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Low-error measurement-free PHASE gates for qubus computation
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We discuss the desired criteria for a two-qubit PHASE gate and present a method for realizing such a gate for
quantum computation that is measurement free and low error. The gate is implemented between qubits via an
intermediate bus mode. We take a coherent state as the bus and use cross-Kerr-type interactions between the bus
and the qubits. This new method is robust against parameter variations and is thus low error. It fundamentally
improves on previous methods due to its deterministic nature and the lack of approximations used in the geometry
of the phase rotations. This interaction is applicable both to solid-state and photonic qubit systems.
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I. INTRODUCTION

The qubus computational architecture has considerable
promise for helping to overcome some of the problems associ-
ated with developing a scalable quantum computer. The qubus
computer employs a bus mode to mediate the interactions
between computational qubits, removing the need for direct
qubit-qubit interactions [1]. In the case of solid-state qubits
these direct interactions often require close proximity between
the qubits due to the nature of the interactions used. This close
proximity can make applying individual control fields and
measuring the state of individual qubits extremely challenging.
Furthermore creating entanglement or enacting gates between
nonadjacent qubits can create large SWAP gate overheads when
only nearest-neighbor interactions are available. The use of a
bus to mediate the interactions can remove these problems. It
is clear, therefore, that the qubus architecture has the potential
to improve the viability of solid-state computation. However,
a wider advantage of this approach is that it isn’t necessarily
restricted to a particular type of computational qubit. A qubus
can be used to mediate between solid-state qubits, creating
the entanglement needed for measurement-based quantum
computation, but equally it can be employed with photonic
qubits and the original gate model of quantum computation.
It could even potentially be used to mediate between different
types of quantum architecture. Here we will consider using
a coherent state of light as the bus mode. This has the
advantage of employing a continuous quantum variable for
communication [2,3], and this could even potentially be used
to communicate with existing classical technologies. The
aim, therefore, is to develop methods for implementing the
entangling operations or multiqubit gates required for quantum
computation using a bus mode. Clearly a good starting point is
the development of a controlled-phase (C-PHASE) gate as this,
in conjunction with single-qubit rotations, is a universal set of
gates for quantum computation [4]. To achieve the required
bus-qubit interactions we will first consider photonic qubits
and the cross-Kerr optical nonlinearity between two modes a

and b. This has a Hamiltonian of the form,

Hint = h̄χa†ab†b, (1)
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where a (a†) refers to the annihilation (creation) operator of
the bus electromagnetic field mode, b (b†) corresponds to the
annihilation (creation) operator of a photonic qubit mode, and
χ is the coupling strength. The interaction Hint applied for a
time t generates either a phase rotation of θ ≡ χt or no phase
rotation on the bus field mode dependent upon the qubit being
in the number (b†b) eigenstate, |1〉 or |0〉, respectively. When
the nonlinearity is large (θ is of order π ) this Hamiltonian
naturally implements a C-PHASE gate. This gives rise to many
proposals for its application, such as N00N-state generation
[5] and optical universal quantum computers [6]. However,
naturally occurring Kerr media have a dimensionless inter-
action magnitude of order θ ≈ 10−18 for realistic interaction
times [7]. Despite this, it is possible to fabricate materials
with θ ≈ 10−2 using techniques such as electromagnetically
induced transparencies (EIT) [8–11], optical fibers [12,13],
and cavity QED systems [14–16] and there is very significant
research and recent progress in many of these areas. However,
it should also be noted that phase noise and photon loss
need careful consideration and may form potential issues, in
regimes with the required strengths of nonlinearity [17–19].
Solid-state qubits are also a very promising direction for the
development of a quantum computer, with superconducting
qubits coupled to quantum microwave modes forming par-
ticularly relevant examples [20–22]. There is potential for
the generation of nonlinearities in and between microwave
modes, leading to cross-Kerr-type, and other, interaction terms.
However, in addition, when the qubit-field interaction is
of the Jaynes-Cummings form and the dispersive limit is
employed [23], the interaction between a qubit and a field
mode takes an equivalent form to the cross-Kerr nonlinearity
with

