x 3 state o + |12)(12| has birank
(5,6) and length 6. [ |

On the other hand, we have the following result.

Lemma 5. (M = N = 3) We have S; C E.

Proof. For convenience, we shall work with non-normalized
states. It suffices to prove thatif o = Z?:o |a; ,b; Xa;,b;|, where
the four product vectors |a;,b;) are in general position, then
o €& Since & and & are G-invariant, we may assume
that

2

o =Y pilii)ii| + lea.es)ea.es. 5)
i=0

where |e)a = ) ; |i)a, le)g = D, i) 5, and p; are the positive
scalars.

We consider the states p = p(a,b,d) = CTC, where C =
[CoC1C3] and the blocks C; are 4 x 3 matrices in Eq. (4) with
¢ = 0. Clearly, p belongs to the closure of £'. It is easy to
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verify that p = Z?:o pilviXv;|, where

1 1
Po= 775 P1= 5
1+b1 1+d 1 ©)
P=ravay PTravy
lvo) = 10) ® [ab|1) + (1 + b%)[2)], (7)
lvy) = [d]1) + (1 +d*)|2)] ® |0), (8)
lva) = [1) ® [d[0) — (1 +d?)|2)], )
lus) = [abl0) — (1 +5H)2)]1 ® |1). (10)
Let V = b(1 + b*) 32V, ® Vg, where
[ (1 +b%)/ab 0 0
V= 0 0 -1,
0 (1+d*/d -1
- (11)
0 1+ b2 0
Vg = | —ab(1+d*)/d 1+b> —ab
i 0 1+ —ab

A computation shows that Vo VT = o, provided we choose the
positive parameters a,b,d such that

2% (1 +d2\°
a4 <+ >:p1, 2=

b =po, — |
Po i \ 1w S

|

We can now show that £ contains many separable states.

Lemma 6. Separable states of rank at most 3 have length at
most 4.

Proof. Let p be a separable k x [ state of rank r < 3. We
may assume that k < /. By ([34], Theorem 1), we have [ < r.
The assertion is trivial if [ = 1, it follows from [18,36] if [ = 2,
and from ([26], Proposition 9) if [ = 3. |

Lemma 7. The maximum length of 3 x 3 separable states
of rank 4 is 5.

Proof. Separable 3 x 3 states of rank 4 and length 5
exist, see, e.g., ([26], Example 40). Let p be any 3 x 3
separable state of rank 4 and length r > 4. Thus we have
o= Zf;é la; ,b; Ya;,b;|. We may assume that the |a;,b;) with
i < 4 are linearly independent. By ([26], Lemma 29), these
four product vectors are not in general position. Consequently,
we may assume that |by) = |0), |by) = |1), |b3) = |2), and
(b2]2) = 0. Moreover, we may assume that |a;) = |a3) for
3 <i < s <r,whilefori > s the vectors |a;) are not parallel
to |as). It is not hard to show that we can rewrite Y ;_5 |b; Xb;|
as |by)(b5| + o, where o is a state on H 3 such that o'|2) = 0.
Clearly, we have (b5|2) # 0 and so R(p) is spanned by |a;,b;),
i =0,1,2 and |a3,b§). Since |a;,b;) € R(p), it follows that
for i > s we must have (b;|2) = 0. Consequently, we have a
B-direct decomposition p = p’ @5 |az,bs)az,by|. Since p’ is
separable of rank 3, its length is at most 4 by Lemma 6. Hence
o has length 5. |

From the lemma we obtain

Corollary 2. A 3 x 3 separable state p of rank 4 has length
5 if and only if it is an A- or B-direct sum of a pure product
state and a separable state o of rank 3 and length 4.
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Proof. Necessity. See the proof of Lemma 7.

