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Reliable and well-characterized quantum resources are indispensable ingredients in quantum information
processing. Typically, in a realistic characterization of these resources, apparatuses come with intrinsic
uncertainties that can manifest themselves in the form of systematic errors. While systematic errors are generally
accounted for through careful calibration, the effect of remaining imperfections on the characterization of quantum
resources has been largely overlooked in the literature. In this paper, we investigate the effect of systematic errors
that arise from imperfect alignment of measurement bases—an error that can conceivably take place due to
the limited controllability of measurement devices. We show that characterization of quantum resources using
quantum state tomography or entanglement witnesses can be undermined with an amount of such imprecision
that is not uncommon in laboratories. Curiously, for quantum state tomography, we find that having entanglement
can help to reduce the susceptibility to this kind of error. We also briefly discuss how a given entanglement
witness can be modified to incorporate the effect of such errors.
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I. INTRODUCTION

The advent of quantum information science has brought
inspiring opportunities for information processing [1]. At the
heart of all these information processing protocols is the
encoding of specific information in quantum systems and
the ability to perform some specific measurements—these
features are notably important, e.g., in measurement based
quantum computation [2]. Evidently, real life preparation of
specific quantum states is never ideal and thus their reliable
characterization is crucial for the implementation of these
protocols.

For a complete characterization of quantum states, one
uses the technique of quantum state tomography (see, e.g.,
Refs. [3,4]), whereas for the purpose of entanglement verifica-
tion, the technique of measuring entanglement witnesses [5–8]
is widely employed. A common feature of these techniques is
that they require measurements to be carried in a number of
different settings. While these settings can be theoretically
established easily, their experimental implementation may
differ from the theoretical prescription, or come with intrinsic
uncertainty, thus contributing to non-negligible systematic
error. For instance, the measurement on a polarization qubit
cannot be more precise than the intrinsic uncertainty of the
polarization rotator used (typically of the order of 1◦–2◦ in
real space1). Likewise, the precision of measurements on
two-level atoms is limited by the effective phase and intensity
uncertainties of the laser pulse experienced by the atom.

In this regard, it came as a surprise that the intrinsic
uncertainty or systematic error present in measurement de-
vices is—to our knowledge—hardly reported in experimental
findings, clearly in stark contrast with statistical error [9]. Also,
the implication of imperfect devices seems hardly investigated
beyond a relatively small number of research articles [3,10,11].
Of course, with careful calibration, systematic errors can

1This translates to an uncertainty of 2◦–4◦ on the Poincaré or Bloch
sphere.

usually be detected and reduced (see, e.g., Refs. [12–16]).
However, it is important to note that even after careful
calibration, measurement devices are after all never perfect
and the intrinsic uncertainties can still manifest themselves in
the form of bounded systematic errors.

The main purpose of this paper is to present concrete evi-
dence showing that the potential implications of overlooking
systematic errors can be significant in the characterization of
quantum states. We illustrate this by considering a specific kind
of systematic error that arises from misaligned measurement
bases, and illustrating its effect on two commonly employed
methods for characterizing quantum states, namely, quantum
state tomography and the evaluation of entanglement witnesses
[8]. Our analysis therefore complements the approach of
Ref. [17], which allows the detection of systematic error from
experimental data.

The paper is structured as follows. We begin in Sec. II by
explaining the systematic misalignment error that arises from
imperfect measurement settings. The notations that we are
going to use in the text will be introduced in the same section.
In Sec. III, we present the effect of such systematic errors
on quantum state tomography, in particular, the fidelity of the
reconstructed state with respect to the actual state prepared.
Next, in Sec. IV, we illustrate the effect of misalignment
error on the evaluation of a family of genuine multipartite
entanglement witnesses. In both Secs. III and IV, we also
discuss how these effects can be compensated when the amount
of systematic error (uncertainty) is known. We conclude in
Sec. V with a summary of main results and some possibilities
for future research. Technical details related to the main results
can be found in the Appendices.

II. MISALIGNED BASES FROM
IMPERFECT MEASUREMENTS

To study the effect of systematic misalignment errors
on the characterization of quantum states, we consider the
typical scenario where n spatially separated qubits can each
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FIG. 1. A schematic representation of the procedures involved
in the characterization of a quantum state and how misalignment
error can affect the resulting characterization. (1) The characterization
protocol specifies measurement in certain bases (intended measure-
ments). (2) Due to imperfect measurement devices, misalignment
errors creep in during the experiments and the actual measurements
performed differ from the intended ones. (3) The resulting measure-
ment statistics are used to compute a given figure of merit, such
as the fidelity or the expectation value of an entanglement witness.
(4) Imprecision of the measurement ε then translates into additional
uncertainty in the final figure of merit.

be measured locally in a number of different bases (settings).
For the benefit of subsequent discussion, we remind one that
any of these local measurements can be described in terms
of a three-dimensional unit vector on the Bloch sphere. More
explicitly, we shall denote by

M
(j )
k = m̂

(j )
k · �σ (1)

the kth qubit observable2 to be measured on the j th qubit and
m̂

(j )
k the corresponding Bloch vector. A misalignment error can

then be defined as follows.
Definition 1. A misalignment error is a systematic error that

arises from imperfect measurement settings, i.e., the actual
observable measured N

(j )
k = n̂

(j )
k · �σ differs from the intended

measurement setting M
(j )
k for at least some value of j and k.

Henceforth, we shall quantify the amount of error present
by the quantity

ε = max
j,k

arccos
(
m̂

(j )
k · n̂

(j )
k

)
. (2)

Geometrically, this means that among all the measurement
settings chosen by all the n parties, the maximal angular
deviation3 of the actual measurement directions from the
intended ones are at most ε. Note that the misalignment
errors considered above include not only misalignments of the
reference frame [18–20], but also nonunitary transformations
that change the orthogonality relations between measurements
axes, e.g., as in the example studied in Fig. 2.

To simplify the subsequent discussion, we shall also assume
that all outcome probabilities can be estimated with negligible
statistical error and that the actual measurement bases can
always be described by n̂

(j )
k in all runs of the experiments. Next,

we look into the effect of such misalignment error on some
commonly employed protocols used in the characterization of
a quantum state (see also Fig. 1).

2Here, �σ = (σx,σy,σz) denotes the vector of Pauli matrices.
3As measured in the Bloch sphere.

III. IMPLICATIONS ON QUANTUM
STATE TOMOGRAPHY

Quantum state tomography is the process in which many
copies of a quantum state are measured in a set of tomograph-
ically complete bases, followed by some state reconstruction
algorithm using the measurement statistics and the presumed
knowledge of the measurement bases [3,4,11]. In this section,
we illustrate the effect of systematic misalignment error on the
tomography of n-partite qubit states.

