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Device-independent quantum key distribution is the task of using uncharacterized quantum devices to establish
a shared key between two users. If a protocol is secure, regardless of the device behavior, it can be used to
generate a shared key even if the supplier of the devices is malicious. To date, all device-independent quantum
key distribution protocols that are known to be secure require separate isolated devices for each entangled pair,
which is a significant practical limitation. We introduce a protocol that requires Alice and Bob to have only one
device each. Although inefficient and unable to tolerate reasonable levels of noise, our protocol is unconditionally
secure against an adversarial supplier limited only by locally enforced signaling constraints.
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I. INTRODUCTION

Key distribution is the task of establishing shared secret
strings between two parties and is sufficient for secure
communication. Classical key distribution protocols base their
security on assumptions about an eavesdropper’s computa-
tional power. On the other hand, quantum key distribution
protocols (e.g., [1,2]) promise security against an arbitrarily
powerful eavesdropper and do so in the presence of realistic
noise levels. However, in order for the security proofs to apply,
the devices must operate according to certain specifications.
Deviations from these can introduce security flaws, which can
be difficult to identify (see, e.g., [3] for practical illustrations
of such attacks).

The difficulty associated with verifying the operation
of quantum devices has led to much interest in device-
independent quantum cryptography protocols. Ideally, such
protocols guarantee security by tests on the outputs of the
devices: no specification of their internal functionality is
required. In a sense, the protocol verifies the devices’ security
on the fly.

Device-independent cryptography was first introduced by
Mayers and Yao [4] (albeit under a different name). Barrett-
Hardy-Kent (BHK) subsequently invented a quantum key
distribution protocol [5] that is provably device-independently
secure. The BHK security proof applies not only against
an arbitrarily powerful quantum eavesdropper (who also
supplies the devices) but even against an eavesdropper and
device supplier who has discovered and makes use of any
postquantum physical theory, provided that, within the theory,
the honest parties can enforce local signaling constraints.
The applicability of the BHK protocol and proof to device-
independent quantum cryptography was explicitly pointed out
by later authors, who went on to develop some more efficient
device-independent protocols with security proofs against
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restricted eavesdroppers [6—8] as well as other protocols shown
to be unconditionally secure [9—13].

From a theoretical perspective, the BHK protocol provided
an existence theorem for a task that had not been known to be
possible. Practically, however, it has drawbacks. One is that,
as formulated, it generates only a single bit of secure key.
Although it can be modified using an idea from Ref. [14] to
produce an arbitrarily long key, even with this modification,
the protocol is inefficient and unable to tolerate reasonable
levels of noise.

A serious practical problem with all the protocols with
proven unconditional device-independent security [5,9,12,13]
is that they require that each (purportedly) entangled pair
used in the protocol is isolated from the others. The protocols
thus require a separate and isolated pair of devices for each
entangled pair to ensure full device-independent security.
This evidently makes such protocols costly to implement in
practice.

We introduce here a protocol that evades this limitation,
requiring only a single device for each user. Our protocol
is a refinement of the BHK protocol, necessary in order
to allow security when used with only two devices. As we
have discussed elsewhere [15], the composability of device-
independent protocols is problematic if devices are reused in
subsequent implementations. Here we show that if devices
are not reused, then our protocol is secure according to a
universally composable security definition, even against an
adversary who supplies the devices and is restricted only by
signaling constraints. As described, our protocol generates a
single secure key bit. We also indicate how it can be modified
using the idea in Ref. [14] to produce a key of arbitrary length.
In addition, since it is composable, further key bits can be
generated by running the protocol several times (although in
this case fresh devices are required for each run).

We see the value of our protocol as an existence theorem
showing that device-independent quantum key distribution is,
in principle, possible with only two devices. Whether this task
can be achieved more efficiently and with reasonable noise
tolerance remains (as far as we are aware) an open question.
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FIG. 1. (Color online) Illustration of the setup. Here we show only Alice’s laboratory; Bob’s is arranged similarly. Note that Alice uses
a sublaboratory to isolate the untrusted device she is using for the current protocol. She can connect it to the insecure quantum channel, as
shown, but this connection can be closed thereafter. She can also interact with the device classically, supplying inputs (chosen using the trusted
private string) and receiving outputs, without any other information flowing into or out of the secure sublaboratory. We also depict an additional
sublaboratory for storing used devices. After generating the key, in order for it to remain secure, Alice should not reuse that device. She can
instead keep it in this additional sublaboratory so that it remains securely isolated from the outside world and any other devices in her laboratory

that she uses for future protocols.

We also show that some apparently natural extensions
of existing protocols to two devices are insecure against
eavesdroppers restricted only by signaling constraints and in
some cases also against quantum eavesdroppers. This may
have impact on a recent line of work on the impossibility
of privacy amplification against nonsignaling eavesdroppers
[16,17].