Hint = h̄χσzj
a†a, (2)

where a (a†) corresponds to the bus mode as above and
σzj

is the standard Pauli operator for a solid-state qubit
in mode j [1,24–26]. During this paper we will use the
solid-state notation, taking the computational basis to be
|0〉 ≡ |↑z〉 and |1〉 ≡ |↓z〉 where these are the eigenvectors of
σz ≡ |↑z〉〈↑z | − |↓z〉〈↓z |. In direct analogy to the photonic
qubit case, when this Hamiltonian (2) is applied for a time
t , equal and opposite bus phase rotations of ±θ are induced,
dependent upon the state of the control atomic qubit.
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We now present the desired criteria for an ideal two-qubit
PHASE gate:

(1) Maximally entangling. Two such gates are the
controlled-not (CNOT) and C-PHASE gate.

(2) No measurements. This implies that no operations
dependent on the outcome of a measurement should be
required either during implementation, or to herald the success,
of the gate. This simplifies the procedure and may help to speed
up the operation of the gate.

(3) No inherent decoherence. By this we mean that in the
case of a bus mediated gate, the final state of the system, after
the operation of the gate, must be a product state between the
bus mode and the computational qubits pair. Any remaining
entanglement between the bus mode and the qubits will create
decoherence even when implemented ideally.

(4) Some level of robustness against parameter variations,
so that the gate is still viable in the realistic case of imperfect
implementation. Clearly the greater the level of robustness the
better.

We now consider some previous methods of implementing a
bus-mediated PHASE gate using cross-Kerr-type nonlinearities.
Due to the values of χ that can be fabricated in physical
systems, only schemes which permit small angles of rotation
(� π ) are of practical interest. Previous work has used this
Hamiltonian within the physical restraint of small angles,
in the context of both photonic and solid-state qubits, to
probabilistically or near-deterministically create entanglement
and implement two-qubit gates by the use of measurement
and classical feed-forward [24,27,28]. These methods rely
on single-qubit rotations dependent on the outcome of some
measurement on the bus mode in order to implement the
desired gate [29]. Due to this, these methods clearly do not
meet criteria 2. If we consider using the standard displacement
operator for the bus mode,

D(α) = exp(αa† + α∗a), (3)

in conjugation with the cross-Kerr-type interactions then
a measurement-free PHASE gate can be implemented by
performing four controlled rotations, each followed by a
displacement operation. The final state of the system is not,
however, an exact product state between the bus mode and
the computational qubits pair and so an inherent source of
decoherence is introduced [1]. This clearly fails criteria 3. The
work here presents a new form of measurement-free PHASE

gate which is a fundamentally improved method satisfying
all the above criteria for any magnitude of rotation angles.
We will also see that this gate is more robust to errors
in implementation in a comparison to a previous method.
First of all this method will be outlined in its most general
case using geometric arguments. From here the most simple
specific example is studied and compared to the previous
method.

II. GENERAL CASE OF THE MEASUREMENT-FREE
PHASE GATE BETWEEN TWO QUBITS

Here we present a protocol whereby the bus mode is exactly
disentangled after the implementation of the gate. We start
by taking the most general input state, with the bus mode

disentangled prior to any interactions. This is of the form,

|ψ0〉 =
∑

j,k=0,1

cjk|j1k2〉|α〉, (4)

with the usual normalization constraints on the coefficients cjk

and the labels 1 and 2 denoting the two qubits (from now on the
position in the ket will denote the qubit number). The initial
state of the bus mode can be represented by a point in phase
space at α. A cross-Kerr rotation can only change the state of
the bus mode (although this change is dependent on the state
of the qubits). A displacement operation (3) can only do this
(independent of the state of the qubits) and in addition create
a phase (dependent on the state of the bus mode). The state of
the system after each operation can therefore be written in the
form,

|ψt 〉 =
∑

j,k=0,1

cjke
iηjk |jk〉|αjk〉, (5)

which is in general entangled between bus and qubits. The state
of the bus mode can thus be represented by the four points in
phase space α00, α01, α10, and α11. We therefore have the
aim of implementing a controlled-PHASE gate (which requires
creating suitable ηjk terms) while creating a final state where
the bus is disentangled from the computational qubits, that is,
α00 = α01 = α10 = α11. The method developed for achieving
this can be most simply described geometrically in phase space
and is outlined in the following eight steps:

(1) Apply a qubit 1 controlled rotation. This is an operator
of the form e−iθσz1 a†a .