Sufficiency. Suppose that p = o @3 |a,b)a,b|, with o a
separable state of rank 3 and length 4. As length does not
increase under local operations, we have L(p) > L(o) = 4.
Assume that L(p) = 4andsop = Y7_ |a;.b;)ai.bi| = 0 S
|a,b)a,b|. Suppose (b|b;) # 0fori =0, ...,s. Then for these
subscripts |a;) are pairwise parallel, and we may assume
(b|b;) # 0 for only i = 0. Thus |bg) is proportional to |b).
The equality Z?:o |ai,biXa;,bi| = o @p |a,b)a,b| indicates
rank o = 3, which gives us a contradiction. This completes

the proof. |
Lemma 8. A 3 x 3 separable state has birank (4,4) if and
only if it has length 4.

Proof. Necessity. Suppose p is a 3 x 3 separable state of
birank (4,4). By Lemma 7, L(p) < 5. Assume that L(p) = 5.
By using Corollary 2 we obtain that, say, p = o @4 |a,b)a,b|,
where o isa2 x 2 or 2 x 3 separable state of rank 3 and length
4. It follows from Proposition 2 (a) that o must be 2 state.
From Table I, we see that rank o7 = 4. By Lemma 1 (ii), we
have p¥ = o @4 |a*,b)a*,b|. Therefore rank p" = 5, which
gives a contradiction. So p must have length 4.

Sufficiency. Suppose p is a 3 x 3 separable state of length
4. Suppose its birank is (r,s), then 4 > r,s > 3. If either of r,s
is equal to 3, then L(p) = 3 by using Proposition 2. It gives us
a contradiction, sor = s = 4. |

We can now prove the main result of this section.

Theorem 2. (M = N =3) We have £ = £ U S},

Proof. Let p € € be separable. Then p is a k x [ state of
birank (r,s) with max(r,s) < 4. In view of Lemma 5, it suffices
to prove that L(p) < 4. Recall that L(p) = L(p").If r < 4 or
s < 4 then L(p) < 4 by Lemma 6. Assume now thatr = s =
4.Ifk =1 = 3 then L(p) < 4 by Lemma 8. If (k,/) is equal to
(2,3) or (3,2), then L(p) = 4 by Proposition 3. Otherwise, k =
I =2and L(p) < 4 by [19]. Hence, the proof is completed. B

Recall that any p € &£ is equivalent to p" ([15], Theorem
23). The following example shows that this property does not
extend to &'

Example 2. The separable 2 x 2 state o = 2|00)00]| +
[T1X11] + (|01) + [10))({01]| + (10]) has birank (3,4), and so
o is not equivalent to ¢, On the other hand, since L(c) = 4,
we have o € £ by Lemma 5. Explicitly, we have

o =100X00] + 5 (1YoXwol + [¥i )Xyl + [Ya)val),  (13)

1Y) = (10) + ¢ 1) @ (10) + ¢4 ), k=012, (14)
where ¢ := (—1 4 i+/3)/2 is a primitive cube root of unity.
We can now show that the quotient space £/G is not
Hausdorff. Indeed, let (p;) be a sequence in £ converging
to o. Then the sequence (,oir ) converges to o' . Consequently,
the sequence (G - p;) converges to G - o and the sequence
(G - p') converges to G - o in the space £'/G. But these
two sequences coincide because p; is equivalent to p; for
each i. On the other hand, the points G - o and G - ol are
distinct because the states o' and o are not equivalent (they
have different ranks). Hence, the sequence (G - p;) converges
to two different points and we conclude that the space £/ G is
not Hausdorff. ]
Finally, we propose an application of two-qutrit PPTES of
rank 4. Consider a separable state p of birank (r,s), and the
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set S of product vectors |e, f) € R(p) and |e*, f) € R(p"),
such that o = p — |e, f)e, f| is a PPT state of birank equal to
(r—1,8),(r,s — 1),or(r — 1,5 — 1). We are going to construct
a family of p such that any o is PPTES.