II. CRYPTOGRAPHIC SCENARIO

We use a standard cryptographic scenario for key distri-
bution. Here, two users (Alice and Bob) each have a secure
laboratory in which to work, which they may partition into
secure sublaboratories. These allow Alice and Bob to prevent
unauthorized communications between any devices they use.
They are also each assumed to have (or be able to generate)
their own supply of trusted random bits. To communicate
between one another, Alice and Bob have access to an
authenticated, but insecure, classical channel and an insecure
quantum channel. They may process classical information in
a trusted way within their laboratories. However, any devices
they use for quantum information processing are assumed to
be supplied by an untrusted adversary (Eve). Eve may access
(but not modify) any classical correspondence between Alice
and Bob and may access and modify quantum communication
between them. She has complete knowledge of the protocol but
does not have access to the classical random data that Alice
and Bob generate within their labs and use for the protocol
(except for information she can deduce from what they make
public). The scenario is illustrated in Fig. 1.

III. SETUP FOR THE PROTOCOL

Alice and Bob each have a device, potentially supplied
by Eve, that has an input port with N > 2 possible inputs

and an output port with 2 possible outputs. Alice’s inputs are
denoted A € {0,2,...,2N — 2}, and Bob’s are denoted B €
{1,3,...,2N — 1}, and their respective outputs are denoted
X € {0,1}and Y € {0,1}. We define a set of allowed input pairs
(A,B) by Gy :={(0,2N —1),(0,1),(2,1),(2,3),...,2N —
2,2N — 1)}, with |Gy| = 2N. For convenience, we introduce
X' as a variable that is equal to 1 — X if (A,B) = (0,2N — 1)
and equal to X otherwise.

The devices are claimed by Eve to function by carrying
out specified binary outcome measurements on the maximally
entangled two-qubit state |®T) = f(|00> + [11)). Alice’s

input A is claimed to correspond to measuring the first qubit
in the basis {cos %IO) + sin %’ll), sin §|O) — cos %|1)}, where
0 =73y N ; similarly, Bob’s input B is claimed to correspond to

measuring the second qubit in the basis defined by 6 = %.
Alice and Bob do not need to test these precise claims
but instead perform various measurements and check their
outcomes in such a way that the checks are unlikely to pass
unless the produced bit is virtually as secure as a bit that would
be generated were Eve’s claims correct.

The protocol involves two security parameters: the integer
N > 2defined above and areal number « intherange 0 < o <
1: to achieve reasonable security N needs to be large and «
needs to be small. All classical communication between Alice
and Bob is done via their authenticated classical channel.

Throughout the protocol, Alice and Bob keep their devices
in isolated parts of their secure laboratories, ensuring that
each device only learns its own inputs and cannot send any
information outside the secure area. This ensures that the
behavior of the devices, which can be specified by a condi-
tional probability distribution, satisfies certain nonsignaling
constraints. In particular, if the system Alice and Bob measure
is correlated with a third system with input C and outcome
Z, then the overall behavior of the devices Pyyzj4pc must be
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nonsignaling, i.e., satisfy

Pxyiapc = Pxvy|as,
Pyziasc = Prziac, (1)
PxziaBc = Pxziac -

These conditions ensure that if three parties possess devices
with this behavior, no subset of the parties can signal to any
other subset by varying their choice of input.

A. Protocol R

This protocol contains a cycle that is (with high probability)
executed many times. For convenience we use integer i to label
the cycle currently being performed.

(1) Alice randomly chooses K, such that K = 0 with prob-
ability 1 — o and K = 1 with probability «. She announces K
to Bob.

(2) On the ith round, Alice picks a pair of values (A;, B;) at
random from the set Gy specified above and announces them
both to Bob.!

(3) Alice inputs A; into her device, Bob inputs B; into his,
and they record their outputs, the bits X; and Y;, respectively.
(Alice ensures that her device does not learn B;.) If (A;,B;) =
(0,2N — 1), Alice sets X} = 1 — X;; otherwise, she sets X =
Xi.

(4)If K = 0, Alice and Bob announce X and ¥;. If X| # ¥,
they abort. Otherwise, they return to step 1.

B If K = 1, writei = f (the final value of i). The bits X/f
and Y are taken to be the final shared secret key bit.

As presented above, this protocol requires Alice’s and
Bob’s devices to contain sufficient preshared entanglement
before the protocol starts. Taken literally, this requires an
infinite supply of preshared |®*) states. More realistically,
it requires a large number M > o~! of preshared |®*) states
and that the parties accept a small probability of the protocol
aborting because the supply is exhausted. These stringent
technological requirements can be avoided by introducing an
additional (untrusted) state-creation device, which could be
incorporated into Alice’s or Bob’s measurement device and
which is supposed to generate |®*) states and send one qubit
over the insecure quantum channel to the other party. The
ith state must be distributed before any information about the
measurements (A;, B;) or the value of K is announced. This
modification (call it protocol RT) gives Eve more cheating
strategies but, as we show below, is still secure.

IV. SECURITY: MAIN IDEA

The idea behind the security of this protocol is as follows.
If the states and measurements are as Eve claims, then the
quantity I defined by

Iy = IN(Pxyjap) i= P(X =Y|A=0,B=2N —1)
+ > P(X#Y/A=a,B=D)

ab
la—b|=1

'In fact, Alice need only announce B;, but we have her announce
both to make the analysis simpler.
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satisfies

JT2

Iy = I2" := 2N sin? % <o )
As N increases, these correlations give larger violations of the
chained Bell inequalities [18,19], which in this formulation
are Iy > 1.

