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Minimal input sets determining phase-covariant and universal quantum cloning
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We study the minimal input sets which can determine completely the universal and the phase-covariant
quantum cloning machines. We find that the universal quantum cloning machine, which can copy an arbitrary
input qubit to two identical copies, however, can be determined completely by only four input states located at
the four vertices of a tetrahedron in a Bloch sphere. The phase-covariant quantum cloning machine, which can
create two copies from an arbitrary qubit located on the equator of the Bloch sphere, can be determined by three
qubits located symmetrically on the equator of the Bloch sphere with equal relative phase. These results sharpen
further the well-known results that Bennett-Brassard 1984 protocol (BB84) states and six states used in quantum
cryptography can determine completely the phase-covariant and universal quantum cloning machines. This can
simplify the testing procedure of whether the quantum clone machines are successful or not; namely, we only
need to check that the minimal input sets can be cloned optimally, which can ensure that the quantum clone
machines can work well for all input states.
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I. INTRODUCTION

The no-cloning theorem, which states that an unknown
quantum state cannot be cloned perfectly [1], is fundamental
for quantum information science [2]. However, one can attempt
to clone quantum states imperfectly, but have optimal fidelity
or the largest probability. In the past years, different schemes
of quantum cloning have been proposed, and various quantum
cloning machines are designed for different tasks [2–5]. The
quantum cloning machine was first proposed to clone an arbi-
trary qubit to two equal qubits [3]; neither of them are identical
to the original qubit, but both are close. The quality of the
quantum cloning does not depend on the specified form of the
input qubit, so it is called universal quantum cloning machine
(UQCM). This cloning machine has been proven to be optimal
in the sense that the fidelity between the input qubit and one of
the two output qubits is optimal [6]. The UQCM is extended
to the higher-dimensional case [5], the case with M identical
input states to N equally copies [7], and some other cases
[8–16], including the recent proposed unified forms [17,18].

A qubit can be represented as |ψ〉 = cos(θ/2)|0〉 +
sin(θ/2)eiφ|1〉, where θ ∈ [0,π ],φ ∈ [0,2π}; it corresponds
to a point in a Bloch sphere (see Fig. 1). For the UQCM, the
input can be arbitrary qubits; the fidelity is optimal and does
not depend on the input qubit. However, if we restrict the input
state to the equatorial qubit which is located in the equator of
the Bloch sphere |ψ〉 = (|0〉 + eiφ|1〉)/√2, one can find that
we can clone it better using a different quantum cloning
machine than that of UQCM. This cloning machine is phase
covariant in the sense that the quality of the cloning, similarly
quantified by the fidelity, does not depend on the phase
parameter φ of the input state. This is the phase-covariant
quantum cloning machine (PQCM) [11,14,15].

One important application of quantum cloning machines
is to analyze the security of some protocols of quantum key
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distribution (QKD). The reason is that a simple quantum attack
on QKD for an eavesdropper is to keep one copy of the
quantum state encoding secret key while sending another copy
to the legitimate receiver. For the well-known BB84 protocol
[19], we use two sets of orthogonal qubits, {|0〉,|1〉},{(|0〉 +
|1〉)/√2,(|0〉 − |1〉)/√2}, to encode binary secret key 0 or 1.
It seems straightforward that BB84 states correspond to four
equatorial qubits: {(|0〉 ± |1〉)/√2},{(|0〉 ± i|1〉)/√2}. Thus,
at least we should use PQCM instead of UQCM for eaves-
dropping. The point is that it is possible that we can do better.
Surprisingly, it is shown that PQCM is already the optimal
one in copying those four equatorial qubits [11]. A similar
phenomenon happens in the case of six-state QKD [20], where
the involved six states are {|0〉,|1〉},{(|0〉 + |1〉)/√2,(|0〉 −
|1〉)/√2},{(|0〉 ± i|1〉)/√2}. We cannot do better in cloning
those six states than a UQCM, which can clone optimally an
arbitrary qubit.

