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Measure of multipartite entanglement with computable lower bounds
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In this paper, we present a measure of multipartite entanglement (k-nonseparable), k-ME concurrence
Cr-me(p), that unambiguously detects all k-nonseparable states in arbitrary dimensions, where the special case 2-
ME concurrence C,_pg(p) is a measure of genuine multipartite entanglement. The measure k-ME concurrence sat-
isfies important characteristics of an entanglement measure, including the entanglement monotone, vanishing on
k-separable states, convexity, subadditivity, and being strictly greater than zero for all k-nonseparable states. Two
powerful lower bounds on this measure are given. These lower bounds are experimentally implementable without
quantum state tomography and are easily computable as no optimization or eigenvalue evaluation is needed. We
illustrate detailed examples in which the given bounds perform better than other known detection criteria.
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I. INTRODUCTION

Entanglement as a physical resource plays an important
role in quantum information, such as quantum communication
[1-9] and quantum computing [10,11]. So it is significant
work to quantify entanglement not only in theoretical research
but also in practical application. One of the main goals
of the theory of entanglement is to develop measures of
entanglement. Several entanglement measures [12—14] have
been introduced, such as entanglement distillation [15-17],
entanglement cost [17,18], entanglement of formation [17,19],
negativity [20,21], three-tangle [22], and localizable entangle-
ment [9,23]. These measures, except localizable entanglement,
are entanglement monotones [12-14] in that they cannot
increase under local operations and classical communication
(LOCC), whereas localizable entanglement can deterministi-
cally increase under LOCC operations between all parties [24].
In a bipartite setting, entanglement cost, entanglement of
formation, and negativity are convex; moreover, entanglement
cost and entanglement of formation are also subadditive.
It is an open question whether entanglement distillation is
convex [12]. The negativity fails to recognize entanglement
in positive partial transpose states. In the multipartite setting,
three-tangle is invariant under permutation of the three systems
and is, in fact, an entanglement monotone for three-qubit
systems. However, there are states with genuine three-party
entanglement for which the three-tangle can be zero (the
W state serves as an example [22]); i.e., the three-tangle
has the disadvantageous property that it vanishes for some
entangled states. Localizable entanglement [23] requires an
underlying measure of bipartite entanglement to quantify
the entanglement between the two singled-out parties. When
concurrence was used as the underlying measure of bipartite
entanglement, Gao et al. [9] derived an easily computable
formula for localizable entanglement in the three-qubit case.
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The concurrence is a very popular measure for the
quantification of bipartite quantum correlations [12,13,25,26]
and is also defined for bipartite high dimensional states [27],
but it is not computable because of optimization for bipartite
high-dimensional mixed states. For multipartite quantum
systems, although there are some criteria [13,28-37] to
detect genuine multipartite entanglement, there is no
computable measure quantifying the amount of multipartite
entanglement in general. Ma et al. [38] defined a generalized
concurrence called the genuine multipartite entanglement
(GME) concurrence which satisfies the necessary conditions
for a genuine multipartite entanglement measure [39,40].
Although for general mixed states it is not computable owing
to the optimization, they gave lower bounds [38,41]. What we
are looking for is a multipartite entanglement (ME) measure
whose values vanish with respect to k-separable states but are
strictly positive for k-nonseparable states.

In this paper, we introduce a generalized concurrence
(the k-ME concurrence) for finite-dimensional systems of
arbitrarily many parties as an entanglement measure, which
satisfies important characteristics of an entanglement measure,
such as the entanglement monotone, vanishing on k-separable
states, invariant under local wunitary transformations,
convexity, subadditivity, and being strictly greater than zero
for all k-nonseparable states. This multipartite entanglement
measure unambiguously detects all k-nonseparable states in
arbitrary dimensions. The GME concurrence [38,41] is a
special case of our k-ME concurrence when k = 2. We show
that strong lower bounds on this measure can be derived by
exploiting close analytic relations between this concurrence
and recently introduced detection criteria for multipartite
entanglement [32-34]. Then we provide examples in which
the entanglement criteria based on our lower bounds have
better performance with respect to the known methods, the
lower bounds obtained by Refs. [38,41].