The significance of this violation of the chained Bell
inequalities for secrecy is that, in the limit of large N, the
correlations that achieve the quantum bound (2) become
monogamous and uniform [5,14]. That s, for any nonsignaling
distribution Pxyzjapc for which In(Pxy|ap) is small and for
any choice of input ¢, the outcome Z is virtually uncorrelated
with X, and Px|4—, is virtually indistinguishable from uniform
for all a. In other words, if Alice’s and Bob’s systems have
alow Iy, then Eve (who we can take to hold the system with
input C and output Z) must have almost no information about
the outcomes they obtain. The protocol is designed so that
(roughly speaking) if Eve supplies states for which there are
many rounds in the protocol where I is high, the protocol is
likely to abort, while if she supplies a state that has high Iy on
only a few rounds, the round at which Alice and Bob finally
(hope to) create the key bit is likely to have low I, and so the
key bit is likely to be both agreed by Alice and Bob and secure
against Eve.

Our main result is that, if we choose « = N -3 and take N
to be large, protocol R is unconditionally secure in the sense
that the key bit it generates can be treated as though produced
by a secure random key distribution oracle. Provided that the
devices are not reused and are securely isolated so that secret
information generated in the protocol cannot subsequently be
made public [15], this also shows that the generated key bit is
composably secure.

Although the protocol generates only a single key bit, it can
be simply modified to generate more key bits, still using only
two devices, by exploiting correlations introduced in Ref. [14].
The modified protocol uses devices with L > 2 outcomes on
each side, and Iy is replaced by the quantity

In.L(Pxyjag) '= P(X®L 1 #Y|A=0,B=2N—1)
+ Z P(X#Y|A=a,B=Db),

a,b
la—b|=1

where X @, 1 represents addition modulo L. This protocol can
be implemented by quantum devices containing maximally
entangled L-dimensional quantum states and carrying out
measurements with L possible outcomes [14] (note that if
log, L is an integer, maximally entangled L-dimensional
quantum states are equivalent to log, L maximally entangled
qubit pairs). The next section contains a precise statement and
proof of security for protocol R.

2Regarding the notation used in this paper, we tend to use uppercase
for random variables and lowercase for particular instances of them.
In addition, Py 41—, is the distribution over the random variable X
conditioned on the event that random variable A takes value a. This
will often be abbreviated to Py|,. There is another common notation
in which this is written P(X|A = a).
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V. SECURITY DEFINITION

We use here a standard definition of composable security
(based on the definitions in Ref. [20], previously applied in
an analogous way to our treatment in Refs. [11,12,21]). A
composable security definition should ensure that a protocol is
not only secure for a single instance but also remains secure if
used as a subprotocol in part of an arbitrary extended protocol.
In order to show this, one considers an ideal protocol (that
is by definition secure) and proves that there is no extended
protocol that can correctly guess whether it is interfacing with
the ideal or real protocol with probability significantly greater
than % Roughly speaking, the idea is that if this holds, the two
protocols behave essentially identically when used as part of
any other protocol. Furthermore, if the probability of correctly
guessing differs from % by at most p, then, for n uses of
either the real protocol or the ideal, the probability of correctly
guessing differs from % by at most np.

Formally, one considers a distinguisher that tries to guess
which protocol (the real or ideal) is being used. For two key
distribution protocols, 1 and 2, a distinguisher is an extended
protocol that uses the candidate protocol as a subprotocol and
outputs a single bit, corresponding to a guess of whether the
subprotocol was protocol 1 or 2. The distinguisher can ask
the eavesdropper to act in any way and can use Eve’s outputs,
those of the honest parties, and any information made public
in the protocol’s implementation to try to distinguish the two.?
It does not, however, have access to any private data that the
honest users use.

Let us denote by I" the complete set of random variables the
distinguisher receives from Alice and Bob during the protocol,
as well as the protocol’s outputs. If protocol 1 is followed,
these are distributed according to Qll-, while if protocol 2 is
followed, these are distributed according to Q% (for some
fixed device behavior chosen by Eve). Having received these,
the distinguisher has access to a system (held by Eve) with
input denoted C and output Z. The probability of correctly
guessing whether Alice and Bob are following protocol 1 or 2
(chosen with probability % each) is given by*

1

3)

The notion of security we use is based on the success proba-
bility of the optimal distinguisher (i.e., where the distinguisher
asks Eve to behave in such a way as to make distinguishing
easiest).

3Note that what Eve does can be adapted depending on any
information available to the distinguisher.

“Note that in the case that Eve keeps only a classical system (so
there is no C), this reduces to [1 + D(P},, PZ,)], where D denotes
the rotal variation distance (defined later).

SRegarding notation, we characterize the behavior of the devices
by the joint conditional probabilities of the outputs if the inputs are
chosen independently and label these using P. For example, in the
case of three devices shared between Alice, Bob, and Eve, these
are denoted Pxyzapc and are assumed to satisfy the no-signaling

1
3 [1 +5 ijmcax; 0L (1) Q) (2) — Q%(V)QZZW(Z)@ :
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Definition 1. Protocol 1 is said to be ¢ secure with respect
to protocol 2 if the probability of correctly guessing whether a
candidate protocol is protocol 1 or 2 (chosen with probability
% each) by any distinguisher is at most %(1 + 2).