Throughout, we shall assume that the qubit tomography is
intended to be carried out in the standard Pauli bases, i.e.,

M
(j )
1 = σx, M

(j )
2 = σy, M

(j )
3 = σz, (3)

for all parties. Moreover, we shall quantify the effect of
misalignment errors on quantum state tomography using the
Uhlmann-Jozsa fidelity [21,22] between the actual state τ and
the reconstructed state ρ, i.e.,

F(τ,ρ) =
(

tr
√√

τ ρ
√

τ

)2

. (4)

It is worth noting that when either ρ or τ is a pure state,
the expression above reduces to F(τ,ρ) = tr(ρ τ ). Clearly, the
smaller the value of F(τ,ρ), the more drastic the effect of
misalignment error on quantum state tomography.

A. Single-qubit state tomography

Let us begin with the simplest example of a single-qubit
state tomography. The pedagogical example given below will
also serve to remind one of the key features involved in some
of the standard state reconstruction techniques, such as linear
inversion and maximum-likelihood estimation.

1. A simple example of erroneous state reconstruction
starting from a pure state

Consider a source that produces a quantum state τ as
parametrized by the Bloch vector �t :

τ = 1 + �t · �σ
2

. (5)

Suppose now that a qubit state tomography is to be carried out
for this source via the intended measurements4

M1 = σx, M2 = σy, M3 = σz, (6)

whereas in reality, due to the presence of misalignment errors,
the actual observables measured are described instead by {Nk}.

From Born’s rule, we can compute the outcome probability
for the kth measurement setting as

P (±1|k) = tr

(
τ
1 ± Nk

2

)
, for k = 1,2,3. (7)

The essence of state reconstruction is to find a legitimate
density matrix ρ, referred to as the reconstructed state such
that

P (±1|k) = tr

(
ρ
1 ± Mk

2

)
. (8)

4For simplicity, we omit all superscripts in the single-qubit scenario.
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FIG. 2. Intended and actual measurement directions for the
tomography of |ψs〉. The actual measurement directions {n̂k} given in
Eq. (10) correspond to the triad of {m̂k} “opened” uniformly towards
−ŝ = − 1√

3
(1,1,1) while satisfying arccos(m̂k · n̂k) = ε.

Since this amounts to solving a set of equations that are linear
in the measurement statistics, this procedure of solving for
the reconstructed state ρ is also known as linear inversion.
Note that the reconstruction is done using the ideal description
given in Eq. (6). Evidently, if the actual misalignment error
was detected, the reconstruction procedure could be corrected
by replacing {Mk} with {Nk} in Eq. (8).

Specifically, imagine that the actual state prepared is τ =
|ψ+

s 〉〈ψ+
s |, where |ψ+

s 〉 is the positive eigenstate of ŝ · �σ with
ŝ = 1√

3
(1,1,1)T = �t :

|ψ±
s 〉 = 1√

3 ∓ √
3

[|0〉 ±
√

2 ∓
√

3ei(π/4)|1〉], (9)

and the actual tomography measurement directions diverge
uniformly from the intended directions as ε increases (see
Fig. 2), i.e.,

n̂1 =

⎛
⎜⎝

cε

− sε√
2

− sε√
2

⎞
⎟⎠ , n̂2 =

⎛
⎜⎝

− sε√
2

cε

− sε√
2

⎞
⎟⎠ , n̂3 =

⎛
⎜⎝

− sε√
2

− sε√
2

cε

⎞
⎟⎠ , (10)

where

cε = cos ε, sε = sin ε. (11)

It now follows from Eqs. (7)–(10) that

�r =

⎛
⎜⎝

cε − sε√
2

− sε√
2

− sε√
2

cε − sε√
2

− sε√
2

− sε√
2

cε

⎞
⎟⎠ ŝ = (cε −

√
2sε)ŝ. (12)

The Bloch vector �t = ŝ of τ = |ψ+
s 〉〈ψ+

s | is thus an eigenvector
of the above linear transformation, with eigenvalue cε − √

2sε.
Hence, as long as |cε − √

2sε| � 1, which takes place for
0 � ε � arccos 1

3 ≈ 70◦, the reconstructed state obtained by
solving Eq. (8) is always a legitimate quantum state. It is then
straightforward to verify that ρ can be written as a convex
mixture:

ρ = f |ψ+
s 〉〈ψ+

s | + (1 − f ) |ψ−
s 〉〈ψ−

s |, (13)
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FIG. 3. Fidelity of the reconstructed state with respect to the
initial state |ψ+

s 〉⊗n when the actual measurement settings are those
described in Fig. 2 and the intended measurement bases are those
given in Eq. (3). The vertical dotted line corresponds to ε = 2◦ as
discussed in the text.

where

f (ε) = F(τ,ρ) = 1
2 (1 + cos ε − √

2 sin ε) (14)

is simply the fidelity of the reconstructed state ρ with respect
to the actual state τ = |ψ+

s 〉〈ψ+
s | [cf. Eq. (4)].

This implies, for instance, that with a 2◦ misalignment in
m̂k but everything else perfect, the erroneously reconstructed
state still only has 97.5% fidelity with respect to the actual state
(Fig. 3). In this regard, note that Eq. (14) actually represents
the worst-case fidelity for any actual state τ that is pure and
where the intended tomographic measurements are given by
Eq. (6). The proof of this is somewhat involved and is relegated
to Appendix A 1. More generally, to study the effect on fidelity
for small ε, we shall introduce the notion of susceptibility to
misalignment errors, defined as

S = ∂f (ε)

∂ε

∣∣∣∣
ε→0

= − 1√
2
. (15)

In particular, S �= 0 shows that misalignment errors have a
first-order effect on the fidelity.

2. Effect on state reconstruction starting
from a general qubit state

Obviously, in a realistic experimental situation, we do not
expect any source to produce a pure qubit state. A relevant
problem to determine is thus whether the expression given in
Eq. (14) still represents the worst-case fidelity even in this
more general scenario.

Before answering the above question, it is important to
understand that the linear inversion process described in
Sec. III A1 does not always lead to a physical state ρ. For
instance, in the example given above, if ε > arccos 1

3 , the
reconstructed Bloch vector as given by Eq. (12) would have
length greater than 1, and thus corresponds to an unphysical
state ρ.

A commonly employed technique to circumvent this kind
of problem is to make use of the maximum-likelihood
estimation (MLE) technique introduced by Hradil [23]. From
the measurement statistics and the supposed knowledge of the
measurement bases, this technique seeks to find a physical
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quantum state that maximizes the (log) likelihood function,
and hence determines the quantum state that is most likely to
give rise to the experimental data.