This seems not to be the end. With continuous progress
of quantum cloning theoretically and experimentally [21–28],
it is still not known whether BB84 states and six states are
the minimal input sets necessarily for PQCM and UQCM.
The motivation for wanting to know this is that we cannot
distinguish perfectly BB84 (six) states; it is as difficult as
measuring exactly an equatorial (arbitrary) qubit. However, it
is unknown whether the sets of BB84 and six states are the
minimal sets when the levels of difficulty for cloning them
remain the same. In this paper, we find that they are not.
The minimal input sets which can determine completely the
PQCM and UQCM are found. The minimal input sets contain
only three and four states, respectively.

The importance of this result is that, experimentally, if
we find that the quantum cloning machines can copy the
corresponding minimal input sets optimally, we know that
they are able to clone optimally all equatorial qubits and
arbitrary qubits, respectively. This simplifies dramatically the
testing step. Another importance of this result is that from the
Heisenberg uncertainty principle in quantum mechanics, and
similarly from the no-cloning theorem, an unknown quantum
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FIG. 1. A qubit in a Bloch sphere, |ψ〉 = cos(θ/2)|0〉 +
sin(θ/2)eiφ |1〉, which is characterized by amplitude parameter θ and
phase parameter φ. An equatorial qubit is the qubit located on the
equator of the Bloch sphere.

state with a single copy cannot be completely identified. So
it can be expected that the minimal input sets for cloning
machines would have the same uncertainty as the full input
sets. Thus, our results may shed light on both the fundamental
questions of the uncertainty principle and state and phase esti-
mations [29,30] and potentially may lead to new applications
in quantum cryptography, which relies on no cloning.

In this article, we first prove that a set of three qubits is the
minimal set to determine PQCM. In Sec. II, we discuss the
economic case. Cases with ancillas are discussed in Sec. III.
In Sec. IV, we give more general results in 1 → n PQCM to
show the minimal set still works for this case. In Sec. V, the
result that four qubits determine completely UQCM is proved.
Section VI contains a brief conclusion and discussion.

II. OPTIMAL QUANTUM CLONING MACHINE FOR
THREE STATES

We first study the case of PQCM. It is known that PQCM
is needed to copy optimally four equatorial states equivalent
to BB84 states. Here, we try to find whether it is possible to
sharpen it further to three states. So now the question is whether
we can find a set of three equatorial qubits; the cloning of these
three states cannot be better than a PQCM. On the other hand,
it is simple to find that two equatorial qubits can always be
cloned better than a PQCM does, so the set of three states will
be the minimal input set which can determine the PQCM. It is
known that the optimal fidelity of PQCM is [11,14]

Fp = 1

2
+

√
2

4
. (1)

Thus, our goal is to find a set of three states; the fidelity of
their cloning is upper bounded by Fp. It is apparent that this
bound is achievable.

A quantum cloning machine generally needs ancillary
states; if no ancillary states are available, it is the economic
quantum cloning. In this paper, we start from the economical
cloning for simplicity. We then show that ancillary states will
not help to increase the fidelity.

We consider three equatorial qubits represented as

|ψi〉 = (|0〉 + eiφi |1〉)/
√

2, (2)

where i = 1,2,3 represents three different phases. The eco-
nomic quantum cloning transformation is a unitary transfor-
mation U on the input qubit and an initially blank state in
which the copied qubit will be set. Its general form is

U |00〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉,
(3)

U |10〉 = e|00〉 + f |01〉 + g|10〉 + h|11〉,
where a, . . . ,h are complex parameters to be determined,
which should satisfy the constraints

a∗e + b∗f + c∗g + d∗h = 0,

|a|2 + |b|2 + |c|2 + |d|2 = 1, (4)

|e|2 + |f |2 + |g|2 + |h|2 = 1.

The first equation shows the orthogonality of the unitary
transformation, the next two equations are the normalization
conditions. Now consider the input state |ψ〉, by performing
the transformation U on |ψ0〉, we obtain the density matrix
for the whole system constituted by qubits A and B, ρAB =
U |ψ0〉〈ψ0|U †. Then we can trace out one of the particles to
get one-particle reduced density matrices, ρA or ρB , which
are two copies from the original input state |ψ〉. To quantify
the quality of the cloning machine, we use the fidelities
FA(φ) = 〈ψ |ρA|ψ〉 and FB(φ) = 〈ψ |ρB |ψ〉 to evaluate the
distance between the input and two copies. As for our cloning
machine (3), they are in the form