A. Additional protocols used in the proof

We define an ideal protocol, protocol 1D, to be identical to
protocol R, except that step 5 is replaced by the following.

(5') If K =1, Alice and Bob take their outputs from a
hypothetical device that gives X to Alice and Y to Bob such
that X = Y and X is uniformly distributed and uncorrelated
with any other information.

This protocol either aborts (with the same probability as
protocol R) or outputs the same perfectly private bit to both
Alice and Bob.

In order to prove security of protocol R, it is useful to define
a modified protocol to be used as a technical tool in the proof.
We consider a protocol that is the same as protocol R, except
with a more powerful eavesdropper who, before the protocol
restarts at the end of step 4, has access to all the data previously
produced and can alter Alice’s and Bob’s devices at this stage.
Formally, let protocol R’ be identical to protocol R, except that
step 4 is replaced by the following.

4) If K =0, Alice and Bob publicly announce their
outputs X and ¥;. If X] # Y;, they abort. Otherwise, they
return their devices to Eve, who can modify them and supply
new ones. Alice and Bob both announce receipt of their new
devices before returning to step 1.

We also define an analogous ideal, protocol ID’, which is
obtained from protocol ID by replacing step 4 with step 4'.

The reason for this adjustment is that protocol R clearly
cannot be more secure than protocol R (the set of allowed
actions of Eve in protocol R’ is strictly larger than that in
protocol R). Hence it is sufficient to prove the security of
protocol R’. But the analysis of protocol R’ is relatively simple
because the optimal distinguisher will ask the eavesdropper to
act in an independent and identically distributed (i.i.d.) way
on each round and is essentially characterized by the single
constant value of Iy used on each round.

We will show that protocol R” is ¢ secure with respect to
protocol ID’, where the parameter ¢ can be made arbitrarily
small by appropriate choices of « and N. Since both protocols
have identical probabilities of aborting, an abort event cannot
help the distinguisher. Furthermore, in any strategy with a
significant probability of not aborting, the protocols remain
virtually indistinguishable. This shows that protocol R’ is
composably secure in the appropriate sense. As mentioned

conditions (1). We use expressions involving Q (e.g., Orcz) to denote
the actual distribution of random variables in the scenario where a
protocol is being performed on these systems in conjunction with
a distinguisher. There is an important distinction between the two:
since a distinguisher can arrange that C is correlated with I", Q
may no longer obey the no-signaling conditions (1). For example,
if ' includes the output, X, of Alice’s device (whose input is A)
and the distinguisher chooses C = X, the nonsignaling condition
Oxjac = Qx4 does not generally hold.
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before, it follows that protocol R is also ¢ secure with respect
to protocol ID and hence also composably secure.

VI. SECURITY PROOF

The proof bounds the probability of distinguishing proto-
cols R’ and 1D First, note that there is an optimal distinguishing
strategy in which Eve’s actions are i.i.d. since, if it does
not abort, when the protocol returns to step 1, the maximum
probability of distinguishing the protocols is identical to that
before the protocol began.

We use the following lemma, which uses Iy to bound the
distance between probability distributions, measured using
the total variation distance, D(Px,Qx) := % > 1Px(x) —
Qx(x)|. The proof of this lemma can be found in Ref. [22]
(see their Supplementary Information; it is based on similar
results in Refs. [5,14,23]).

Lemma 1 [22]. For any nonsignaling device behavior,
Pxyziapc, in which X and Y are binary, we have

D(Pzjabexs Pzic) < In(PxyiaB) “4)
for all a, b, ¢, and x and
D(Pxiape, %) < AIn(Pxyian) ()

for all a, b, and c. [Note that we use D(Px|apc, %) to denote the
distance between Py 4. and the distribution where X = 0 and

X = 1 both occur with probability %.]
Note that these relations imply

D(Pzape,x'=x>Pz|c) < IN(Pxy|AB) (6)

and

D(Px/ap,5) < 3In(Pxy|ap) - (7

Note also that, from the definition of Iy, averaging over the
measurements in Gy (picked uniformly), we have
Pxryjap(x,1 —x)  In(PxyjaB)

2N - 2N

PX'#Y):=>) ®)

abx
(a,b)eGy

We also need the following generalization of Eq. (6).

Lemma 2. For any nonsignaling device behavior, Pxy zjasc,
in which X and Y are binary and Iy := Iy(Pxyjap) < 1, we
have that, for (a,b) € Gy,

21y

T— Iy €))

D(PZ\abc,X’:x,Y:)CsPZ\abC,X’:x) <

Proof. We have

PZ|abc,X’:x,Y:x(Z) - PZlabc,X’:x(Z)
= PZ\abc,X’:x,Y:x(Z) - Z PYZlabc,X’:x(ysZ)
y
= PZ\ubc,X’:x,Y:x(Z) - PY|abc,X’:x(x)PZ\ubc,X’:x,Y:x(Z)
- PYlabc,X’:x(l - X)PZ\abc,X’:x,Yzlfx(Z)
- [1 - PYlabC,X’zx(x)][PZ|abc,X’=x,Y:x(Z)

— Pziabe, x'=x,y=1-x(2)]
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and hence
D(PZ\abc,X’:x,Y:xvPZIabc,X’:x)
= [1 = Pyjabe, x'=x ) D[Pziape, x'=x, v =x(2),
PZ|abc,X’=x,Y:17x(Z)]

< [1 - PY\ahc,X’:x(x)] .