II. MULTIPARTITE ENTANGLEMENT

Before we state the definition of the multipartite entangle-
ment measure, k-ME concurrence, and its lower bounds, an
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introduction of the concepts and notation that will be used in
the subsequent sections of our article is necessary. Throughout
the paper, we consider a multiparticle quantum system H =
T Hi=Hi®H,®---®H,, with n parts of respective
dimension d;, i = 1,2,...,n. A k-partition A;|As|---|Ax
(of {1,2,...,n}) means that the set {A|,A,,..., A} is a
collection of pairwise disjoint sets, and the union of all sets
in {A},A,, ..., A} is {1,2, ... .n} (disjoint union | J*_, A; =
{1,2,...,n}). An pure state |{) of an n-partite quantum
system H is called k-separable if there is a k-partition
AllAz] - |Ax =j]1 "‘jr:1|j12“'j;122|"'|j1k"'j;fk such that

W) = 1¥a V2, - 1Y) as (M

where |;) 4, is the state of subsystem A; and disjoint union

k kot . .
Ui—i Ar = Uil s i ¥ =1{12,...,n}. An n-partite
mixed state p is k-separable if it can be written as a convex
combination of k-separable pure states,

1% :sznhlfmﬂl[’m'v (2)

where {|¥,,)} might be k-separable with respect to different
partitions. Thus, a mixed k-separable state does not need to
be separable under any particular k-partition. In general, k-
separable mixed states are not separable with regard to any
specific partition. If an n-partite state is not two-separable
(biseparable), then it is called genuinely n-partite entangled.
It is called fully separable, iff it is n-separable.

Note that whenever a state is k-separable, it is automatically
also k’-separable for all 1 < k’ < k. If we denote the set of all
k-separable states by S; (k =2,3,...,n) and the set of all
states by S, then each set S is convex and embedded within
the next set, S, C S,—1 C --- C S C §j, and the complement
S1\Sr of S; in S; is the set of all k-nonseparable states. In
particular, the complement S1\S; is the set of all genuine
n-partite entangled (2-nonseparable) states. We illustrate the
convex nested structure of multipartite entanglement in Fig. 1.

III. A MEASURE OF MULTIPARTITE ENTANGLEMENT
AND ITS LOWER BOUNDS

Let us now introduce a measure of multipartite entan-
glement (k-nonseparable) that unambiguously detects all k-
nonseparable states in arbitrary dimensions. For n-partite
pure state |) e H1 @ Ha ® -+ ® H,, where dimH,; = d|,

FIG. 1. Illustration of the convex nested structure of the sets S
of all k-separable states. Each set is convexly embedded within the
next set: S, C S,—1 C --- C S, C Sy, and the complement S;\S; of
Sk in S is the set of all k-nonseparable states.
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[ =1,2,...,n, we define the k-ME concurrence as

k T 2
Coose1¥) = min 2(1_ Z#H)

3)

A

_ Jzzle [1-Te(p3)]

= min )
k

where p4, = Trg (|)(¥]) is the reduced density matrix of
subsystem A, (A, is the complement of A, in {1,2,...,n})
and the minimum is taken over all possible k-partitions A =
Ayl |Ag of {1,2,...,n}. Obviously, Cr_me(|Y)) depends
not only on |¢) but also on the number k. However, it
is independent of k-partitions. It should be pointed out
that Cy_me(J¥)) is nonvanishing if and only if [¢) is k-
nonseparable; that is, Cr_me(|¥)) equals to zero if and only if
|) is k-separable.