FA(φ) = λ1 cos(2φ + ψ1) + λ2 cos(φ + ψ2) + λ3, (5)

where λi are independent real numbers. The explicit
expressions of these parameters are λ1 = 1

2 |ec∗ + f d∗|,
ψ1 = arg(ec∗ + f d∗), λ2 = 1

2 |ac∗ + eg∗ + bd∗ + f h∗|,
ψ2 = arg(ac∗ + eg∗ + bd∗ + f h∗), λ3 = 1

2 Re(ag∗ + bh∗) +
1
2 . The expression of FB is obtained just by interchanging
b ↔ c and f ↔ g.

Then we study three states with 120◦ intersection angles,
that is, φ1 = 0,φ2 = 2π/3,φ3 = 4π/3 (see Fig. 2). We prove

FIG. 2. (Color online) Three equatorial qubits with equal rela-
tive phases φ1 = 0◦,φ2 = 120◦, and φ3 = 240◦, which determine a
PQCM.
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that the optimal fidelity is upper bounded by Fp, thus exactly
equal to it.

In phase-covariant cloning we have the constraints

FA(0) = FA(2π/3) = FA(4π/3),

which mean

λ1 cos

(
ψ1 − 2π

3

)
+ λ2 cos

(
ψ2 + 2π

3

)
+ λ3

= λ1 cos

(
ψ1 + 2π

3

)
+ λ2 cos

(
ψ2 − 2π

3

)
+ λ3

= λ1 cos(ψ1) + λ2 cos(ψ2) + λ3.

They could be simplified further as

λ1 sin ψ1 = λ2 sin ψ2, λ1 cos ψ1 + λ2 cos ψ2 = 0. (6)

In the symmetric cloning case, we assume this cloning
machine works in the symmetric subspace. So that b = c,
f = g, and

FA(φ) = FB(φ) ≡ F. (7)

This assumption is used in studying both PQCM and UQCM
[6,11]. Therefore, by concluding the above constraints, fidelity
for the three states can be written as

F = λ3 = 1
2 + 1

2 Re(af ∗ + bh∗). (8)

The constraints may be simplified as follows:

ab∗ + ef ∗ + bd∗ + f h∗ = eb∗ + f d∗,
arg(ab∗ + ef ∗ + bd∗ + f h∗) + arg(eb∗ + f d∗) = π,

|a|2 + 2|b|2 + |d|2 = 1, (9)

|e|2 + 2|f |2 + |h|2 = 1,

ae∗ + 2bf ∗ + dh∗ = 0.

We are seeking the optimal cloning machine, so we try to
find the tight bound of the fidelity as follows:

F = 1

2
+ 1

2
Re(af ∗ + bh∗),

= 1

2
+ 1

2
{|a||f | cos[arg(a) − arg(f )]

+|b||h| cos[arg(b) − arg(h)]}
� 1

2
+ 1

2
(|a||f | + |b||h|)

� 1

2
+ 1

4
√

2
(|a|2 + 2|f |2 + |h|2 + 2|b|2)

= 1

2
+ 1

4
√

2
(1 − |d|2 + 1 − |h|2)

� 1

2
+

√
2

4
.

By those algebraic inequalities, we obtain F � 1/2 + √
2/4.

The equality holds only when the following equations are sat-
isfied: arg(a) = arg(f ), arg(b) = arg(h), |a| = √

2|f |, |h| =√
2|b|, |e| = 0, |d| = 0, 2|b|2 + 2|f |2 = 1, |b||f | = 0. This

implies λ1 = λ2 = 0. Therefore,

F = 1

2
+

√
2

4
. (10)

FIG. 3. (Color online) Contour plot for fidelity of different φ2 and
φ3 (in degrees). Clearly, the minimum points are (φ2 = 120◦, φ3 =
240◦) and (φ2 = 240◦, φ3 = 120◦); those two cases are equivalent.

So we find that the optimal cloning fidelity of a set of
three equatorial qubits with equal relative phases is exactly
the optimal fidelity Fp of the phase-covariant case. All
the possible parameters derived here are |a| = 1,|f | = 1√

2
,

arg(a) = arg(f ), others = 0; or |h| = 1,|b| = 1√
2
, arg(b) =

arg(h), others = 0. This is exactly the PQCM presented in [11].
For completeness, we present it here explicitly:

U |00〉 = |00〉, U |10〉 = 1√
2

(|01〉 + |10〉). (11)

We remark that this is the optimal cloning machine for only
three equatorial qubits.