Example3.(M = N = 3)Letpbea3 x 3PPTES ofrank 4.
Then ker p contains exactly six product vectors (up to a scalar
factor) |y;), i = 1,...,6, and moreover, any five of these
vectors are linearly independent (see Ref. [15]). Consequently,
the six rank-1 operators |v;)}v;| are linearly independent.
Since p" isalsoa3 x 3 PPTES of rank 4, the partial conjugates
of the |;) have similar properties.

We consider the separable state

6
o=y ¥l (15)
i=1

of birank (5,5). Let |e, f) be a product vector such that ¢’ :=
o — e, f)e, f|is a PPT state of birank (r,s) withr < 5,5 <5
and r + s < 10. (By Lemma 3, we know that such a product
vector exists.) By the same lemma, |e, f)e, f| must be a scalar
multiple of some [v; Xy |, say le. f)e. f1 = [y )y . Clearly,
we must have ¢ > 1.

We claim that ¢’ must be entangled. Indeed, if o’ is
separable, then it can be written as o’ =), ¢;|; {;| with
¢; 2 0. Since the |v; ) ;| are linearly independent, it follows
thatc; = 1 — c¢. Hence,c = 1 — ¢; < 1, which gives a contra-
diction. |

We do not know that whether there is a similar example
in 2 ® 4. The following lemma is evident. It implies that the
length of the state (15) is 6.

Lemma 9. Let p be a separable state with rank p = L(p) =
r. Then there is a product vector |a,b), such that o := p —
|a,b)a,b| is a separable state with ranko = L(o) =r — 1.

V. QUBIT-QUDIT PPT STATES
WITH PRESCRIBED BIRANK

So far we have mainly focused on 2 x 3 and 3 x 3 PPT
states. In this section we investigate some typical types of
2 x N PPT states p for arbitrary N. In Theorem 3 we
characterize both separable and PPT entangled states p of
birank (N 4+ 1,N + 1). This case is different from those
discussed in Corollary 1. In Proposition 4 we study the
properties of the set of product vectors contained in V4, where
V is a CES of dimension k < N in 2 ® N. It turns out that
this set (with zero vectors included) is a vector bundle of
rank N — k over the projective line P'. In the special case
k = N — 1, the projectivization of this set is a rational normal
curve. In Propositions 5 and 6 we construct separable states and
PPTES of any birank (r,s) with r,s > N. The constructions are
based on Proposition 4 and the recently constructed PPTES
in Ref. [31]. Finally we obtain a result on NPT states. In

Example 5, foreachm = 1,...,N — 1, we constructa2 x N
NPT state whose partial transpose has exactly m negative
eigenvalues.

A PPT state p is an edge state if there is no product vector
la,b) € R(p) such that |a*,b) € R(p"). Any edge state is
necessarily entangled. Any bipartite PPTES is the sum of a
separable state and an edge state [39]. So, in the bipartite case,
edge states play the role of “extreme points” in the set of
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PPTES. It is useful to describe the structure of states in the
following family.

Theorem 3. Let p be a 2 x N PPT state of birank
(N+1,N+1).

(i) If p is separable then L(p) = N + 1.

(i1) If p is entangled then p = o @p |ai,b1)ai,bi| Bp
- ®p la,,by)a,,b,|, where o is an edge state of birank
(N+1—-r,N+1-=r).

Proof. (1) First note that L(p) > rank p = N + 1. Table I
shows that the assertion is true for N = 2. We proceed by
induction on N. Now let N > 2. Since p is separable, by
Lemma 3 we have p =0 + |e, f)Xe, f|, where o is a PPT
state of birank (N,N + 1), (N + 1,N) or (N,N), and |e, f) is
a product vector. If rank o, = 1, the assertion clearly holds,
and so we may assume that rank o4 = 2. Since pp = o +
lell?| FXfI|, we have rankog = N or N — 1. If rankop =
N, the assertion follows from Proposition 2. Otherwise,
rankop = N — 1 and Lemma 2 shows that o is separable
of birank (N, N). By the induction hypothesis, L(o) = N and
consequently, L(p) = N + 1.