For the n-partite mixed state p, we define the k-ME
concurrence as

Come(p) = inf > puCime(l¥m)), “)

where the infimum is taken over all possible pure state de-
compositions p =Y P |¥m)(¥m|. Specially, when k = 2,
C>r_Mme(p) is a measure of genuine multipartite entanglement.
Note that the GME concurrence [38] is our special case
Cr-me(p), and the GME concurrence Cgmg is equal to
\L@C27ME(,0)'

The k-ME concurrence Ci;_mg(p0), a measure of mul-
tipartite entanglement, satisfies the following useful prop-
erties: (1) Cy_me(p) =0 for any p € S; (vanishing on
all k-separable states). (2) Cr_me(p) >0 for any p €
Si\Sk (strictly greater than zero for all k-nonseparable
states). (3) CkaE(U]iocalpULocal) = Cyx_me(p) (invariant un-
der local unitary transformations). (4) Cy_me(Arocc(p)) <
Cr—me(p) (entanglement monotone: nonincreasing under
LOCQ). (5) Cx—me(D_; pipi) < Y_; piCr_me(p;) (convexity).
(6) Cr—me(p ® 0) < Cr_MmE(p) + Cr—MmE(0) (subadditivity).

IV. LOWER BOUNDS

A. Statement of results

Let |p(x)) =Q®]_1xi) = [x1x2---x,) be a fully
separable state on Hilbert space H=H; Q H, ® --- @ H,,
and |®;;(x)) = |¢;(x))|¢;(x)) be a product state in
H®2,  where |§i(x)) = |xix2 - Xi_1X/Xi41 - X,)  and
[j(x)) = |xix2-- -xj,lx}xjﬂ -+ x,) are the fully separable
states obtained from |¢(x)) by applying (independently)
local unitary transformations to |x;) € H; and |x;) € H;,
respectively. Let Py denote the operator that performs
a simultaneous local permutation on all subsystems in
H® =(H @H, ® -+ @ H,)®%, while P; just performs
a permutation on H,»®2 and leaves all other subsystems
unchanged. That is, P, = Py o P, o --- o P,, where P; is the
operator swapping the two copies of H; in H®2. For instance,
Prot|x1x2 -+ X)) [y1y2 - Ya)=|y1y2 -+ Yu)IX1%2 - - - X ), While
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Pilxy - X XX X)) Y0 Yic1YiYigt o Ya) = X
Xi 1 YiXigl - Xa) Y1 Yio1XiYig1 o+ ya)- Let
I(p.d) = 3\ (@4 ()]9%2 Prt| ;5 (x)
i#
= 3 (@)1 B p® Py ()
i#]

— =0 Y (@) P po2 Py (0).

4)
then we have the following bounds.
For bound 1,
Cr-Me(p) = Hili(p,¢(x)), (6)
where
H, = mm vk = min L
. Zle n(n —n;) Tim =n m
(N

Here the minimum is taken over all possible k-partitions A =
Aq|---|Ag of {1,2,...,n}, and n, is the number of elements
in A;.

Particularly, when k = 2,
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Our bound 1 is stronger than lower bound 1 in [41] since H,
is greater than o That is, our lower bound 1 is more

ﬁ(
powerful than that in [41].
For bound 2,
Cr—Me(p) > poax H[I(p,¢(x)) + I(p,d(»))], (10)
where
k 1
H, = m1n vk — H. (11)

\/221 (n(n —ny) \/E

Here |¢(x)) = ®;_,|x;) and [¢(y)) = ®]_,|y:) are fully sep-
arable states in Wthh |x;) and |y;) are orthogonal. The proof
of the two lower bounds above is given in the Appendix.

B. Examples

Example 1. Consider the n-qubit state family given by a
mixture of the identity matrix, the W state, and the anti-W
state:

1—(a+b)
Pn = 2—
|Wn>=JLE(|00---001>+|00---010>+---+
110---000)) and |Wn>=ﬁ(|11...110>+|11...101>+
-4 [01---111)). Let [¢(0)) = [0)®" and |p(1)) = [1)®";