Then note that, averaging over the measurements in Gy, using
(8), we have

In |

1— N — E — Pyyraw (x,

2N T 4 N XY jah (%,X)
@ )Gy

1
< N (; Pxryjap(x,x) + 2N — 1) ,

from which it follows that

Z Pyyjap(x,x) 21— 1y,
X

and hence

PX’Y\abc(-xy-x)
Pyjape, xr=x(¥) = ————
jabe ! PX’Iabc(x)

1
> [1— Iy — Pyyae(l — x,1 = x)]
Pxiap(x) Nl
1
> ——— {1 — Iy — [1 — Py ()]}
Pxiap(x) N Xlab
21y
= 1—IN,

where we used (7) in the last line. Note that the last step does
not hold unless Iy < 1. The claimed relation then follows. l

Combining (9) and (6) (using the triangle inequality for D),
we have for Iy < 1

D(Pzjape,x'=x,y=x,Pz|c) < <1 + )IN- (10)

1 -1y

To successfully distinguish the protocols it is necessary that
they do not abort before the final round. We use _L to represent
the event that the protocol aborts and L to represent the event
that it does not.

Lemma 3. For 0 < I}, < 2N, if protocol R is followed and
Eve supplies i.i.d. states corresponding to nonsignaling device
behaviors with Iy(Px,y,ja,8,) = Iy for all i, then

(1—01)1';;)‘1

Proof. We have

. N\
Q(f:J)=[(1—a)<1—2N)} a,

and hence

(1—aﬂ;>‘

o)=Y o(f=j= <1+ Na

j=1

as required. |
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Our main result is then as fgllows.

Theorem 1. Take o = N~ 2. Then protocol R is ¢ secure
with respect to ID’ for ¢ = %N —1/2_ Furthermore, in a noise-
free implementation with honest devices, protocol R” does not
abort with probability greater than (1 + 72N ~1/2/16)~".

Proof. As mentioned above, protocols R’ and ID’ can be
optimally distinguished when the eavesdropper supplies i.i.d.
states, and so her device behavior can be characterized by a
single value, I}, the value of Iy(Px,y, 4,5 ) on each round i.
The two protocols are identical up to step 5, so they can be
distinguished only if the protocol does not abort. In the case
of no abort, the distinguisher sees Ay, By, X’f, and Yy and
then has access to a system with input C and output Z. (The
distinguisher also has data from previous rounds, but these are
identically distributed for protocols R" and ID’ and so can be
ignored.) Noting that the device behavior of the ideal obeys

PRy 21abe(X:3:2) 1= 3855 P}1(2)
X'YZlabc\X>Y:2) i= 50x,yL7(2),

we can relate the terms in Eq. (3) to the device behaviors of
the real and ideal as follows:

1
2N

R

QAfoX}Y/ = X}Yf‘AfB/’

R’ R’
§ max § :|QABX’YQZ\ABCX’Y
a,b,x,y z

(a,b)eGy

1
" 4N

ab.x,y
(@b)eby

1
= N Z mcax;

(a,b)eGy x=y

Py 1ab ) PZiapexy (2) —

max E
P

P}%’Ylab(x7y)P§\ahcxv( )

The second term is equal to - 4N by P)'}/,Y‘ub(x,y) =

(a.b)eGy x#y
1 ,
R
— Z maxz Pyryian(
4N a.b.x.y ¢
(@bh)eGy x=y N
Then note that
, , 1 . ,
R R R R
Z PX/Y\ah(x’x)szhcxy(Z) - EPZ|C(Z) < Z |P ’Y|ab(x

Z

t2

= Z PRy b (X)) PS e (2) — P3| + Z P}.(2) |P

< 2Pxy 1 (X,X)

where we have used (10). In addition,

R
PX’Ylab(x’x) -

1
5| S
]

= P;,lab(x)

0623

1 Y
Eax,ypzk-(Z)

1
P;‘C(Z)

X’Y\ab(x X)P§|C(Z)

Px,ywb(x x) —
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.
PZ|AfoCX/fo’

! )
AN T

’

szfzsfcx/ Yy = PZ|C-

R _
QZ|A,B,-CX’, Y, =

QA/BfX Yy =

For convenience, we drop the subscript f in the following.