For a general mixed qubit state and a set of three measure-
ment directions {n̂k} satisfying Eq. (2), one does not always
obtain a physical state via linear inversion. Nonetheless, we
prove in Appendix A 1 that with MLE, the fidelity of the
reconstructed state cannot be worse than that given in Eq. (14),
i.e.,

F(τ ′,ρ ′) � f (ε), (16)

for any qubit state τ ′ and the corresponding state ρ ′ recon-
structed from the MLE algorithm.

B. Multiqubit state tomography

Let us now study the effect of misalignment error on the
tomography of multiqubit states. As we will see below, in the
reconstruction of multiqubit states, entanglement also plays a
nontrivial role in combating the effect of misalignment errors.

1. Multiqubit product states

To start off, note that the simple one-qubit example given
above can be easily generalized to the n-partite scenario if the
source actually produces a product state, i.e.,

τ =
n⊗

j=1

τ (j ). (17)

To see this, we note that the product nature of quantum
states is preserved by the MLE state reconstruction technique
(for a proof of this, see, e.g., Appendix A 2). Moreover, the
reconstruction procedure can be carried out independently for
each qubit. Thus, if we define analogously fn(ε) the worst-case
fidelity in the n-partite case, it follows that

F

⎛
⎝ n⊗

j=1

τ (j ),ρ

⎞
⎠ � fn(ε) = [f (ε)]n, (18)

with susceptibility

S = ∂fn

∂ε

∣∣∣∣
ε→0

= − n√
2
. (19)

Note that the inequality in Eq. (18) is saturated by considering
τ = |ψ+

s 〉〈ψ+
s |⊗n and where all its constituents are measured

with axes defined in Eq. (10) (see also Fig. 2). Clearly, this
shows that the effect of misalignment error may accumulate
with the number of parties. The fidelity itself, fn(ε), as a
function of ε for n � 4 is plotted in Fig. 3.

2. Two-qubit-entangled states

Evidently, in the context of quantum information process-
ing, it is arguably more relevant to look into the robustness of
entangled states with respect to the aforementioned systematic
errors. To this end, we have performed numerical optimization
to determine—for small ε and for fixed amount of entangle-
ment (as parametrized by α ∈ [0, π

4 ])—the worst-case fidelity
F(|ψα〉,ρ) by varying over the misaligned measurement
settings (as parametrized by n̂

(j )
k ) and arbitrary qubit basis

Concurrence sin 2
0 0.2 0.4 0.6 0.8 1

α

0.2

0.4

0.6

0.8

1

maximally entangled state

product state

analytic approx.
numerical data

FIG. 4. Susceptibility of two-qubit pure state |ψα〉 to misalign-
ment error ε as a function of the entanglement present in |ψα〉
(parametrized by the concurrence [24] of |ψα〉). For given α, S(α)
gives the rate of decrease of the fidelity with respect to ε as ε → 0;
S(0) is the corresponding initial slope for the pure product state. The
257 numerical data points obtained from 4 × 104 optimizations are
plotted in a solid line. The dashed lines represent segments of the plot
that can be very well approximated using the explicit parametrizations
given in Appendix A 3.

states |ψ±
j 〉 in

|ψα〉 = cos α|ψ+
1 〉|ψ+

2 〉 + sin α|ψ−
1 〉|ψ−

2 〉. (20)

In our optimization,5 we assume Eq. (3) and focus on
small error, namely, ε � π

200 to determine the worst-case
fidelity F(|ψα〉,ρ) numerically for ε in this domain. We then
estimate numerically the susceptibility, i.e., the initial slope
S (α) = ∇εF(|ψα〉,ρ)|ε=0. The results are shown in Fig. 4.
Interestingly, our results show that in the worst-case scenario,
pure product states are the least robust against systematic errors
that arise from misaligned measurements. In the two-qubit case
(n = 2), Eq. (18) thus provides the worst-case rate of decrease
of fidelity with respect to ε for small ε. It is also interesting to
note that a maximally entangled two-qubit pure state does not
appear to be the most robust against this kind of error.

What gives entangled states more resistance to this kind of
systematic error in the worst-case scenario? At first glance, this
resistance offered by entangled states may look reminiscent
of the robustness offered by entangled states against mis-
aligned reference frames [18–20]. However, since a misaligned
measurement, as explained in Sec. II, is different from a
misalignment of the reference frame, the intuition developed
in that situation is not directly applicable here. Rather,
our uncorrelated, local misalignment errors have mostly an
effect on the local properties on the state, as elaborated
in Appendix A 3b. In this first analysis, the misalignment
errors are uncorrelated in the sense that for each intended
measurement direction, say, for the second party m̂

(2)
k2

, its

actual, deviated measurement direction n̂
(2)
k2

is independent of
the choice of measurement k1 by the first party. To verify this
intuition, we have performed a similar analysis allowing the
actual measurement direction to vary depending on the choice

5To make the optimization more efficient and robust, we have also
provided the gradient of the objection function (with respect to the
parameters of the problem) to the optimization solver.
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of measurement of the other party. Indeed, it turns out that the
pure product state is no longer the most fragile one against
misalignment error in this more general scenario. More details
on this analysis can be found in Appendix A 4.

Coming back to the uncorrelated case, we note that for a
small amount of entanglement, say, α � 3π

32 , the reconstructed
state ρ loses its fidelity with respect to the actual state |ψα〉—as
quantified by 1 − F(|ψα〉,ρ)—predominantly via terms that
are proportional to the length of the Bloch vector of the reduced
density matrix. Since this length cos 2α shrinks as α increases,
clearly, among all the weakly entangled two-qubit pure states,
the pure product state is the most susceptible to this kind of
systematic error. A more formal analysis of this is given in
Appendix A 3.

IV. IMPLICATIONS ON ENTANGLEMENT
CERTIFICATION

While standard quantum state tomography can be carried
out for a system involving a small number of qubits, in the
realms where quantum information processing is advantageous
against its classical counterpart, this complete characterization
is practically infeasible (see, however, Ref. [25]). Next, we
shall look at the implication of misaligned measurements on
partial characterization of quantum state via entanglement
witness.

A. Preliminaries

A witness W for genuine n-partite entanglement is a
Hermitian observable that satisfies

tr (W ρbisep.) � 0, (21)

for all biseparable states ρ(bi−)sep. but is violated by at least
some (genuinely n-partite) entangled states [7,8]. An optimized
entanglement witness W , moreover, satisfies the property that
there must exist biseparable quantum state ρbisep. such that the
defining inequality [cf. Eq. (21)] is saturated. Geometrically,
this means that the separating hyperplane defined by W is
actually tangential to the set of biseparable states (see Fig. 5).