Ly + alW,) (W, | + b|W,) (W,|, (12)

where

2 n is even, then |¢;(0)) =0---010---0) and |¢;(1)) = |1---101---1)
H={" ) ] (8) can be obtained by applying the bit-flip operation o, on the
Ty Misodd. ith qubit of |#(0)) and |¢(1)), respectively.
Whenn > 3,
Therefore
’ n2n—k—1)(1—a—>b)
Con(p) > {%b(ﬁ»‘ﬁ(}c)), n is even, o) 1on,9(0)) = (k = Da = 2n > 13
2-ME(Q) 2 2 . Mm—k—1X1 —a —
7=y 2(0,¢(x)),  mis odd. Ie(on (1) = (k — 1y — 21—k 2,,)( =2 aw
Whenn = 3,
(1 —a—b)(3—3a+5b) 33—k —a—>b)
Ii(p3,¢(0)) = (k — Da \/ 3 B , (15)
(1 —a—b)(3+5a—3b) 33 -k —a—b)
Ii(p3,¢(1)) = (k — Db — — 3 B (16)
Our bound 1 inequality (6) is
c < {maX{Hka(pn,¢>(0)),Hk1k(:0n,¢>(1))}, n>3, (a7
ME T | max{ Hi Li(ps.(0), Hi li(p3,6(1)}, 1 =3,
. NG
where H; = min g \/z—ifv
=1 =n n 721: ”r2
Particularly, 1
max {%Iz(p,,,q)(O)),%Iz(pn,qb(l))}, n > 3 and n is even,
Croye > | max { 2= L0, 0(0)). 5= L(oa.¢(1)}.  n >3 and n is odd, (18)
max { 7= 1(03,6(0)). 75 L (3. p(1)}, n=3.
Lower bound 1 in [41] gives
1
CGME 2 max {[( 2(pns¢(0))s f( [2()0;17¢(1))} n > 3, (19)
max {zflz(m $(0)), 575 (o3, ¢(1))} n=3.
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Obviously, for the genuine multipartite entanglement measure,
our lower bound 1 (inequality (18)) is better than that in [41].

The detection parameter spaces of our bound 1 and bound
1 in [41] of genuine five-partite entanglement are illustrated in
Fig. 2 for the family ps of five-qubit states. The area detected
by our bound 1 is larger than bound 1 of [41] when the two
lower bounds are equal.

L1 d(0) + La(pa. (D],

Cr Mg 2 V2

S
1|

T‘

—_

Whenn > 3, and |®D) =
and |[¢) =

[15(pn,0(0)) + Lx(0,, (1)),
HL(p3,0(0) + L(p3,0(1)],

|0Y®"]1)®" or (%)W( %)‘3", bound of Ref. [38] cannot detect entanglement at all. When n > 4,
|p(0)), (1)), or |¢;(0)), lower bound 2 in [41] cannot detect entanglement at all. Therefore, for the family of n-qubit
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Our bound 2 inequality (10) is as follows:

== Hi (0. $(0) + Li(pn.p(1)], 1 > 3,
Cr—mE > ‘/15
ﬁHk[lk(03,¢(0)) + Li(p3,9(1))], n=3.
(20)
Particularly,
n>3 and niseven,
n>3 and nisodd, 2D
n=23.

states that is the mixture of the W state and the anti-W state, dampened with white noise, our lower bounds are better than bounds

1 and 2 of Ref. [41] and the bound of Ref. [38].
Example 2. Let us consider the family of n-qubit states

P9 = a|Gu) (Gl + BIW,) (W] +

l—a—p8

L
on

(22)

which is the mixture of the Greenberger-Horne-Zeilinger (GHZ) state, the W state, and the white noise. Here |G,) =

5(100---0) +[11--- 1)) and [W,) = —-(/00- --
For the selection [¢(0)) = ®7_,|x;) =

001) 4100 - - -
|0)®" and |x) = |1), our bound 1 gives

010) + - - - + |10 - - 000)).