We will consider two separate cases. The firstis Iy > 1/2.
In this case, we can upper bound the probability of correctly
distinguishing the protocols by assuming that they can be
perfectly distinguished in the case that the protocol does
not abort. Using Lemma 3, it follows that in this case the
probability of correctly guessing which protocol is being used
can be upper bounded by

2[1 + o) < ( +4N“)
where we have substituted the value of o and used

(1+4N"2 —N73)' <1 (11)

for N > 2 to simplify the bound.
Turning now to the case I} <

correctly guessing which protocol is being followed is
Q(1)A], where

1/2, the probability of
1+
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Bringing everything together, we have

1 , 4 . ,

a,b.x
(a,b)eGy

*

2

2 L1 . o1
< 1)+ =1 —PYX =Y)+ X+ -PYX #£Y) =
-1} 2 2

where we used (7) and (8) and the last bound relies on I3 <
1/2 and N > 2. The distinguisher’s probability of correctly
guessing is thus

Loy < ! (ETTARE
2[1+Q(L)A]<2[1+<1+ . ) 41N]

Maximizing over 0 < I < 1/2 gives a maximum of %(1 +
23Na
24Na+1—a)

(11), we can upper bound this by %(l + ?N’%). Since we have
already established a tighter bound for 7} > % this completes
the first part of the claim.

The probability of an abort in the case that Eve supplies
honest devices (and there is no noise) can be calculated as
in Lemma 3, except that in this situation, each round has
Iy = I3" < 7%/8N [cf. (2)]. The probability that the protocol
does not abort is then

) at I3 = 1/2. Substituting o = N~ and using

14 (1 —a)" B - 72\ (12)
—_— > .
2Na 16N%a
from which the claim is recovered by substituting the value
of a. ]

For sufficiently large N, we can hence make ¢ as close to
zero as we like at the same time as making the probability
of an abort in the absence of Eve close to zero. Finally,
since, by construction, it is harder to distinguish protocol R
from protocol ID than it is to distinguish protocol R’ from 1D,
protocol R is also ¢ secure with respect to protocol ID for
the same ¢, and an analogous statement can be made about
protocol RT. Clearly, when Eve is honest and noise is absent,
protocols R, R’, and R all have the same abort probability, in
each case bounded by Eq. (12).

VII. ATTACKS ON MODIFIED PROTOCOLS
BY A POSTQUANTUM EAVESDROPPER

Protocol R relies on a probabilistic strategy in which
Alice and Bob sequentially either (with high probability)
test a purported entangled state generated by their devices
or (with low probability) generate a key bit from the state
and immediately end the protocol. We consider below two
seemingly natural modifications of protocol R and highlight
some interesting attacks available to an eavesdropper in such
cases. The first of our modified protocols can be broken by a
quantum eavesdropper, and the second can be broken by an
eavesdropper restricted only by signaling constraints.

A. Protocol S
This protocol is specified by positive integers M and N.
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P (x) — lu + lPR'(X/ £7Y)
X’\ah 2 2

1—1; 22N

(1) On the ith round, Alice picks a pair of values (A;, B;) at
random from the set Gy and announces B; to Bob.

(2) Alice inputs A; into her device, Bob inputs B; into his,
and they record their outcomes, the bits X; and Y;, respectively.
(Alice ensures that her device does not learn B;.) If (A;,B;) =
(0,2N — 1), Alice sets X; = 1 — X;; otherwise, she sets X| =
X;. The protocol returns to step 1 unlessi = M.

(3) Alice randomly chooses an integer 1 < f < M and
announces it to Bob.

(4) Alice and Bob publicly announce X and Y; for all
i # f. If any of their announced values are unequal, they
abort.

(5) The bits X', and Y are taken to be the final shared bit.

This protocol is similar in spirit to the original BHK
protocol [5] and is vulnerable to the same kind of attack
in the scenario where Alice and Bob have only one device
each. In this case, if Eve equips her devices with memory,
she has a simple attack. She programs her devices to behave
honestly until the final (Mth) round. In this round, Alice’s
device outputs the XOR of the previous outputs, i.e., @f‘i | Xis
and Bob’s device outputs a random bit. This attack leads to a
probability of aborting close to % and otherwise enables Eve
to perfectly guess the final output bit. Crucially, the success
probability of this strategy cannot be made small by adjusting
M and N.

We define protocol T by altering step 4 of protocol S to
circumvent this attack.

(4) For all i # f, Alice chooses L; = 0 with probability
B and L; = 1 with probability 1 — B. She announces this list
to Bob. For all the rounds in which L; = 1, Alice and Bob
publicly announce their outcomes. If any of their announced
values are unequal, they abort.

With this modification, making the final output the XOR of
the previous ones does not give Eve significant information
since Eve no longer learns all but one of the outputs,
{X;}. However, there is another attack that a postquantum
nonsignaling eavesdropper can use in this case, which allows
her to learn the final bit, again with a probability of success
that cannot be made small for any choice of M and N. This
attack exploits some subtle properties of nonlocal correlations
and cannot be performed by a quantum-limited eavesdropper.

The attack is based on a result in Ref. [24] and involves
nonlocal boxes [25,26]. These are bipartite systems where
each party has two choices of input and receives one of two
outputs. If we denote the inputs x € {0,1}and z € {0, 1} and the
respective outputs o € {0,1} and y € {0,1}, then the nonlocal
box is a nonsignaling device which outputs according to x.z =
ady.