Though being more economical in terms of resource
requirements, we shall demonstrate below that entanglement

False
positive

Biseparable
states

Biseparable
states

Correction
factor w

(a) (b)

FIG. 5. A schematic diagram showing the effect of misalignment
error on the evaluation of an entanglement witness. An optimized
entanglement witness W is tangent to the boundary of the set of
biseparable states. (a) When evaluated using misaligned measure-
ments, the witness can cross the boundary (as Wε) and thus some
biseparable states may appear to be genuinely n-partite entangled.
(b) To correct the problem, one can evaluate the correction factor
w(ε) such that no biseparable state gives a false positive result.

certification via (optimized) entanglement witness is relatively
fragile against systematic misalignment errors (see also Fig. 5).
For definiteness, we assume in subsequent analysis that a
linear entanglement witness W is intended to be evaluated
by measuring local observables M

(j )
kj

= m̂
(j )
kj

· �σ . And as with
the rest of the paper, we assume that due to the presence of
misalignment errors, the actual local observable measured is
N

(j )
kj

= n̂
(j )
kj

· �σ , where the angular deviation of n̂
(j )
kj

from m̂
(j )
kj

is bounded by ε [cf. Eq. (2)].
To incorporate the effect of uncorrelated misalignment

error, one can first determine the correction factor

w(ε) = min
Wε

min
ρbisep.

tr(Wε ρbisep.), (22)

where the minimization of Wε is to be carried out over all
possible Hermitian observables Wε satisfying the constraint
given in Eq. (2). We writeWε∗ the Hermitian observable giving
the minimal value of w(ε).6

The function w(ε) thus gives the worst-case value of the
witnessW with respect to all biseparable states in the presence
of bounded misalignment error ε. If ε is known, the witness
W can then be modified in the following way:

W → W ′ = W − w(ε)1⊗n (23)

such that

tr (W ′ ρbisep.) � 0 (24)

holds true for all biseparable states ρbisep. even if we allow
misalignment error bounded by ε (see Fig. 5).

B. A bipartite entanglement witness and its correction factor
in the presence of bounded misalignment error

Let us now look at some explicit examples. Consider the
following two-qubit entanglement witness constructed from
the singlet state |
−〉:

W|
−〉 = 1

2
1⊗2 − |
−〉〈
−| = 1

4
1⊗2 + 1

4

∑
k=x,y,z

σk ⊗ σk,

(25)
where 1 is the 2 × 2 identity matrix. Clearly, a natural way to
evaluate this witness experimentally involves measurements
in the Pauli bases, i.e., with M

(j )
k given by Eq. (3).

Imagine now a physical system prepared in the separable
state:

|ψ〉 = cos2 χ (|0〉 + ei(π/4) tan χ |1〉)(tan χ |0〉 + e−i(3π/4)|1〉),
(26)

where χ = asec
√

3
2 and, instead of the Pauli bases, measure-

ments were made—due to misaligned measurements—along
the following directions on the Bloch sphere:

n̂
(1,2)
1 =

⎛
⎜⎝

cε

sε√
2

sε√
2

⎞
⎟⎠ , n̂

(1,2)
2 =

⎛
⎜⎝

sε√
2

cε

sε√
2

⎞
⎟⎠ , n̂

(1,2)
3 =

⎛
⎜⎝

sε√
2

sε√
2

cε

⎞
⎟⎠ .

(27)

6Note that by convexity of the set of biseparable states, it suffices to
consider pure biseparable quantum state |
bisep.〉 in the minimization
of Eq. (22).
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An intended measurement on W|
−〉 using |ψ〉 therefore
results in the measurement of

Wε
|
−〉 = 1

4
1⊗2 + 1

4

3∑
k=1

n̂
(1)
k · �σ ⊗ n̂

(2)
k · �σ , (28)

which gives an expectation value of

〈ψ |Wε
|
−〉|ψ〉 = 1

8 (cos 2ε − 2
√

2 sin 2ε − 1), (29)

which is negative for all 0 < ε < π
2 . In other words, as

soon as ε > 0, an evaluation of the above entanglement
witness Wε

|
−〉 using the separable state |ψ〉 will always give
an affirmative, but erroneous certification that the state is
entangled. Numerically, the above strategy also corresponds
to the minimal value that we have found for the optimization
specified in Eq. (22). Therefore, for the witness W|
−〉, our
result suggests that the correction factor w(ε) is given by
Eq. (29).

C. A witness for genuine n-qubit entanglement
and its correction factor in the presence

of bounded misalignment error

Likewise, for the detection of genuine multipartite entan-
glement, let us consider the following n-partite entanglement
witness [26]:

W|GHZ〉 = 1
21

⊗n − |GHZ〉〈GHZ|, (30)

where |GHZ〉 = 1√
2
(|0〉⊗n + |1〉⊗n is the n-partite

Greenberger-Horne-Zeilinger state. An economical way
to measure this witness is to have all the n parties performing
the same measurements [27], i.e.,

M
(j )
k = cos

kπ

n
σx + sin

kπ

n
σy, for k = 1, . . . ,n, (31)

and M
(j )
n+1 = σz. The measurement statistics on these settings

can then be combined to give the desired expectation value of
W|GHZ〉 in the following way:

W|GHZ〉 = 1

2

⎡
⎣1⊗n −

∑
�=±1

(
1 + � σz

2

)⊗n

−
n∑

k=1

(−1)k

n

n⊗
j=1

M
(j )
k

⎤
⎦ .

(32)

In what follows, we provide estimates of the correction
factor w|GHZ〉(ε) of W|GHZ〉—as determined by numerical
optimization—for n � 4, separating the cases of n even and n

odd. This correction factor w|GHZ〉(ε) is plotted for n = 3, . . . ,8
in Fig. 6.