(2) Apply a displacement operator. The only restriction is
that the argument of this operator is not a constant real multiple
of α. This is of the form D(ω) where ω 
= cα for any c where
c is real.

(3) Apply a qubit 2 controlled rotation. This is an operator
of the form e−iφσz2 a†a . The resulting state after this operation
is shown in Fig. 1. (There is also nothing that prohibits the
additional implementation of a qubit 1 controlled rotation at
this point).

FIG. 1. (Color online) The state after the third operation. It is not
possible to represent the most general displacement, described in the
geometric method, graphically and so a simple example is chosen
here that forces the point e to be on the imaginary axis and η = ψ .
This, however, is not the only possible geometry.
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FIG. 2. (Color online) The state before and after the fifth step. The
white points show the state before the rotations (for α11 and α00 this is
the same as the resultant state so these are not shown). The gray points
show the state after the first rotation. The arrows show the effects of
the rotations. The two rotations are of the form e−iψσz1 a†a and eiψσz2 a†a .

(4) Apply a displacement such that the point O1 in Fig. 1 is
at the origin in phase space. This point is the origin of a circle
on which α01, α10, and e are situated. The point e is the unique
point that is equidistant from α01 and α10 and also equidistant
(although not necessarily the same distance as from α01 and
α10) from α00 and α11. Due to this, after this displacement, the
angles between α01 and e and between e and α10 (with respect
to the origin) are the same and this is absolutely essential to
the next step.

(5) Apply a pair of rotations such that the overall effect
is no net rotation on the points α00 and α11 and an equal and
opposite rotation on the points α01 and α10 of the required
magnitude such that they are rotated on to the point e′ = e −
O1. These controlled rotations are of the form e−iψσz1 a†a and
eiψσz2 a†a where ψ is half of the angle between α01 and e (and
that between e and α10). After this pair of operations we have
a state such that α01 = α10 (= e′). These operations and the
resultant state are shown in Fig. 2.

(6) Apply a displacement such that the point O2 − O1 in
Fig. 2 is at the origin in phase space. Similarly to step 4 this
point is the origin of a circle on which α00, α11, and the point
α01 = α10 are situated. As before we have that both α00 and
α11 are equidistant from the point α01 = α10 and so the angle
between α11 and α01 = α10 is equal to that between α01 = α10

and α00. The equality of these angles is essential to the next
step.

(7) Apply a pair of rotations such that the overall effect
is no net rotation on the points α01 and α10 and an equal and
opposite rotation on the points α00 and α11 of the required
magnitude such that they are rotated on to the point α01 = α10.
These controlled rotations are of the form eiησz1 a†a and eiησz2 a†a

where η is half of the angle between α11 and α01 = α10 (and
that between α01 = α10 and α00). After this pair of operations
we have a state such that the α00 = α01 = α10 = α11, that is, the
bus mode is disentangled. These operations and the resultant
state are shown in Fig. 3.

(8) This is a final optional displacement so that the bus
mode is back at its initial point in phase space. This may be

FIG. 3. (Color online) The state before and after the seventh step.
The white points show the state before the rotations (for α01 and α10

this is the same as the resultant state so these are not shown). The
gray points show the state after the first rotation. The arrows show
the effects of the rotations. The two rotations are of the form eiησz1 a†a

and eiησz2 a†a .

necessary if performing multiple gates in succession, however,
the qubits are already disentangled so it is not essential for the
implementation of the gate.

These steps are summarized in the circuit diagram of Fig. 4.

III. SPECIFIC EXAMPLE OF THE MEASUREMENT-FREE
PHASE GATE BETWEEN TWO QUBITS

It is now necessary to show that the operations outlined
above can be chosen such that the phases created perform the
desired C-PHASE gate. The other question yet to be addressed is
whether this method will allow a feasible choice of operations;
we have not shown that choosing the first two rotations
to be small does not force at least one of the remaining
displacements or rotations to be impractically large. To show
that the required phases can be created, and that this can be
done with a feasible set of operations, it is simpler to deal
with a specific set of operators that can be derived from this
geometric recipe. Before doing this it is worth noting that
the whole method is defined by the choices made in the first
three steps. Due to this, it is straightforward to consider a very
(although not the most) general case. Here we consider the
case where the displacement in step 2 is of a form such that
the point e is on the imaginary axis (given that α is real) (see
Fig. 1). Taking this as our choice of displacement it is possible
to derive, using basic geometry, that the set of operations that
obey the above method are as follows:

(1) e−iθa†aσz1 .
(2) D(βi − α cos θ ). This is taking ω = βi − α cos θ .
(3) e−iφσz2 a†a .