The other three qubits on the equator with different
intersection angles do not have this characteristic. Figure 3
shows some numerical results for different intersection angles.
We set φ1 = 0◦, and the ranges of φ2 and φ3 are from 0◦ to
360◦. We find that unless φ2 = 120◦,φ3 = 240◦, the fidelity
is always larger than Fp. This is consistent with our analytic
result. The numerical calculations are under the conditions of
equal fidelity and symmetric cloning.

Since we can clone two arbitrary equatorial qubits better
than a PQCM does, we then find the minimal input set
determining completely a PQCM. Here we remark that this
is for the economic case. Next we show that ancillary states
do not help to increase the fidelity.

III. PHASE-COVARIANT QUANTUM CLONING MACHINE
WITH ANCILLARY STATES

In order to solidify the equivalence between optimal three-
state cloning machine and the PQCM, we should prove it for
the more general case where the ancillary states are available
since it is possible that we can clone them better. Here we show
that the ancillary state does not help to increase the fidelity in
cloning three equatorial qubits with equal relative phases. A
noneconomic cloning machine is a unitary matrix acting on a
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larger Hilbert space with the ancillas

U |00R〉 = a|00A〉 + b|01B〉 + c|10C〉 + d|11D〉,
(12)

U |10R〉 = e|00E〉 + f |01F 〉 + g|10G〉 + h|11H 〉.
Similarly, we should have the orthogonal condition and
normalization restrictions. With assumption of symmetric
space for quantum cloning, we have b = c, f = g, |B〉 =
|C〉, |F 〉 = |G〉. We consider that the fidelity is invariant
for different input qubits: F (0) = F (2π/3) = F (4π/3). The
resulted fidelity has a similar form:

FA = λ1 cos(2φ + ψ1) + λ2 cos(φ + ψ2) + λ3

= 1
2 + 1

2 Re(af ∗〈F |A〉 + bh∗〈H |B〉), (13)

where we use the notations λ1 = 1
2 |ec∗〈C|E〉 + f d∗〈D|F 〉|,

ψ1 = arg(ec∗〈C|E〉 + f d∗〈D|F 〉), λ2 = 1
2 |ac∗〈C|A〉 +

eg∗〈G|E〉 + bd∗〈D|B〉 + f h∗〈H |F 〉|, ψ2 = arg(ac∗〈C|A〉 +
eg∗〈G|E〉 + bd∗〈D|B〉 + f h∗〈H |F 〉), λ3 = 1

2 Re(ag∗〈G|A〉
+ bh∗〈H |B〉) + 1

2 . Consider the restrictions mentioned
above, similar to the economic cloning case; we find the
the maximal fidelity is F = 1

2 + 1√
8
, which is obtained at

|a| = √
2|f |,|h| = √

2|b|,|d| = |e| = 0, due to the presence
of ancillary states. The restrictions can be rewritten as

2|b|2 + 2|f |2 = 1,

ab∗〈B|A〉 + f h∗〈H |F 〉 = 0,
(14)

arg(ab∗〈B|A〉 + f h∗〈H |F 〉) = π,

2bf ∗〈F |B〉 = 0.

If we set |A〉 = |B〉 = |F 〉 = |H 〉, then the cloning machine
reduces to the economic case. However, if we set |A〉 = |F 〉 =
|0〉, |B〉 = |H 〉 = |1〉, then 〈B|A〉 = 〈H |F 〉 = 0, so the only
restriction is

2|b|2 + 2|f |2 = 1. (15)

Under this condition, the noneconomic quantum cloning is
always optimal. Explicitly, non-economic quantum cloning
machine can take the following form by using Eq. (12):

U |00R〉 = a|00〉|0〉 + b(|01〉 + |10〉)|1〉,
(16)

U |10R〉 = f (|01〉 + |10〉)|0〉 + h|11〉|1〉.
Note that |a| = √

2|f |,|h| = √
2|b|. This form is more gen-

eral than the well-known PQCM, a special case, a = h =
1/

√
2,b = f = 1/2, is identical to the PQCM in [15].