1. Estimated correction factor for even n � 4

For W|GHZ〉 with even n � 4 and ε � π
2n

, numerical opti-
mizations suggest that the correction factor is given by

wn even
|GHZ〉(ε) = − 1

4 sin nε. (33)

This can be achieved by considering the n-qubit biseparable
state

|ψn〉 = 1
2 (|0〉⊗(n/2) + ei(π/4)|1〉⊗(n/2)) ⊗ (|0〉⊗(n/2)

+ e−i(π/4)|1〉⊗(n/2)), (34)
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FIG. 6. The worst expectation value of Wε found using bisepara-
ble states and systematic error ε � 10◦. When ε = 0, Wε reduces to
W|GHZ〉 given in Eq. (32). The curves for n � 4 are computed using
Eqs. (33) and (37), whereas the curve for n = 3 has been obtained
numerically.

for even n � 4, with the following misaligned observables:

N
[j�(n/2)]
k = cos

[
kπ

n
+ (−1)kε

]
σx + sin

[
kπ

n
+ (−1)kε

]
σy,

(35)

and

N
[j>(n/2)]
k = cos

[
kπ

n
− (−1)kε

]
σx + sin

[
kπ

n
− (−1)kε

]
σy

(36)

(see Fig. 7). Clearly, Eq. (33) is negative as soon as ε > 0.
Thus, as with the two-qubit example given above, measuring
the biseparable state |ψn〉 for these imperfectly implemented
witnesses always results in an erroneous certification of the
nonseparability of the state.

XY plane

FIG. 7. Evaluating the entanglement witness W|GHZ〉 with the
intended measurement settings M

(j )
k on the XY plane (drawn here

for n = 4 parties). These settings correspond to equally spaced
measurement directions m̂

(j )
k on the XY plane, with neighboring ones

separated by an angle kπ

n
. The systematic errors considered here

correspond to having these rays moving in pairs towards each other
as ε increases. Measurement directions are deviated according to the
black arrows for qubits numbered j = 1,2 and to the gray arrows for
j = 3,4. Measurement in the σz basis is assumed to stay unperturbed.
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2. Estimated correction factor for odd n � 5

For W|GHZ〉 with odd n � 5 and ε � π
2n

, numerical opti-
mizations suggest that the correction factor is given by

wn odd
|GHZ〉(ε) = 1

4n

[
n − 2 − (n − 1) cos ε+ cos nε − sin nε

tan π
2n

]
.

(37)

This can be achieved using the biseparable pure state |ψn〉 =
|ψ−〉 ⊗ |ψ+〉,

|ψ−〉 = 1√
2

(|0〉⊗n− + e−νi[(3n+ν)π/4n]|1〉⊗n−), (38)

|ψ+〉 = 1√
2

(|0〉⊗n+ + eνi[(3n+ν)π/4n]|1〉⊗n+), (39)

where n± = n±1
2 and ν = (−1)n− . We choose the following

local measurement settings for k = 1, . . . ,n:

N
(j )
k = cos

[
kπ

n
+ g

(j )
k ε

]
σx + sin

[
kπ

n
+ g

(j )
k ε

]
σy, (40)

keeping N
(j )
n+1 = M

(j )
n+1 = σz and defining g

(j )
k =

ν(−1)ksgn [(k − n+)(j − n
2 )].

V. CONCLUSION

Intrinsic uncertainties in measurement devices, which can
manifest themselves in the form of systematic misalignment
errors represent an unavoidable part of any real-life quantum
experiment. In this paper, we show by explicit examples that
the procedure of characterizing quantum resources using state
tomography or entanglement witnesses can be considerably
affected when such systematic errors are not properly taken
care of. For example, when considering pure two-qubit state
tomography, every single degree of misalignment on the Bloch
sphere can potentially lead to ≈1% decrease in the fidelity of
the reconstructed state. For general product states, the worst
loss of fidelity has a scaling that is linear in n, making them
increasingly sensitive to such systematic error.

For the verification of entanglement via an optimized entan-
glement witness, we show that an erroneous certification could
arise whenever there is nonzero misalignment error. While our
demonstration was made for specific entanglement witnesses,
it should be emphasized that all non-device-independent
entanglement witnesses [28] are potentially susceptible to
this kind of imperfection, and the procedure we followed
can also be applied to them. But all is not lost, the effect
of misalignment error, as we have demonstrated, can be
incorporated by modifying a given entanglement witness. In
this regard, it could be interesting to understand the amount of
potential systematic misalignment error present in some of the
state-of-the-art characterizations of quantum resources, such
as those in Refs. [29–31]. Alternatively, entanglement verifi-
cation can also be carried out without such characterization
by implementing device-independent entanglement witnesses
[28,32,33] provided by Bell-like inequalities.

Let us now comment on some further possibilities for future
research. First, for quantum state tomography, our analysis of

entangled two-qubit states focused on pure states; based on
the numerical optimizations that we have done, we conjecture
that the bound given in Eq. (18) holds for mixed two-qubit
states as well. Obviously, similar studies for n-qubit systems
should be carried out for n � 3. The increased resistance
that we have observed in entangled two-qubit states against
misalignment error suggests that entanglement also plays a
nontrivial role in quantum state estimation—something that
deserves to be understood better. For instance, it would
be interesting to see what role entanglement plays when
considering other imperfections, such as mismatched detector
efficiencies. We remind one also that our analysis on the effect
of misaligned measurements was carried out at an abstract
level where, in particular, each measurement basis can be
misaligned differently but in an uncorrelated manner (see,
however, Appendix A 4). In practice, typical errors present in
particular experimental setups may be more (less) general than
considered here, leading to larger (smaller) effects. It would
thus be interesting to adapt the analysis that we have presented
here for some actual physical system (e.g., superconducting
qubits, qubits in ion traps) and see how the effect changes.

Clearly, our work only marks the beginning of a deeper
understanding of how imperfect devices can affect real-life
characterization of quantum resources. In the long run, it is
clearly desirable to develop a general method for computing
the additional uncertainty that should be incorporated in any
figure of merit as a result of any given imprecision in the
measurement device. The joint effect of imperfect devices and
finite statistical error is evidently also a relevant question that
needs to be addressed.

Of course, it is also of general interest to understand
how imperfect measurement settings directly affect quantum
information processing tasks, which evidently require more
than well-characterized quantum resources. To this end, we
note that the effect of imperfect measurement settings on
prepare-and-measure quantum key distribution protocol is
investigated in parallel in Ref. [34].
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APPENDIX: MISCELLANEOUS DETAILS RELATED
TO QUANTUM STATE TOMOGRAPHY

1. Tomography of a single-qubit mixed state

Under the assumption that the systematic misalignment
error is upper bounded by ε, we show in this Appendix that
the minimal fidelity of the reconstructed single-qubit state
ρ with respect to the actual state τ , i.e., F(τ,ρ), is indeed
given by Eq. (14). Throughout this Appendix, we assume that

ε � arccos
√

2
3 ≈ 35◦ and that the state is reconstructed via

linear inversion whenever possible, or otherwise via the MLE
estimation technique.
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Bloch sphere

FIG. 8. A schematic view of the set C of vector �c compatible with
an actual state τ (�t) measured with maximal misalignment error ε; the
set C is shaded in this two-dimensional projection. In our proof, we
work with its enclosing sphere B(�t,tλ) whose boundary is marked
with the dashed line.

a. Outcome data compatible with τ ,ε

We start by noting that for the purpose of state reconstruc-
tion, instead of the outcome probability distribution computed
in Eq. (7), we can just as well work with the vector �c ∈ R3

defined as follows:7

�c such that ck = P (+1|k) − P (−1|k) = tr(τNk). (A1)

In the absence of misalignment error, i.e., when Nk = Mk for
all k, �c is simply the vector of average values with respect to
the Pauli matrices.