1

l—a—

—a—B

Creome(p 9"y > Hy [(n — DB —n(n — 1)/ (%

2}1

)

Let |[¢(x)) = ®7_,|x;) = (w)‘@” and |x]) = %; our bound 1 gives
(n— l)(n (n=DH(n=28 1+a B, (n— 4)2ﬁ I+a—p+np (n—=2)*B+n(1—a—p) .
3 —nn—1) + ; — (n — k)(L=2LEnCoem Py ] n is even,
R [ e N (st
Hy[(n — D(2e28 _y [(1ech | 0w pingy (@20t )] s odd,
(24)
For the selection |®) = |0)®"|1)®", from (17) in [38],
o _ ol(B 4 lma=Byil-a=f\: _ (24 4 1e3)(la=p .
Come(p Gy > 2[2 C”(” T )2( 2 )2 (C” +o 3G )( 2 )]’ n1s even, (25)
ofs - U+ ) () (G4 )], misod
Here C! is a binomial coefficient, and L 5] is a nonnegative integer no greater than 7. Let |®) = (—‘OZJ/%M )®”(—|0>\;5|1) )& from (17)
in [38],
1 1
15 48\ # 48\ %
Come(p' @) > 2[32 (1 —a+ ?'3) (1 +o+ ?'3) } (26)

The detection quality of our bound 1 and the bound in [38] on the genuine multipartite entanglement is illustrated in Fig. 3 for

the family p(@s—Ws),

V. EXPERIMENTAL IMPLEMENTATION
OF LOWER BOUNDS

The two lower bounds, (6) and (10), are experimentally
accessible by means of local observables, without quantum
state tomography, which requires exponentially increasing
measurements. Since the nonlocal observable is not straight-
forward to measure in practice, the observables that can
easily be measured in any experiment are local observables.

In order to be useful in practice, measures for multipartite
entanglement need to be experimentally implementable by
means of local observables without resorting to a full quan-
tum state tomography. Lower bounds (6) and (10) satisfy
these demands because, for fixed |¢(x)), their computations
only require at most n>+ 1 and 2n”+ 2 measurements,
respectively. Furthermore, they can be implemented locally

as explicitly shown in [34]. In total at most M +n+1
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red lines I and i: the lower bound is 0

blue lines II and ii: the lower bound is

10
i green lines I11, iiil and iii2 : the lower bound is L.
5
0.8+
Sl solid lines I, II, and III: our bound 1
N dashed lines i, ii, and iii: bound 1 in [41]
0.6 AN N
04+
I(i)
02+
0.0 0.2 04 0.6 0.8 1.0 a

FIG. 2. (Color online) The detection quality of our lower bound 1
and that in [41] on the genuine multipartite entanglement concurrence
is shown for the family ps = 1_3"2_}’ I3o + a|Ws)(Ws| + b|Ws)(Ws| of
five-qubit states, where |Ws) = %(|00001) +100010) + [00100) +
|01000) + [10000)) and |Ws) = %(|11110) + [11101) + [11011) +
[10111) + |01111)). The region above line I (red) corresponds to
the genuine five-partite entanglement detected by our bound 1, our
criteria in [32,34], and bound 1 of [41]. The regions above line II
(blue) and line III (green) correspond to the genuine five-partite
entanglement detected by our bound 1 when it is equal to or greater
than II—O and %, respectively. The states above dashed line ii (blue),
dashed line iiil (green), and dashed line iii2 (green) are detected by
bound 1 of Ref. [41] when it is equal to or greater than 1, 1, and £,
respectively. Thus, the area detected by our bound 1 is visibly larger
than that of [41] when the two bounds are equal.

and 5n% — 3n + 2 local observables are needed to implement
our bound 1 and bound 2, respectively. In an experimental
situation, it is now possible to choose the corresponding |¢(x))
and not only detect the state as being k-nonseparable but also
have a reliable statement about the amount of multipartite
entanglement the state exhibits.