(i1) If p is an edge state, then the assertion holds with
r = 0. Otherwise, by Lemma 3, we have p = o + |e, f Xe, f1,
where o is a PPT state of birank (N,N + 1), (N + 1,N) or
(N,N), and |e, f) is a product vector. As p is entangled, we
must have rank o4 = 2. We also have rankog = N or N — 1.
Proposition 2 implies thatrank oy = N — 1,andso p = o @3
le, f)e, f|. By Lemma 1 (i), o has birank (N,N). We can
continue to apply this procedure of splitting off a pure product
state as long as the entangled summand is not an edge state.
Eventually, this summand must become an edge state. This
completes the proof. |

We point out that part (i) generalizes the 2 ® 3 case in
Table II, and that part (ii) was also discussed in Ref. ([24],
Sec. IV B). We further point out that M x N PPT states p,
with N > M > 3, of rank N + 1 have been investigated in
Ref. ([26], Theorems 44, 45). In particular, the first of these
theorems implies that p = p; ®p --- B px Pp 0, Where p;
are pure product states and o is a B-irreducible state. Note
that this decomposition is similar to one in Theorem 3 (ii). In
physics, such a decomposition means that the entanglement of
p is “absolutely” robust to the noise of separable states o =
lai,bi)ai,b1| ®p - - - ®p |ar,b,Xa,,b,| in the following sense:
the normalized state p = (1 — p)o + pa is always entangled
no matter how big the weight p < 1 is. This phenomenon
usually does not occur for other 2 x N entangled states, which
would become separable by adding a separable state.

It was proved recently ([40], Theorem 5) that in 2 ® N
the PPT states of birank (2N,k) exist if and only if N <
k < 2N. We shall obtain another existence result which, in
particular, shows that there exist 2 x N separable states of
birank (N + j,N + k) for any j,k =1,...,N. For that we
need two lemmas proved in Ref. ([27], Lemmas 1,2). In the
next proposition we give a proof of the strengthened version
of the combination of these two lemmas. For the definition
and basic properties of the rational normal curves used in this
lemma, see ([41], pp. 10-14).

Proposition 4. We consider the bipartite system 2 ® N
with Hilbert space H = H4 ® Hp of dimension 2N. Let
V C 'H be a CES of dimension £k < N and let Y be the set
of all product vectors in V+.
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(i) The set Y (with zero vectors included) is an algebraic
vector bundle of rank N — k over the projective line.

(ii) V* is spanned by Y.

(iii) The partial conjugates of members of Y span the whole
space H.

(iv) If k = N — 1 the projectivization of Y is a rational
normal curve.

Proof. Let |Y;) =10) @ |a;) +|1) ® |b;), i =1, ...k, be
a basis of V. We introduce the 2 x N matrices

*
oo o N-1 -
R, = ’ s =1,....k, 16

[ﬁio Bin ,Bi,N—l:| : (16)

where }; a;j|j) = la;) and }°; Bi;|j) = |b;). Since V is a
CES, if the scalars &;,i = 1, ...,k are not all zero then

k
rank ) &R; = 2. a17)

i=1

The projectivization of 4 is a projective line P'. The point
of P! corresponding to the nonzero vector z|0) + w|1) € H,
will be denoted by [z : w]. We claim that for each point [z :
w] € P!, the set of all vectors |f) € Hp such that (z|0) +
w|1)) ® | f) € V* is a vector subspace of dimension N — k.
We shall use the expansion | f) = Zj fili) e cv, fieC.To
find the coefficients f; we have to solve the system of k linear
homogeneous equations (¥;|(z|0) + w|1)) ® | f) =0, i.e.,

N—-1

D ez Biw)f; =0, i=1,... .k (18)

j=0

with matrix C of size k x N. Suppose that for some x =
&1,....8) € C* we have xC =0. We can rewrite this
equation as (z,w)- ) _; &R; = 0. Equation (17) implies that
x = 0, and so rank C = k. Consequently, the set of solutions
of the system (18) is a vector space of dimension N — k, and
the claim is proved. Thus the fibers of the projection map
p:Y — P! are vector spaces of dimension N — k, and (i)
follows.