We now characterize the set C of �c obtainable from the
actual state τ = (1 + �t · �σ )/2 and bounded misalignment error
ε. Using Eqs. (5) and (A1), we see that �c and �t are related
through a linear transformation:

�c = tr[(n̂i · �σ )τ ] =

⎛
⎜⎝

n̂
(x)
1 n̂

(y)
1 n̂

(z)
1

n̂
(x)
2 n̂

(y)
2 n̂

(z)
2

n̂
(x)
3 n̂

(y)
3 n̂

(z)
3

⎞
⎟⎠

︸ ︷︷ ︸
�t

≡�

, (A2)

where � is a real matrix that encodes the actual measurement
directions, n̂

(x)
k is the x component of the unit vector n̂k; n̂

(y)
k

and n̂
(z)
k are analogously defined. To parametrize C(τ,ε), we

recall from Eq. (2) that the misalignment errors are bounded
such that n̂k satisfies

cos ε � n̂k · m̂k. (A3)

Additionally, we observe from Eq. (A2) that each component
of the vector �c can be written as ck = n̂k · �t . Thus for given
�t , each ck is constrained with an interval. More precisely, the
set C(τ,ε) is a box whose boundaries are specified by vectors
saturating inequality (A3).

To simplify the computation, we now show that C(τ,ε) is
contained inside a ball B(�t,tλ) of radius tλ centered at �t (see
Fig. 8), i.e., B(�t,tλ) ⊃ C(τ,ε), where

λ ≡ 1 − cos ε +
√

2 sin ε, (A4)

and ε � 35◦ ensures 0 � λ � 1.

7There is a one-to-one correspondence between the components of
�c and the measured probability distribution P (±1|k).

Proof. To prove C(τ,ε) ⊂ B(�t,tλ), let us take n̂k that saturate
inequality (A3) and decompose the matrix � in Eq. (A2) as

� − 1 = (cos ε − 1) 13 + sin ε

⎛
⎝ 0 c1 s1

s2 0 c2

c3 s3 0

⎞
⎠

︸ ︷︷ ︸



, (A5)

where si = sin ϕi and ci = cos ϕi . This allows us to determine
the size of the enclosing ball B via the norm of the vector (see
Fig. 8):

�d = �c − �t = (� − 1) �t = t (� − 1) t̂ , t ≡ ‖�t ‖2. (A6)

Since the maximal spectral radius of the matrix 
 in Eq. (A5)
is

√
2, the spectral radius of � − 1 is upper bounded by λ [as

defined in Eq. (A4)]. Then the norm of the difference vector �d
is upper bounded as follows:

d = ‖�d ‖2 � t‖� − 1 ‖2‖t̂ ‖2 � tλ, (A7)

which shows that a ball of radius tλ centered at �t indeed
encloses all vectors �c obtainable from τ assuming bounded
misalignment error ε.

b. Reconstructed states compatible with �c ∈ C(τ , ε)

Whenever the vector �c represents a legitimate Bloch vector,
the reconstructed state ρ follows immediately from Eq. (8):

‖�c‖ � 1 ⇒ ρ = 1 + �c · �σ
2

. (A8)

This is true even if the state is reconstructed by the MLE
technique. Whenever ‖�c‖ > 1, Eq. (8) fails, but a physical state
can still be reconstructed using the MLE technique by finding
a quantum state ρ with Bloch vector �r that maximizes the
likelihood function L(�r),8 where �r is constrained by ‖�r‖ � 1.

By computing the Hessian of log L(�r), one can check that
L is strictly concave in �r , with an (unconstrained) maximum at
�r = �c. Therefore, for ||�c|| > 1, the solution �r ∗ that maximizes
L must lie on the boundary on the Bloch sphere. In particular,
the line segment joining �r ∗ and �c cannot cross the Bloch
sphere; otherwise, it would contradict the strict concavity of L.
We can thus restrict our attention to �r that lies on the surface of a
spherical cap delimited by tangents of the Bloch sphere passing
through �c. In Fig. 9, we plot the vector �r that has the maximal
angular deviation from �t while being perpendicular to the
tangential plane containing �c. Note, however, that depending
on the actual functional form ofL, the state reconstructed from
MLE may have an angular deviation that is less than θ .

What is the maximal θ allowed? Since the outcome vector
�c is contained within B(�t,tλ), the angle θ is maximal when the
line passing through �c and �r is tangent to both the Bloch sphere
and B(�t,tλ) (as shown in Fig. 9). Standard trigonometry then
gives

cos θ = 1 − tλ

t
⇒ �r · �t

t
� 1 − tλ

t
. (A9)

8This can be achieved, for example, by using the iterative algorithm
described in Refs. [23,35,36].
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Bloc
h 

sp
he

re

FIG. 9. Reconstructed state �r ∗ using MLE, compatible with
outcome data �c outside the Bloch sphere. We show in the text that �c
is contained inside a ball of radius tλ centered at �t (dashed line). The
reconstructed Bloch vector �r ∗ lies on the surface of the Bloch sphere.
Moreover, since the function L(�r) is strictly concave—schematic
representation of the contour lines of L(�r) are plotted using dots—�r ∗

is constrained on a spherical cap such that the line segment (drawn
with a double edge) between �r ∗ and �c does not cross the boundary of
the Bloch sphere. The maximal angle θ between vectors �t and �r ∗ is
then obtained (see text) when the mentioned line segment is tangent
to both balls.

c. Worst-case fidelity

We now recall from Ref. [37] that the fidelity function for
single-qubit states can be written as

F(τ (�t),ρ(�r)) = 1
2 [1 + �t · �r +

√
(1 − t2)(1 − r2)], (A10)

which is concave for any given τ , and has maximal value 1
when ρ = τ .