(4) D
(
−α sin θ

2 sin φ
− β

2 cos φ
i
)

.

(5) e−iφσz1 a†a and eiφσz2 a†a .

(6) D
(

α sin θ
sin φ

)
.

(7) eiφσz1 a†a and eiφσz2 a†a .

(8) D
(
α − α sin θ

2 sin φ
− β

2 cos φ
i
)

(optional),
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FIG. 4. A circuit diagram of the general method described herein for implementing a measurement-free PHASE gate. θ , φ, ψ , and η take
real values and ω, O1, and O2 take complex values. Given θ , φ, and ω, the remaining coefficients are chosen to obey this general method, that
is, they are functions of θ , φ, and ω.

where α, β, θ , and φ are real and α is the value defining the
initial state of the bus mode. From this set of operations it is
straightforward to confirm that the final state will leave the
bus mode disentangled and in its initial state. This is clearly
necessary for the method to be of any use, however, we also
require that a C-PHASE gate has been implemented. In order
to enforce the required condition for this we calculate the
concurrence of the final state of the two qubits given that the
initial state is the equal superposition state, that is, cjk = 1

2 for
each j and k in (4). The concurrence of a bipartite pure state
written in the form of (5), but with the bus disentangled, is
given by

C(ψt ) = 2|c00c11e
i(η00+η11) − c01c10e

i(η01+η10)|. (6)

This takes the value zero when there is no bipartite entangle-
ment and unity when there is maximum bipartite entanglement
[30]. A detailed calculation gives

C2 = 1
2 − 1

2 cos(4αβ sin θ tan φ). (7)

If a C-PHASE gate has been implemented on this initial state we
will end up in a maximally entangled state. Taking the solution
of (7) = 1 we clearly get maximum entanglement when

αβ sin θ tan φ = (2n + 1)
π

4
, (8)

where n is an integer. This protocol, combined with some
local rotation on each qubit, therefore performs a C-PHASE

gate. In contrast to the previous methods that do not require
measurement (see Ref. [1]), if this is ideally implemented,
criteria 3 is satisfied, that is, the bus is exactly disentangled
and so there is no inherent decoherence due to tracing out the
bus mode. However, it is important to check the concurrence
for robustness to errors in the parameters α, β, θ , and φ. A
Taylor expansion in each of the four variables around the points
of maximum concurrence (taking n = 0) gives the equations,

C2 � 1 − π2

4

(
αE

αM

)2

, (9)

C2 � 1 − π2

4

(
βE

βM

)2

, (10)

C2 � 1 − π2

4

(
θE

tan θM

)2

, (11)

C2 � 1 − π2

2

(
φE

sin(2φM )

)2

, (12)

where αE = α − αM with αM obeying the maximum concur-
rence Eq. (8) (and similarly for the β, θ , and φ). Considering
(9) and (10) we see that to obtain C > 0.97 a relative error of
up to ≈ 0.155 can be tolerated in both α and β. Conversely a
0.01 relative error in either of these will result in C ≈ 0.99987.
The concurrence is therefore clearly very robust to errors in
the parameters associated with the displacements. We now
consider Eqs. (11) and (12). If we take the specific solution to
(8):

α = β = 11.0719..., θ = φ = 0.08,

then we get the following equations:

C2 = 1 − 194φ2
E, C2 = 1 − 383θ2

E.