IV. THE 1 → n PQCM

Next, similar to the case of cloning one state to two copies,
we show that the 1 → n PQCM, which can clone one state to
n copies, can be determined by these three equatorial qubits
as well.

For the1 → n case, we still assume that our cloning
machine is working in symmetric subspace, and it is economic.
The transformations can be expressed as

|0〉 −→
n∑

i=0

ai |i〉〉, |1〉 −→
n∑

i=0

bi |i〉〉, (17)

where |i〉〉 is a complete symmetric state with i states in |1〉
among all n qubits. For example, if n = 3, |1〉〉 ≡ (|001〉 +
|010〉 + |100〉)/√3. Analogously as in 1 → 2 case, parameters
should satisfy the constraints,

∑n
i=0 |ai |2 = 1,

∑n
i=0 |bi |2 = 1,

and
∑n

i=0 aib
∗
i = 0.

The input is an equatorial qubit, |ψ〉 = 1√
2
(|0〉 + eiφ|1〉);

we find the output state by cloning transformations,
∑n

i=0(ai +
eiφbi)|i〉〉.

Without loss of generality, tracing off all states except
the first one, we can obtain the one-qubit reduced-density
matrix, ρ1. By complicated but straightforward calculations,
the fidelity can be found as

F = 1

2
+ 1

2
Re

[ n−1∑
i=0

(aia
∗
i+1e

iφ + bib
∗
i+1e

iφ + aib
∗
i+1

+ a∗
i+1bie

2iφ)

]√
(n − i)(i + 1)

n
. (18)

Here, we have used the following identities to simplify

our expression, Ci
n−1 + Ci+1

n−1 = Ci
n,

Ci
n−1√

Ci
nC

i+1
n

=
√

(n−i)(i+1)
n

.

Therefore, as in the 1 → 2 case, we express the fidelity as

F = λ1 cos(2φ + ψ2) + λ2 cos(φ + ψ1) + λ3, (19)

where λ1 = 1
2

∑n−1
i=0 |a∗

i+1bi |, λ2 = 1
2

∑n−1
i=0 |aia

∗
i+1 + bib

∗
i+1|,

and λ3 = 1
2

∑n−1
i=0 |aib

∗
i+1| + 1

2 . Similarly, when three states are
cloned equally well, we have λ1 = λ2, ψ1 + ψ2 = π,(k ∈ Z),
so that fidelity for them is F = λ3

Next, we look for the maximal fidelity for them and find
the corresponding values chosen by those parameters:

F = 1

2
+ 1

2
Re

[
n−1∑
i=0

aib
∗
i+1

√
(n − i)(i + 1)

n

]

� 1

2
+ 1

4

n−1∑
i=0

(|ai |2 + |bi+1|2)

√
(n − i)(i + 1)

n
.

By considering the normalization conditions for ai and bi , we
have the following results:

F � 1

2
+

√
n(n + 2)

4n
, n is even; (20)

F � 1

2
+ n + 1

4n
, n is odd. (21)

For n is even, “=” is satisfied only when the following
equations are satisfied, arg(ai) = arg(bi+1), |a n

2
| = |b n

2 +1| =
1; other parameters are zeros. For n is odd, “=” is satisfied
only when the following equations are satisfied, arg(ai) =
arg(bi+1), |a n−1

2
| = |b n+1

2
| = 1, other parameters are zeros.

Note that now λ1 = λ2 = 0. Those results agree with the
results for 1 → n phase-covariant cloning machine in [14].
So we conclude that three equatorial qubits with equal relative
phases can determine completely the optimal 1 → n PQCM.
Obviously, this general result is consistent with our previous
n = 2 case. Our result is also true in the case n → ∞. The
implication of this result is that to identify one state from the
minimal set which contains three states is as difficult as to find

062315-4



MINIMAL INPUT SETS DETERMINING PHASE- . . . PHYSICAL REVIEW A 86, 062315 (2012)

the exact value of the phase in an equatorial qubit. This is quite
surprising.

V. EQUIVALENCE BETWEEN FOUR-STATE CLONING
AND A UQCM

A UQCM can copy optimally an arbitrary qubit. It is known
that we cannot do better than a UQCM in cloning six states used
in quantum cryptography [20]. The problem is that whether
the number of states can be reduced from six to the minimal
sets which contains only five or even four states. Considering
that only three states can determine a PQCM, it might be
possible that a UQCM, which has a lower fidelity than that
of the PQCM, may be determined by four input states. This
case must be the minimal input set. We show next that this is
true.