The attack is as follows. Eve constructs Alice’s device such
that it contains both a set of maximally entangled quantum
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states shared with Bob and a set of nonlocal boxes shared with
Eve (the same number of each). For the first M — % rounds
of the protocol, Alice’s device generates its output by making
quantum measurements as in an honest implementation of
the protocol. However, as well as supplying the measurement
outcome to the output port of the device (so that Alice sees
it), the outcome is also used as input to one of the nonlocal
boxes, generating an output (call it ¢; ). (Bob’s device behaves
honestly in the first M — % rounds and outputs predetermined
random bits in the remaining ones.)

In the last % rounds, Alice’s device instead always outputs

the XOR of all the previous nonlocal box outputs, i.e., P ;.
(Although this may look suspicious, it does not violate the
stated security tests. In any case it could easily be masked
using shared randomness between Alice’s device and Eve.)
With reasonable probability, Eve will learn this bit (on each
round of the protocol, the chances that the output of that round
is communicated between Alice and Bob is 8, so, of the last
%, on average, one will be communicated). For each bit of the
last % that is communicated there is a probability 1/2 of being
detected by Alice and Bob, so this strategy implies a significant
probability that Eve will be detected. However, the probability
that this attack works without detection is independent of N
and M and at least i

If Eve learns @i @;, she can determine the key bit x . To
see this, notice the nonlocal box condition is x;z; = «; @ v,
where z; are the inputs and y; are the outputs of Eve’s half of
the nonlocal box. Eve should input O to all of her halves of the
nonlocal boxes, except the fth one in which she inputs 1. We
have

xp= @(xi-zi) = @(Oli ®y)= @O‘i +@yi'

Therefore, provided she has obtained the bit @i «;, Eve can
determine the final bit output by the protocol x f.

VIII. ATTACKING MORE NOISE-TOLERANT
PROTOCOLS

In this section, we consider some extensions of the type of
attack considered in the previous section to two-device proto-
cols that (if secure) would be more efficient and tolerate more
noise. In all device-independent key distribution protocols,
one needs, in essence, to establish the presence of nonlocal
correlations. In order to do so, the detection loophole must be
closed. In other words, a malicious device should not be able to
exploit detector failures (cases where no outcome is observed)
to give the false illusion of nonlocality in the nonfailure cases.

Protocols based on chained Bell correlations with large N
are not well suited to this since, as N increases, it becomes
increasingly difficult to close the detection loophole (the
correlations can be classically explained if the probability of
detector failure is %). This drawback is not limited to the
two-device case, and alternative protocols tolerating modest
levels of noise have been introduced in the case where more
devices are permitted [12,13]. We now consider the extension
of these protocols to the two-device case. We do not give a
proof that all such protocols are insecure but give an example
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that highlights interesting security issues that can arise in the
presence of nonsignaling eavesdroppers.

We also mention some other work related to this question.
In Ref. [16], the two-device case was considered for protocols
based on Clauser-Horne-Shimony-Holt (CHSH) correlations.
There it was shown that privacy amplification via hashing
is not possible against an adversary limited only by the
impossibility of signaling between the parties. However, in
Ref. [16], signaling was permitted within the devices (so that
outputs could depend on later inputs).® For protocols in which
each party waits for an output before giving their next input,
the most natural signaling constraints are ones that allow later
outputs to depend on all previous inputs but do not allow
outputs to depend on future inputs (we call these time-ordered
nonsignaling conditions). A situation that is close to this case
(but with subtle and potentially important differences) has
been recently studied in Ref. [17]. There protocols based
on CHSH correlations were again considered, and it was
shown that privacy amplification via hashing is not possible
for adversaries limited by almost time-ordered nonsignaling
conditions.

Consider now a key distribution protocol with the following
structure.’

(1) Alice and Bob each make a random input A; and B;
to their devices, ensuring they receive their outputs (X; and
Y;, respectively) before making the next input (so that time-
ordered nonsignaling conditions must be obeyed). They repeat
this M times.

(2) Either Alice or Bob (or both) publicly announces their
measurement choices, and one party checks that they had
a sufficient number of the relevant input combinations and
otherwise aborts. Certain rounds may be discarded according
to some public protocol.

(3) For each of the remaining bits, Alice independently
announces it to Bob with probability p (which is such that
M is large). Bob uses this to compute some test function.
If this has the wrong output, Bob aborts. (For example, Bob
might compute the CHSH value of the announced data and
abort if it is below 2.5. This step is often called parameter
estimation.)

(4) Alice and Bob perform error correction using public
communication via any protocol in which the function Alice
applies to her string becomes known to Eve.?

(5) Alice and Bob publicly perform privacy amplification.
The function Alice applies to her string becomes known to
Eve.

The key to Eve’s attack is step 3. She is going to attack so
as to try to gain one bit of the final output string. Eve will also
use a “joint function box,” which has the following bipartite
behavior. Alice inputs a string X - - - X and obtains a single
bit S; Eve inputs C, which corresponds to a choice of a one-bit

6 Although, as currently described, this is unphysical, it is natural to
consider this for protocols in which each party makes all their inputs
at the start and then receives all of their outputs together.