VI. CONCLUSION

We have presented a measure of multipartite entanglement
called k-ME concurrence that unambiguously detects all k-
nonseparable states, and we have studied multipartite entangle-
ment of quantum states in arbitrary dimensional systems. This
measure satisfies important characteristics of an entanglement
measure, such as the entanglement monotone and vanishing
on all k-separable states. The three main advantages are that
k-ME concurrence is convex, subadditive, and strictly greater
than zero for all k-nonseparable states. The GME concurrence
[38,41] is a special case of our k-ME concurrence when k = 2.
Two powerful lower bounds of k-ME concurrence Ci_mg(p)
for n-partite mixed quantum states through inequality (3) from
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n=5,k=2

solid lines I and II: our bound 1
dashed lines i and ii: bound in [38]

0.8F

red lines I and i: bound 0

green lines Il and ii : bound L.
5

0.6

0.4

0.2

1

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. (Color online) The detection quality of our lower bound
1 and the bound in [38] on the GME-concurrence is shown for the
family of five-qubit states ps = «|Gs)(Gs| + B|Ws)(Ws| + %132
given by the convex combination of a GHZ state, a W state, and the
maximally mixed state. The areas above the solid red line labeled I
and the dashed red line labeled i are the genuine five-partite entangled
states detected by our bound 1 and the bound of [38], respectively. The
states in the areas above the solid green line labeled II (dashed green
line labeled ii) are the genuine five-partite entangled states detected
by our lower bound 1 (the bound of [38]) when the bound is equal to
or greater than 1.

Ref. [34] are given. We provide examples in which the lower
bounds perform better than other previously known methods.
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APPENDIX: PROOF OF TWO LOWER BOUNDS

Any pure quantum state of an n-particle system can be
denoted by vectors in Hilbert space H =H; Q H, ® -+ ®
‘H,, as follows:

W)= Y Chipeilitia-in), (Al)
i1,02, 0y
which can be rewritten as
W)= Y Cpovslvava) (A2)

YA VA,
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where {[i;)} is the orthonormal basis of 7; and a basis vector of subsystem A, is denoted by [ya,) = |ijiijs---i fﬁz>'
Here A|As| -« |Ax = jilj3 - ja 1jfi3 -+ jil---1jfj5 -+ jk is a k-partition of {1,2,...,n}, and A, is the complement of
subsystem A; in {1,2, ... ,n}. Thus,

— - — * —
pa, = Trg (YN y) = E 2 Cyacvi, Cna, v, |va)na,| = E Py, |4, )14, | (A3)
YA sNA; YA, VZYRLIY
and
2 2 2
Z |pyAr*r’Ar| = Z |’OVAHVA:| + 2 Z |’0VA1*7]A:‘ ’ (A4)
YA MA; YA, Sya, <Sna,
where s, = Y ijdji1djigy -+ - dydyyy and dyyy = 1. 1t follows that
2 2
1- Tr pA § :pl//x, )/A, pVA,,VA,) -2 § |:0y/\,,m,| =2 § (IOVA,,VA, Pnacna, — |pyA,,nA, )
Sya, <Sna, Sya, <Sna,
=2 E E |c c 2 E c c ct
- YA YA, ~NA A, YArVA “NAA "N YA, VA4,
Sya, <Sna, YAy N4, Y NA,
2
=2 § : § : |C7A1VA’,C’7A,'7A} = Cna,vi, Cyams, (A5)
Svar <Sna, Svg, <Sng,
1. Bound 1
From (A5) we have
k 2
k _
2 Zt:l [1 — Tr(pir)] _ 42[:1 ZSVA, <S4, ZSVA’ <Sng, ’C}’A, vi, Cnani, Cnacvi, Cyana,
k k
43* :
Do Zmr\=1,|ym’|z1 |C7]A10,cft Coqmiz, — €04,04 Cna,ng,
> k , (A6)
where 04, = (i1 iz, i) e )= (0,0, ...,0). Here |n A,| and |n 4 | represent the number of 1 in n4, and 74, , respectively. Next,

we deal with (A6) By using the 1nequa11ty n Z -1 |a;|? (Z _lai [)? (a; is a complex number) and the triangle inequality, we
obtain