Let us consider four states on the Bloch sphere with
identical angular distance:

|ψ0〉 = |0〉, |ψ1〉 = cos
θ

2
|0〉 + sin

θ

2
|1〉,

|ψ2〉 = cos
θ

2
|0〉 + sin

θ

2
ei 2π

3 |1〉, (22)

|ψ3〉 = cos
θ

2
|0〉 + sin

θ

2
ei −2π

3 |1〉,

where θ satisfies cos θ
2 =

√
3

3 . These four states form a
tetrahedron (see Fig. 4). We need to show that the optimal
fidelity in cloning those four states is the same as that of a
UQCM.

The general cloning machine can be assumed as

U |00R〉 = a|00A〉 + b|01B〉 + c|10C〉 + d|11D〉,
(23)

U |10R〉 = e|00E〉 + f |01F 〉 + g|10G〉 + h|11H 〉.
As usual, we assume the cloning machine works in sym-

metric subspace, that is, b = c, f = g, |B〉 = |C〉, |F 〉 = |G〉.
After some calculation similar to that in the phase-cloning
case, and considering cos θ

2 =
√

3
3 , we obtain

F = 4
9 − 1

9 (|a|2 + |b|2) + 2
9 (|f |2 + |h|2)

+ 4
9 |af ∗〈F |A〉 + bh∗〈H |B〉|. (24)

Then, we have

F + 1

3
F � 4

9
− 1

9
(|a|2 + |b|2) + 2

9
(|f |2 + |h|2)

+ 4

9
(|a||f | + |b||h|) + 1

3
(|a|2 + |b|2)

� 4

9
+ 2

9
(|a|2 + |b|2 + |f |2 + |h|2)

+ 4

9

( |a|2 + 4|f |2
4

+ 4|b|2 + |h|2
4

)
= 10

9
.

(25)

So we have F � 5
6 . Then maximal fidelity equals to the fidelity

of two-dimensional UQCM. The equality “=” is satisfied

only when |a| = |h| =
√

2
3 , |b| = |f | =

√
1
6 , |d| = |e| = 0.

Consider the constraints: We have 〈B|F 〉 = 0. Hence, we got
the only possible form of |A〉,|B〉,|F 〉,|H 〉: |A〉 = |0〉,|B〉 =
|1〉,|F 〉 = |0〉,|H 〉 = |1〉 with some possible phase factors.

FIG. 4. (Color online) Four states located on vertices of
an inscribed tetrahedron in the Bloch sphere can determine a
UCQM.

[The requirement is Im(af ∗〈F |A〉) = Im(bh∗〈H |B〉) = 0.]
This is indeed the well-known UQCM.

By tricky but straightforward calculation, we can show
that the fidelity F is upper bounded by F = 5/6, which is
exactly the optimal fidelity of a UQCM. This optimal fidelity
is achievable, so we conclude that the minimal input set of a
UQCM contains only four states as presented in (22) which
are located on vertices of a tetrahedron in Fig. 4.

VI. CONCLUSION

In summary, we have proved that the optimal cloner for
three states symmetrically located on the equator of the
Bloch sphere is equivalent to the PQCM. This minimal set
is also valid in the 1 → n cloning case. For the UQCM,
the minimal input set contains only four states located on
vertices of a tetrahedron. Those results sharpen further and
are important supplements to the well-known results that the
optimal quantum cloning machines for BB84 states and six
states in QKDs are PQCM and UQCM, respectively.

Since no-cloning is a fundamental theorem in quantum
mechanics and quantum information, it will be interesting to
use those results for some applications, such as designing
new QKD protocols or quantum gambling. We know that
our results actually provide the sets which have the highest
uncertainty levels. This may shed light on the study of
uncertainty relationships, which constitute a cornerstone of
quantum mechanics. By looking at the structures of those
minimal input sets, we may observe that the states in these
two sets have high symmetries. This fact provides an intuitive
explanation that those states cannot be distinguished easily.
One experimental application of those results is that, to test
whether the cloning machines work, we only need to check
that those minimal input sets can be cloned optimally. This will
make the testing procedure of the cloning machines easier.
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