7 Although this structure is not fully general, most protocols to date
are of this type.

8Typically, this occurs because it is communicated over the public
channel. This also applies to step 5.
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TABLE 1. Behavior of the joint function box. Each 2 x 2
block takes one of the two forms shown, depending on whether
Fe(X1---Xy)=0 or Fco(X;---Xy)=1. In this notation, the
nonsignaling conditions are that the sum of the elements in each
row of each 2 x 2 block are equal to those of the blocks to the left
and right, and likewise, the sum of the elements in each column are
equal to those above and below. In the above case, all of these values
are 1/2.

Pszixc C 0 1 2
Z 0 1 0 1 0 1
X S
00...00 0 1/2 0 0 1/2
1 0 12 12 0
00...01 0 0 1/2 1/2 0
1

1/2 0 0 1/2

function (see later) and obtains a single bit Z. The behavior
is such that Z =S @ Fe(X;--- Xy). It is easy to see that
this can be nonsignaling if § is a uniform random bit, and a
distribution with this behavior is illustrated in Table I.

It follows that Eve can learn any Boolean function of
X1, ...,X )y if she receives just one bit, S. The value of C
depends on the function Eve wants to learn, the value of
S she hears, and the information reconciliation and privacy
amplification functions she overhears. There is a choice of C
for each combination of these values. Thus, for protocols of the
above form (importantly, where Eve learns the entire function
Alice and Bob use for postprocessing), she needs to receive
only one bit from either of her devices to learn one bit about
the final output key (after privacy amplification).

In order to try to learn this bit, Eve can exploit the
parameter estimation step. She programs Alice’s device to
behave honestly for the first M — 1/u rounds [note that we
have not specified which correlations are used; this attack
does not depend on these (up to a constant factor in the abort
probability) and even works if the honest states are perfect
nonlocal boxes]. Her device then inputs the bits generated in
these rounds into the joint function box, producing output S.
This bit is then given as the outputs X; for M — 1/u <i < M
(this could be masked by outputting the XOR of each bit with
some randomness that is preshared between Alice’s device
and Eve). Provided at least one of the last 1/u bits is revealed
in the parameter estimation without causing an abort (this
occurs with a finite probability that cannot be made arbitrarily
small by judiciously choosing M and p), Eve can discover
any desired bit of the final output string.

There are a couple of important points to note about the
above attack. First, we assumed a specific protocol structure.
In particular, altering the way parameter estimation is done
could potentially improve security (some altered protocols
are discussed in Ref. [15]). Second, the attack relies on a
specialized nonlocal strategy that cannot be implemented by
an eavesdropper limited by quantum theory. Proving security
of a protocol of this type (in particular, with two devices) that
is secure against a quantum-restricted Eve remains an open
question.
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IX. CONCLUSIONS

We have presented a protocol for distribution of a one-bit
key and have proven it secure in a universally composable way
against an arbitrarily powerful adversary who can create all the
supposedly quantum devices, provided that the devices are not
reused in any future protocol. The protocol only requires two
devices, whereas the secure protocols previously considered
required many independent devices. This represents a theo-
retical advance and also potentially represents another step
towards practical unconditionally secure device-independent
key distribution protocols.

That said, several significant and intriguing theoretical and
practical issues remain. First, the simplest version of our
protocol only outputs a single bit, requiring a large number
of entangled qubit pairs in order to do so. The protocol can
be generalized to produce an arbitrary length key string but,
again, highly inefficiently. It would be very interesting to
know whether significantly more efficient two-device secure
protocols can be found and to obtain bounds on what is
achievable.

Second, for maximum flexibility and more efficient use
of resources, one would like to be able to repeat the protocol
to generate further secure key bits. However, if devices are
reused, this renders the protocol vulnerable to the same
device-memory-based attacks [15] that apply to BHK and
other device-independent protocols. While it is clear that
device-reusing protocols cannot be universally composable,
the general scope of such attacks and the possibilities of
countering them either by refined protocols (see [15] for ideas
in this direction, some of which have since been developed in
Ref. [27]) or by evidently reliable technological assumptions
have not yet been fully explored. It would be very interesting
to resolve these questions in the present context.

Third, tolerance to noise is a significant practical issue
for our protocol. As given, it aborts if there is one set
of measurements that give unequal outcomes. The protocol
parameters are tuned such that this is very unlikely if the
devices operate perfectly. However, with more realistic, noisy
devices, using present technology, the protocol will abort with
near certainty. Although the protocol could be adapted to
tolerate small amounts of noise, it is far from being practical
in this respect.

Fourth, our scheme requires an authenticated (although
public) classical channel, and a common way to implement
this in an information theoretically secure way using an
insecure classical channel is by using a preshared key. This
reinforces the points already made: it would be desirable
to have more efficient two-device protocols that allow for
some consumption of the key for classical authentication and
nonetheless provide quantum key expansion at practically
useful rates in realistically noisy environments.

In summary, while we have presented a protocol showing
that device-independent quantum key distribution is, in prin-
ciple, possible using two devices, a number of theoretically
interesting and practically important questions remain open.

Note added. In some concurrent work an alternative
technique for proving the security of device-independent
quantum key distribution with two devices has been suggested
[28]. Furthermore, recently, an additional article has appeared
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[29] reporting an efficient and noise-tolerant scheme. We
note that these works differ from ours in that they consider
quantum-limited eavesdroppers and do not apply to the case
of eavesdroppers limited only by signaling constraints.
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