The matrix C is in fact a matrix pencil C = Az + Bw,
where A = [a;kj] and B = [,8;;] are k x N complex matrices.
We shall use the Kronecker’s theory of matrix pencils as
presented in the well-known book of Gantmacher [42]. He
writes a matrix pencil in nonhomogeneous form as A + A B,
where A is an indeterminate. We homogenize the notation by
setting A = w/z and multiplying the pencil by z. The canonical
form for matrix pencils is a direct sum of blocks of several
types: L,,, their transposes LI, N and wJ + zI;, where I
is the identity matrix of order s and J a Jordan block. As we
shall see below, it turns out that we have to deal only with the
blocks of type

z —w O 0O O
0 z —w 0O o0

L,=]. ) (19)
0 O 0 7z —w

of size m x (m + 1). To simplify notation in some formulas
below, we have replaced w with —w, which we can obviously
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do. For instance, we have

|
o
o—oco
| coco

(=N e Nl
—

=10 z —-w 0 [. (20)
0 O z  —w

Contrary to Gantmacher, we allow the index m of the block
L,, to be 0, in which case L,, has size 0 x 1. There exist
invertible matrices P and Q (whose entries are complex
constants independent of z and w) such that C':= PCQ
has the canonical form given by ([42], Eq. (34), p. 39). By
changing the basis of H 4, we may assume that Q = I is the
identity matrix. Any row of C’ has the form (z,w) - Zi &R,
where & € C are some constants, not all 0. Hence, the rank
condition (17) implies that each row of C’ must have at least
two nonzero entries. This is a very strong condition; it implies
that C’ consists only of blocks of type L,. Since L, has
size m x (m + 1), there are exactly N — k blocks, i.e., we
have

C/ - Lml D---D LmN,kv (21)

where m| + - - - + my_; = k. Consequently, the system (18)
breaks up into N — k simple independent subsystems of linear
homogeneous equations L,, f© =0,i=1,...,N — k. For
instance, the first subsystem comprises only the unknowns
Sfis .., fm,+1 which are the components of the column vector
fW, etc. Since L,,, has rank m;, the ith subsystem has a unique
solution (up to a scalar factor) when viewed as a system of
equations in its own portion of the unknowns f;. There is
a unique solution whose unknowns are just monomials in z
and w of total degree m;. We refer to this solution as the basic
solution. For instance, for the first subsystem the basic solution
is given by

—1
fl :wml’ f2:Zwml 7"'?fm1+1 :ZmI' (22)

Note that if m; = 0 then the first subsystem has only one
unknown, namely, fj, but it has no equations. The basic
solution in that case is just f; = 1. For convenience, we
shall identify this basic solution with the vector |g") =
YoMy z'w™ i) € Hp. The other subsystems can be solved
in the same manner. Their basic solutions are given explicitly
by

m;

187) =Y " w" T m_ +j), i=1....

j=0

where m;_ =m +---+m;_1 +i — 1 (with m; = 0). The
general solution is given by an arbitrary linear combination of
the basic solutions [g@), i =1,...,N — k. We shall form a
special solution in which the coefficients of this linear combi-
nation are suitably chosen monomials in z and w. Thus we shall
multiply g with some monomial z“ w". After expanding
the tensor product (z|0) + w|1)) ® 21 w" Y"1 2/ w™ /| j),
we obtain a linear combination of the basis vectors with
m; + 2 different monomial coefficients 71/ Tl +Mm—J with
j=-—1,0,1,...,m;. We can choose the exponents u;,v; SO
that the monomials arising from different subsystems are all

N —k, (23)
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different and moreover, the total degree 6 := m; 4+ u; + v; is
independent of the index i. Then the total number of different
monomials that occur in the expansion of

N—k
@l0) + wl1) ® Y 2w [g?) (24)

i=1

is ZlN:_lk (m; +2) = 2N — k. Since these 2N — k monomials
are linearly independent, we conclude that the product vec-
tors (24) span a subspace of dimension 2N — k. Since all of
them belong to V+, the assertion (ii) is proved.