With these values, to obtain C > 0.97 we can tolerate an error
of up to ≈ 0.012 in θ (a 0.15 relative error). Conversely an
error of 0.001 in θ (a 0.0125 relative error) will result in
C ≈ 0.9998. The concurrence is less sensitive to errors in φ.
Here we have chosen small values for α and β but these are
still experimentally feasible—the mean number of photons in
a coherent state |α〉 is |α|2 which in this case is ≈120 photons
[31]. There is a degree of flexibility over which variables have
the greater error tolerance. An optimum choice of values for an
implementation would depend on the system on which this was
to be implemented and any constraints that this system might
impose. Given this information, a system-specific optimum
could be found. From this example the link to conditional
displacements can be seen, as in [32].

IV. COMPARISON TO A PREVIOUS METHOD

We shall first describe in more detail a previous method
of implementing a C-PHASE gate without measurement that
was introduced earlier [1]. It is implemented by performing
four controlled rotations each followed by a displacement
operation. All the rotations are chosen to be of equal magnitude
and the first and third rotation are controlled by the first qubit
and the second and fourth rotation by the second qubit. The
displacements are chosen such that in the case of no rotations
the bus mode would travel around a square (centered on the
origin) in phase space and so end up back in its initial state.
The rotations cause the bus mode associated with the four
two-qubit basis states to travel around slightly different paths
in phase space and it is the difference between these closed
path areas that create the geometric phases that can be chosen
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appropriately to implement a C-PHASE gate. If the rotations are
taken to be small, they may be approximated by conditional
displacements. In this approximation, after implementation
of the gate, the final state of the system is a product state
between the bus mode and the qubits, and so no measurement
is required. However, due to this approximation the bus is not
precisely disentangled from the qubits and so tracing out the
bus mode creates a small amount of decoherence even in the
ideal case. Taking the expressions for the phases created by
these operations calculated in [1] and taking the small angle
limit (which is necessary for the method to be valid) we can
derive that the concurrence is given by

C2 � 1
2 − 1

2 cos(12α2θ2), (13)

where αei π
4 is the complex number characterizing the initial

coherent state, with α real, and θ is the angle of each rotation.
This is a maximum at

α2θ2 = π

12
(2n + 1), (14)

where n is an integer. If we take Taylor expansions in each
variable around the points of maximum entanglement, taking
n = 0, we get

C2 � 1 − π2

(
αE

αM

)2

, (15)

C2 � 1 − π2

(
θE

θM

)2

, (16)

where αM and θM obey Eq. (14) with αE = α − αM and θE =
θ − θM . Considering both (15) and (16), we see that to obtain
C > 0.97 we can tolerate a relative error in either α or θ of up
to ≈ 0.077. The new method described here can tolerate twice
this error in the equivalent parameters. We can furthermore
consider the inherent bus error that this method would incur
if the specific values of α and θ taken in Sec. III are used. It

can be shown that maximum magnitude of the difference in
state of the bus mode associated with the different two-qubit
states is |α00f

− α01f
| ≈ 0.2 where αijf

is the final bus state
associated with the two-qubit state |ij 〉(|α00f

− α11f
| = 0 and

|α01f
− α10f

| < 0.2). This can alternatively be expressed in
terms of the initial magnitude of the bus state by |α00f

−
α01f

| ≈ 0.02|α|, which is a difference of about 2%. This will
therefore introduce decoherence effects, even in the ideal case.
This is an additional error that the new method does not suffer
from.

V. CONCLUSIONS

We have discussed the desired criteria for a two-qubit PHASE

gate and presented a general protocol that satisfies these in
the context of qubus computation using a cross-Kerr-type
nonlinearity between the bus and the computational qubits.
We have shown, using a specific example, that this method is
robust against parameter variations and therefore is low error.
This is relevant not only to optical qubits but also to solid-state
qubits interacting with the bus via the Jaynes-Cummings
interaction in the dispersive limit. This method is extremely
general as it is not only adaptable to different hardware
but because the operations themselves can be chosen to
optimize the gate performance dependent upon the constraints
imposed by the physical system. Furthermore this method
fundamentally improves on previous similar methods due to
the exact geometry employed which results in no decoherence
errors in the ideal limit. We have presented a general and
realization-independent approach in this paper, to illustrate
its wide applicability. With some chosen specific realization,
possible extensions of this work could be to model the effects
of loss on the bus mode [33] and system-specific decoherence
on the qubits. It may also be interesting to then investigate the
optimum choice of operations for a particular realization.
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