To compute the worst-case fidelity F(�t,�r), we need to
consider two separate cases. For ‖�c‖ > 1, the state ρ is pure
and using Eq. (A9), we get

F = 1 + �r · �t
2

� 1 − tλ

2
� 1 − λ

2
. (A11)

For ‖�c‖ � 1, the reconstructed Bloch vector �r = �c lies
within the Bloch sphere. To compare the minimal fidelity
attainable in this case with Eq. (14), we shall consider the
intersection of B(�t,λt) and the Bloch sphere—a convex set
which we shall denote by B′. Note that B′ is still a superset
of the set of outcome vector �c compatible with τ and bounded
misalignment error ε, hence,

min
‖�c‖�1

F(�t,�c) � min
�c′∈B′

F(�t,�c′). (A12)

By the concavity of L, the right-hand side of Eq. (A15) is
attained at the boundary of B′. Here, we can distinguish two
subcases, namely, the minimizing �c′ ∈ B′ corresponds to a (1)
pure state or (2) mixed state (cf. Fig. 9).

Now, we remind one that the fidelity function, Eq. (A10),
depends only on the inner product between the vectors as well
as their magnitude. Without loss of generality, we can thus
write these vectors in the two-dimensional subspace spanned

by �t and �c′. For example, in the first case, we may write

�t = (t,0) and �c′ = (cos α, sin α) , α ∈ [−αc,αc],
(A13)

while in the second case, we may write

�t = (t,0) and �c′ = (t − λt cos θ,λt sin θ ), θ ∈ [−θc,θc],

(A14)

where αc = arccos( 1+t2−λ2t2

2t
) and θc = arccos( t2+λ2t2−1

2λt2 ).
Minimizing the fidelity for these two subcases, one finds that

min
�c′∈B′

F(�t,�c′) � 1 − λ

2
. (A15)

Likewise, in the scenario where the ball B(�t,tλ) is entirely
contained within the Bloch sphere, i.e., when B(�t,tλ) = B′,
one can apply a parametrization similar to Eq. (A14) to show
that the minimal fidelity also satisfies Eq. (A15). All in all,
we thus see that the minimal fidelity when τ is a mixed state
is always greater than or equal to worst-case fidelity for the
single-qubit pure state, i.e., f (ε) = 1 − λ/2. Thus Eq. (14) is
a valid bound on the minimal fidelity for the arbitrary single-
qubit state.

2. The MLE reconstruction of a product state remains product

It can be shown that the product nature of a multipartite
product quantum state τ = ⊗n

j=1 τ (j ) is preserved during the
MLE reconstruction procedure [36] even if some local errors—
such as the systematic errors envisaged in the main text—were
incurred in the description of the positive-operator-valued-
measure (POVM) elements.

Specifically, let us denote by τ the actual state that under-
goes the state tomography experiment, and let P (a1,a2|k1,k2)
be the conditional probability of obtaining measurement
outcomes a1,a2 for the choice of measurement settings k1,k2,
and let �

(1)
a1,k1

,�
(2)
a2,k2

be the actual local POVM element used
to generate these measurement statistics, i.e.:

P (a1,a2|k1,k2) = tr
[
τ
(
�

(1)
a1,k1

⊗ �
(2)
a2,k2

)]
. (A16)

We prove below the claimed proposition for the bipartite
scenario. Its generalization to the n-partite scenario is evident.

Proposition 2. For measurement statistics gathered by
performing local measurements �

(1)
a1,k1

⊗ �
(2)
a2,k2

on a bipartite
product quantum state τ = τ (1) ⊗ τ (2), any algorithm maxi-
mizing the likelihood function given in Ref. [36] reconstructs
a product multipartite state, even if the algorithm employs a
different set of POVM, say, {�̃(j )

aj ,kj
} �= {�(j )

aj ,kj
} for some j

and kj .
Proof. First, let us recall that the quantum state ρ maxi-

mizing the likelihood function given in Ref. [36] satisfies the
following equation:

ρ = Rρ, (A17)

where the operator R encodes the maximization problem. Our
proof is valid independently of the particular technique used to
solve the maximum likelihood problem encoded in Eq. (A17),
for example, the iterative [36] and diluted algorithms [35]. The

062325-9



DENIS ROSSET et al. PHYSICAL REVIEW A 86, 062325 (2012)

operator R is derived in Ref. [36] as

R =
∑

a1a2k1k2

P (a1,a2|k1,k2)

tr
[
ρ
(
�̃

(1)
a1,k1

⊗ �̃
(2)
a2,k2

)]�̃(1)
a1,k1

⊗ �̃
(2)
a2,k2

. (A18)

We now introduce the ansatz ρ̌ = ρ̌(1) ⊗ ρ̌(2), and substitute
it into Eq. (A17). First, the product structure P (a1,a2|k1,k2) =
P (a1|k1)P (a2|k2) follows by replacing τ = τ (1) ⊗ τ (2) in
Eq. (A16). Then, we exhibit the product structure of R by
introducing ρ̌ into Eq. (A18), giving R = R(1) ⊗ R(2) with

R(j ) =
∑
aj kj

P (aj |kj )

tr
[
ρ(j )�̃

(j )
aj ,kj

]�̃(j )
aj ,kj

. (A19)

We may now rewrite Eq. (A17) as

ρ̌(1) ⊗ ρ̌(2) = (R(1) ⊗ R(2))(ρ̌(1) ⊗ ρ̌(2)), (A20)

and see immediately that original equations can be decom-
posed as analogous equations for the individual subsystems.
Since the solution to Eq. (A18) is unique [35], we thus see that
the resulting reconstructed state must be ρ = ρ̌ = ρ̌(1) ⊗ ρ̌(2),
where ρ̌(j ) is the solution of the single-qubit MLE equation
ρ̌(j ) = R(j )ρ̌(j ).

3. Tomography of two-qubit pure states

a. Parametrization for low entanglement
(concurrence sin 2α � 0.56)

For α in this domain (0 � α � 0.29), our numerical results
can be very well approximated9 by considering

|ψα〉 = ei(2π/3) cos α|ψ+
s 〉|ψ+

s 〉 + sin α|ψ−
s 〉|ψ−

s 〉, (A21)

in conjunction with the actual measurement bases given in
Eq. (3) for both qubits, where |ψ±

s 〉 were defined in Eq. (9).
Note that this parametrization, in particular, recovers the
optimal solution found for α = 0.

b. Robustness against misalignment error for low entanglement
(concurrence sin 2α � 0.56)

Here, we provide some intuition on the observation that
pure two-qubit states become increasingly robust against the
kind of systematic error that we consider as entanglement
(parametrized by sin 2α) increases within the aforementioned
domain (cf. Fig. 4). To this end, let us first rewrite |ψα〉 as a
density matrix, i.e., τ = |ψα〉〈ψα| and remind one that it can
be decomposed in the basis of Pauli matrices:

τ = 1

4

⎛
⎝1 ⊗ 1 + �t1 · �σ ⊗ 1 + 1 ⊗ �t2 · �σ +

∑
ij

Tij σi ⊗ σj

⎞
⎠ ,

(A22)

where �t1,2 are the Bloch vectors of the reduced density
matrices, and T is a 3 × 3 matrix that is responsible for the
correlations between the two qubits.