The assertion (iii) follows by using a similar ar-
gument as above after replacing z|0)+ w|l) with
z*|0) + w*|1) and observing that the 2N ‘“monomials”
it vitmi—] gk titiyvitmi—j where i =1,...,N —k
and for fixed i the index j takes the values 0,1, ...,m;, are
linearly independent. Indeed, any nontrivial linear dependence
relation among these “monomials” would give an identity
7*p(z,w) + w*q(z,w) = 0, where p(z,w) and ¢g(z,w) are
nonzero homogeneous polynomials in z and w of degree §.
By dehomogenizing, i.e., dividing this identity by z*z%, we
obtain that (w/z)* is an analytic function of w/z, which is a
contradiction.

In the case k=N —1, we have C' = Ly_; and so
all product vectors in V* have the form (z|0) + w|l)) ®
Z,N:?)l ZN=1=wi|i). The assertion (iv) follows. |

Note that Theorem 1 implies that if (r,s) is a birank of a
2 x N PPT state, then r,s > N, and Proposition 2 shows that
r = N if and only if s = N. Now we can show that for any
r,s € {N +1,...,2N}, there exist 2 x N separable states of
birank (r,s).

Proposition 5. There exist 2 x N separable states of birank
(N + j,N +k)forany j,k € {1,...,N}.

Proof. The identity operator on H is a separable state
of birank (2N,2N). Thus we may assume that j < k < N
and j < N. Let V be a CES of dimension N — j. By
Proposition 4 (i), V* has a basis consisting of product
vectors, say |e;, f;),i = 1,...,N + j. The space W spanned
by their partial conjugates has dimension at most N + j. By
Proposition 4 (iii), there exist product vectors |e,, f!) € V£,
s = 1,...,m, such that the partial conjugates of the |e;, f;)
and the |e;, f) together span a space W' > W of dimension
N + k. Then the sum of all |e;, f;)e;, fi| and all e, f!)e., f:|
is a separable state of birank (N + j,N + k). |

(According to the authors of [43], this proposition is
contained in Sec. III of their paper.)

Let us give an ad hoc example for the case N = 3 with
(r,s) = (4,6).

Example 4. We have constructed an explicit separable 2 x 3
state p of birank (4,6) and length 6. It can be written as p =

S i) |, where

V1) = 2/00), (25)

[¥2) = 1)(10) + 2|1)), (26)

[¥3) = 2(01) + (10) + [1)12), 27
[¥4) = 102) + [1)([0) — [1) — |2)). (28)
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Since the characteristic polynomial of o' is 6 — 191> +
133t% — 41313 + 520> — 148¢ + 4, we have p" > 0. Conse-
quently, p is separable of birank (4,6). By Proposition 3, p has
length 6. |

Let us now show that there exist 2 x N PPTES of birank
(N+1,N+k)fork=1,...,N. We shall do that by using
a recently constructed family [31, Eq. (5), Appendix B of
2 x N PPTES of birank (N + 1,N + 1). By dropping the
normalization and setting the parameter b = 1/2, we obtain
the 2 x N PPTES:

N-2
p = Z(lO,i) + 1,0 + 1)0,i| 4+ (1,i + 1]) + [10)X10]
i=0
1
+51010) + V3IN — 1)(0[({0] + v/3(N — 1)).
(29)
Its partial transpose is
N-2
p" =D (0 + 1) + [Li)(0.i + 1]
i=0
1
+(Li)+ [1,N — IXI,N — 1] + 5|0)(\/§|0>
+ N — 1))(0[(v/3(0] + (N — 1)). (30)

One can verify that

lp(a)) == (|0) +a|1>>[(aN—1 + %)m) + a1y

+...+a|N_2)+|N—1>] € R(p)  (31)

for all a € C, and that the |¢(a)) with a € R span R(p).