2% 1 = Tr(p? 2 .
\/ Zt-l [ p ( At)] Z Z (}CWA,OA’, COA,’M, - COAxOff/ c”ArnA] |)
\/th (e —np) =1 g, =1

|77A,| =1

k
2
Z Z (’C']A/OA-;COAI']A} - |C0A10A',C77A1’7A}|) 2 Hi O, (AT)
\/kZ, (=) =1, =1
Ingl=1
from which it follows
2 = Te(p?
Cime(1¥) = mA;n\/ = | p CL g, (A8)
where
k
H; = min vk (A9)
v/ 21;:1 n;(n —n;)
and
2
Qk =2 Z |Ci1---i,, o 2 Z |CO---OCi1-"in - (n - k) Z |Ci,---i,,| . (AIO)
Sy in < Sty G =2 LG, i)|=1

Grsees in)| =
1y -y L)l =1

Here |(iy, . ..,i,)| denote the number of i; = 1 in {iy, ...,i,}.
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Now suppose that p =Y pwp™ = Y, Pm|¥m)(¥m| is an n-partite mixed state where [v,,) = >, . ¢ |iv--+in).
Using (4) and (A8), we see
Ceovi(p) = inf > puCime(¥m)) > He _inf > p, OF. (A1)
{Pms[¥m)} - {Pm, [ ¥m)} -
Let |¢(0)) = |00---0) and 0’ = 1; we have
1o (@) =23 P a et 0| 2 D JPooPILE T T T — @ =R Do Pt st g (A12)
i<j i<j i
Here d,+; = 1. Considering the three terms of (A12), we get
2 Z ‘pn;’;]H d, ]_[,":le d < 2 Z Pm Z ‘,01"—1[7:‘;1 . l_[;‘:j1+l d,‘ = Z Pm 2 Z |CZL...I'HC;7...[” ) (A13)
i<j m i<j m Siyeein < Slyoly
|Gy in) =1
[P Il =1
J— m m
2 ;: \/ PO.OPITA dt T di T i+ T d = 2 ; ( ; Pm p0,0> ( ; PPyt gL TIS d T d,)
>3 |2 D0 ebocal ] (Al4)
m [G1senin)|=2
2
TR SETTRTIE YR SR @19
i m (Gt vooi) =1
Combining (A13)—(A15), we obtain
2
LoD <Y pu |2 > el =2 D ot —m—k > T =D pmor,
m Siyoin < Sty (G| =2 (G| =1 m
[P in) =1

I Ll =1

which implies that

Li(p,»(0) < inf m O
K(0.6(0) {Mw};p Q;

Therefore, from (A11),

Ci—me(p) = HiIi(p,9(0)).

Since, for any fully separable state |p(x)) = ®!_;|x;) = |x1x2--
U, ® - ® U, such that U|¢(0)) = |¢(x)), HIx(p,¢(x)) is also a lower bound because
local unitary transformations. Therefore we have

Cr—me(p) 2 (max, Hili(p,¢(x)) = Hili(p,¢(x)),

as desired.
Particularly, when k = 2,

n is even,

25(p.¢(x)),

Come(p) > .
o 2 L(p.p(x). nisodd.

Since H; is greater than — !

T’ our lower bound 1 is stronger than that in [41].

062323-7

(A16)

(A17)

(A18)

- Xp,), there exists a local unitary transformation U = U; ®

of the invariance of Cy_mg(p) under

(A19)

(A20)
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2. Bound 2
From (AS5), we get
k 2
2)n [1 - Tr(PA,)]

k
ID 3D SN SN - ’

1=1 Zasy, <sny Zasye <sie |Cvacva Cnama, T Cnava Cvams,

k
4k 2 2
Zt:l > a1 =1 |C77A,0A', €0z, — €005 Crang, | T > mal =n =1 |Cna g, Clang, — Cla 1z, Cnang,