Note that for small α, τ is weakly entangled and is close
to a product state in the following sense: from Eq. (A21) and
Eq. (9), if we decompose Tij as T = �t1�tT2 + T̃ , we see that
�tj = cos 2αŝ. Then the product term �t1 �tT2 has spectral norm

9This gives a 0.1% relative error in terms of the loss of fidelity.

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1.0

Loss of fidelity

Contribution from marginals

Contribution from correlated part

FIG. 10. Loss of fidelity in the (numerically determined) worst-
case scenario for low-entanglement states, for small ε = π

180 . The
normalized loss of fidelity is plotted as a solid line, contribution from
the marginal terms tr[ρs (ρs − τs)], and the rest are plotted as dashed
lines.

cos2 2α, whereas the spectral norm of T̃ is ||T̃ ||2 = sin 2α.
Rewriting τ as

τ = (1 + �t1 · �σ )

2
⊗ (1 + �t2 · �σ )

2
+

∑
ij T̃ij σi ⊗ σj

4
, (A23)

it becomes clear that the contribution of τ when computing
the fidelity is mainly due to the first term in the sum. If
we now approximate τ by keeping only the first (product)
term in the sum, we approximate the state reconstruction by
solving a set of linear equations analogous to that given in
Eq. (8). The reconstructed state ρ is also a product, as proven
in Appendix A 2, and in particular, the reconstructed Bloch
vector is (cos ε + √

2 sin ε)�tj , which has a norm proportional
to cos 2α. It thus follows that the susceptibility is more
pronounced for smaller α.

We can also understand this more formally by analyzing
the loss of fidelity for small ε = π

180 :

L(α) = 1 − F(ρ,τ ) = 1 − tr (ρ τ ) (A24)

on the optimal ρ and pure state τ obtained from our numerical
analysis.10 Specifically, we write τ = τs + τ̃ with τs = tr2τ ⊗
tr1τ , and similarly ρ = ρs + ρ̃ and decompose L(α) as

L(α) = tr[ρ (ρ − τ )] = tr[ρs (ρs − τs)] + terms in ρ̃,τ̃ .

(A25)
The quantity L(α), as well as the two terms in the right-hand
side of Eq. (A25) are plotted individually as a function of α

in Fig. 10. Clearly, from the figure, we can see that the major
(≈89%) contribution to L(α) comes from the marginal term
tr[ρs (ρs − τs)].

c. Parametrization for high entanglement
(concurrence sin 2α � 0.87)

In this domain of α, the correlation term in Eq. (A22) be-
comes the dominating term in τ and the parametrization given
in Appendix A 3a no longer serves as a good approximation.
Instead, a better parametrization11 to the optimal |ψα〉 and n̂

(j )
k

10The loss of fidelity L(α) is proportional to the susceptibility S(α)
defined in Eq. (15) at first order for small ε: S(α) ≈ L(α)

ε
.

11This gives a 0.2% relative error in terms of the loss of fidelity.
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that we found in our optimization is

|ψα〉 = cos α|ψ+
θ 〉|ψ+

θ 〉 + sin α|ψ−
θ 〉|ψ−

θ 〉, (A26)

where |ψ±
θ 〉 are eigenvectors of

σθ = sin θ√
2

(σx + σz) + cos θσy (A27)

with ±1 eigenvalues and θ ≈ 0.9961. The phase of 〈|ψ±
θ 〉 is

such that 〈0||ψ+
θ 〉 = eiφc+ and 〈0|ψ−

θ 〉 = c−, where c± are
some real numbers and φ ≈ 0.4980.

The state |ψα〉 is then measured along the actual measure-
ments axes

n̂
(j )
1 =

⎛
⎜⎝

cε

sεcγ

sεsγ

⎞
⎟⎠ , n̂

(j )
2 =

⎛
⎝− sε√

2
cε

− sε√
2

⎞
⎠ , n̂

(j )
3 =

⎛
⎝ sεsγ

sεcγ

cε

⎞
⎠ ,

(A28)

where sε = sin ε, cγ = cos γ , sγ = sin γ , and γ ≈ 2.7946.

4. Tomography of two-qubit pure states with correlated
misalignment error

The systematic misalignment errors considered in the main
text are local in the sense that the measurement settings
on the second party deviate from the ideal ones such that
m̂

(2)
k2

is replaced by n̂
(2)
k2

; this deviation does not depend on
the measurement being done on the first party. In contrast,
let us consider now the case where the misalignment errors
are correlated between different parties. This happens, e.g.,
in some ion traps where measurements on one physical
system also changes the state of a neighboring system; or
more commonly when pairs of settings (k1,k2) are measured
sequentially by realigning the measurement devices for each
pair [3]. Then the intended k2th measurement m̂(2)

k2
may deviate

in a different way when measuring the pair (k1,k2) or (k′
1,k2).

We thus replace the ideal measurement settings m̂
(j )
kj

performed

on the j th party by the actual settings n̂
(j )
k1,k2

, which now
depends on k1 and k2.
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1
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↼from main text↽
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FIG. 11. Comparison of the loss of fidelity, as defined in
Eq. (A24) and for ε = π

180 , in the (numerically determined) worst-case
scenario with correlated and local systematic errors. This graph is
comparable at first order to the one in Fig. 4.

We now compare the loss of fidelity in the local and
correlated cases, fixing the maximal misalignment error at 1
degree (ε = π

180 rad) and numerically determine the worst-case
fidelity in both cases. Numerically, we observe that both
correlated and local systematic errors give the same fidelity
drop when τ is a product state: L (α = 0) � 0.025. Our results
are shown in Fig. 11.

For small α, we have seen in Appendix A 3 a that the
state τ has negligible correlated content |T̃ |2. In the correlated
scenario, the major contribution to the loss of fidelity turns
out to come also from the marginal part τs . Moreover,
the correlated errors seem to have a stronger effect on the
correlated content, whose contribution to the loss of fidelity
is negligible for small α. In this regime, we thus observe the
same behavior for the two scenarios.

When the correlated content of τ starts to dominate the
marginal content (e.g., when |T̃ |2 � ‖�t1 �tT2 ‖2, which takes
place for concurrence sin 2α � 0.618), the effect of correlated
systematic errors becomes dominant. In fact, the maximally
entangled state (sin 2α = 1) has the maximal loss of fidelity
in this scenario.
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