Lemma 10. For sufficiently small € >0 and ke
{1,...,N — 1}, the state p; := p + € ZLI lp(a;)Xp(a;)| is a
2 x N PPTES of birank (N + 1,N + 1 + k).

Proof. Since € > 01is small and p is a2 x N PPTES, so is
or. Since |¢(a)) € R(p), it follows that rank oy = N + 1. One
can verify that R(p) + R(p") = H. Hence, there are distinct
realnumbersa;,i = 1,...,N — 1,suchthatthe vectors |¢(a;))
are linearly independent modulo R(p"). Since the a; are real,
each product vector |¢(a;)) is equal to its partial conjugate. It
follows that rank o} = N + 1 + k. [ |

More generally, we have the following result.

Proposition 6. For any r,s € {N + 1, ...,2N}, there exist
2 x N PPTES of birank (r,s).

Proof. Let k,p € {0,...,N — 1} and let p, be the state
constructed in Lemma 10. For the state p defined by Eq. (29),
wehave p!' = (I @ V)p(I ® V1), where V is the antidiagonal
matrix. So R(p") is spanned by the product vectors | (a)) =
(I ® V)|g(a)) with a € R. Since R(p) + R(p") = H, there
are distinct real numbers a, j=1,...,N — 1, such that
the product vectors |1,D(a})) are linearly independent modulo
R(p). Note that [y @)Xy @)|" = [¥(@))y(a))| for each
i. It follows that for sufficiently small € > 0, the state
ok +€ Y Ip@))ya)l is a 2 x N PPTES of birank
(N+14+p,N+1+k). |
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One may expect that Propositions 5 and 6 generalize to
arbitrary M ® N space, i.e., that M x N separable states as
well as PPTES of birank (r,s) exist for all r,s > max(M,N).
However, this is false. For the former, we observe that there is
no separable 3 x 3 state of birank (4,6). Indeed, let p be any
3 x 3 separable state of rank 4. By Lemma 7, rank p" < 5.
Then Proposition 2 (i) implies that rank p” < 6. For the latter,
we observe that there is no two-qutrit PPTES of birank (4,5)
or (4,6) (see ([9], Theorem 23)).

We give a result on NPT states as the concluding remark of
this section. It has been shown that for any NPT 2 x N state,
its partial transpose has at most N — 1 negative eigenvalues
([44], Theorem 1). This upper bound is sharp. More pre-
cisely, foreachm € {1, ...,N — 1}, we shall construct 2 x N
NPT states whose partial transpose has exactly m negative
eigenvalues.

Example 5. First observe that the partial transpose of
the 2 x N state p = (|00) 4 [11))({00] 4 (11]) 4+ |0)0] ® Iy
has exactly one negative eigenvalue. Next we consider the
following family of 2 x N states,

N-2

p = Z(IOJ) + ciptlLi + 1I)(0,i] + cipa(Li + 1), (32)
i=0

< CcN_2, 1<k <
Then ol = Z,N=1 M;,

where O<ci=- =c<---

N —1, and cy—1 = 1.
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where
M; = 10,i + 1)0,i + 1] + c2[1,i)(1,i]
+cip1]0,i + 11,0 | 4 ¢ip1|1,i)0,i + 1], (33)
i<N-—-2,
My_5 = [0,1X0,1] 4+ ¢1]0,1X1,0] + ¢;]1,0%0,1], (34)
My = ¢ 5|1,N =2)(1,N — 2| 4+ [0,N — 1)X1,N — 2|
+1,N —2)(0,N — 1], (35)
My = 10,0%0,0] 4 [1,N — 1}1,N — 1| (36)

are Hermitian matrices such that M; M; = Ofori # j.Fork <
i < N, each M; has exactly one negative eigenvalue, while for
all other indexes i the matrix M; > 0. Hence, p' has exactly
N — k negative eigenvalues. ]
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