> Ingl=1 g l=n—n—1 (A21)

k
Similar to the proof of bound 1,

Jzzf;l [1-Te(p3)]

k
) k
> k Z Z |C'IA10A', COxng, ™ €04, 05 Crang, | T Z |C71A11A',C1A, ni, — Cla 1, Cnang,
\/Zk Dzt —=ng) =1 | =1 Il =n; =1
nil=1 Ingl=n—n—1
) k
> p Z Z (|CnA,O,s,COA,n,;, - |COA;0A}C'7A;77A] )+ Z (|CUA11A,CIA,77/{, - iCIA,lA’,CnA,nA’, )
\/Zk 2 u(n—ng) =1 | gy =1 Il =n; 1
L Ingl=1 mil=n—n—1
vk 5
> - (Or + O0)- (A22)
\/2 Do ne(n —ny)
So we get
Ce—me(1¥) = H(Qr + ), (A23)
where
_ k H,
Hj = min vk - 75 (A24)
\/2 Zle n;(n —ny) 2
2
Q=2 Y eqeichen] =2 D> |eooCii| ==k > e, (A25)
Syt < Syt (i1 =2 (it eesii) =1
Groeein) =1
[y )l =1
- 2
Qk =2 Z }cil"'incll“‘ln| -2 Z |Cl---1ci1~~-in — (n — k) Z |Ci1--~in (A26)
Siyin < SIy oy [Gi1yeensin)|[=n—2 [Grseesin)|l=n—1
Gy in)l=n-1
[hsees Il =n—1
Now suppose that p =) pup™ =), Pm|¥m){¥m| is an n-partite mixed state where [¢,) = Zil,...,in et i liv i)
Using (4) and (A23), we see that
Cove(o) = inf > puCinellVm)) > He inf > pu(Qf + OF). (A27)
o[} = o)} &

Let |¢(1)) = [11---1) and " = O; then

Li(p,¢(1)) =2 2 ’/Oz,# A1 duy, 315 dl+ldl+2"'dn+l’ -2 2 \/pzl diy1dipa-digr, Y, d1+1d1+2"-dn+1pzl¢,;j div1diadpyr, 3214 dividipadot

i<j i<j

—(n—k) 2 : 'OZ#, dieidisodysr, Yo disdiso - dpgr 0
i

062323-8

(A28)
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where d, 1 = 1. For the first term of (A28),

2 Z |'021¢1 diprdisg - dnsrs Yo dirdiadog ’ < Z Pm |2 Z

i<j

For the second term,

PHYSICAL REVIEW A 86, 062323 (2012)

m m

|C,‘]...,‘n Cly-, . (A29)
Siyein < Sijdy

|Gy, =n—1

[y, )l =n—1

2 2 : \/PZ, digrdiy-dygr, Yoy digrdigy - dyg pzl#i,, dierdissdysr, Do divrdipaedog

i<j

i<j m

m
i1ein

> me 2 Z |ci’fnlc
m

[Gi1,esin)|l=n—2

For the third term,

(n—k) Z Py i dividigadnin, Y diidiaduy = Z Pm | (n—k)
i m

Combining (A29)—(A31) gives

I(p.¢(1) < > puOF.

From (A16), (A27), and (A32), we obtain

Cimi(p) = Hi[Ii(p,9(0)) + I(p,(1))].

7_1lxi), there is a local unitary transformation V=V, ® V,®---®V,

Note that for any fully separable state |¢(x)) =

j— m
=2 Z (Z p'"’oz, diyidipa-dagr, Yy diprdia - dag

p p'n
Z MY i drrdigasdugys 3y j dirdigadog
m

(A30)

(A31)

2
Z |Ci|~~~l'”|

[G1,eein)|=n—1

(A32)

(A33)

satisfying V[¢(0)) = |¢(x)) and V|p(1)) = |¢(y)). Thus Hy[Ii(p,¢(x)) + Li(p,¢(y))] is also a lower bound because of the
invariance of Cy_pg(p) under local unitary transformations, so we have

Ci—me(p) = (ohax Hi[I(p,d(x)) + L(p, ()] = Hil Ik (p,¢(x)) + L(p, ()]

¢ (x). ¢}

(A34)

Here |¢(x)) = ®!_,|x;) and |¢(y)) = ®!_,|y;) are fully separable states in which |x;) and |y;) are orthogonal. The proof is

complete.
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