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Generation and characterization in a laboratory of C2 ⊗ Cd states of flying electrons and ions with
negative or positive partial transpose possessing free or bound entanglement
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In this paper, we show that bipartite states of an electronic qubit and ionic qudit, produced in a laboratory in
as simple an experiment as photoionization in electric dipole approximation, can be separable or can possess
either free or bound entanglement. The dimension of the Hilbert space of the qudit depends upon the electronic
state |1+〉 of the residual photoion A1+: In the absence of spin-orbit interaction (SOI), when Russell-Saunders
coupling is applicable, it is equal to the spin multiplicity of |1+〉, but becomes (2J + 1) in j -j coupling, where
J is the total angular momentum of |1+〉 when SOI is taken into account. In the case of L-S coupling, all the
properties (relevant to a study in quantum information) of a qubit-qudit state can readily be predicted merely with
a knowledge of the spins of the atomic target and of the residual photoion which can experimentally be verified
by measuring them using an entanglement witness, or any other such protocols, or by doing a full quantum-state
tomography.
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I. INTRODUCTION

The mode of information which uses quantum mechanical
laws for its generation, coding, processing, etc., has come to
be known as quantum information (QI) [1–3]. In analogy to
the classical information, QI too needs bits. But, a bit in QI is a
quantum system which has, at least, one observable requiring
two-, or higher-, dimensional space for its characterization.
A two-dimensional quantum system (e.g., a spin- 1

2 particle, a
two-level atom, etc.) has come to be called in QI as a quantum
bit or qubit [4]; likewise, a qutrit is a three-dimensional
quantum system (e.g., a spin-1 particle, a three-level atom,
etc.). In general, a d-dimensional quantum system (with
d � 4) is called a qudit [5]. Applications of qudits provide an
extension of the binary logic used both in QI and in classical
information. The Hilbert space of Nd qudits contains the space
of N2 qubits. It has, consequently, been suggested [6] that the
use of qudits can reduce the number N2 of qubits, needed
for a computation, by a factor of ln2 d. In addition, it has
recently been shown [7–10] that the use of nonseparable (i.e.,
entangled) states of two qutrits in QI helps in developing
quantum communication protocols which provide greater se-
curity in quantum cryptography [7], quantum communication
complexity [8], and weak coin flipping [9,10]. Following these
[7–10] and other similar developments, Vaziri et al. [11] have
experimentally realized entanglement concentration of orbital
angular momentum entangled photons in three dimensions.

Probably, only the bipartite states of photons, entangled
in higher than two-dimensional space, have hitherto been
successfully generated [11]. These photons are produced [11]
in parametric down conversion. Although a photon is an
excellent carrier of information, it is, however, not suitable
for its long-term storage. Also, a photon is immediately
destroyed as soon as one tries to detect it, unless a quantum
nondemolition [12] type extremely difficult experiment is
being performed. For these and other similar reasons, it will
certainly be desirable to produce entangled states of two qudits
made of atoms, molecules, etc., which, in addition to being
amenable to easy detection without leading to their destruction,
can be used also for storing the information for a long period.

In this paper, we discuss a very simple process in atoms
for generating bipartite states of an electronic qubit (say,
ep) and an ionic qudit (say, A1+). These two particles are
entangled with respect to their either spin angular momenta in
the absence of spin-orbit interaction (SOI), or spin of ep and
total angular momentum J1+ of A1+ when SOI too is taken into
account. In addition to providing a qubit-qudit entanglement
of two flying particles, both of which are readily detectable
without any one being destroyed, the proposed study has
several useful features: For example, there have recently been
many experimental studies of quantum entanglement between
a single photon and a single free atom in the continuously
infinite Hilbert space (see, for example, [13,14]), as well as
between a photonic and a trapped ionized (e.g., [15]), or neutral
(e.g., [16]), atomic qubit in the finite-dimensional Hilbert
space. Such studies have been initiated for fulfilling one of the
outstanding goals in QI theory, namely, the faithful mapping of
quantum information between a stable quantum memory and a
reliable quantum communication channel [15,17]. This study
too provides an alternative approach for achieving the same
goal [15,17] of the QI theory by using an electronic, rather than
a photonic, quantum communication channel. Although an
electron can not travel as fast as a photon, there are nevertheless
many other obvious advantages in using the former, in place
of the latter, as a quantum communication channel.

Another interesting thing about the method proposed herein
is that, in some of the cases discussed herein, one can
analytically a priori determine or predict the presence (along
with its other related properties), or absence, of entanglement
between the spins of a (ep,A1+) pair. Later, these properties of
an entangled state of a (ep,A1+) system can experimentally be
verified by measuring them with an entanglement witness [18]
or any other such protocols (e.g., [19]) hitherto developed in
QI theory.

Furthermore, the recent research has shown that entangled
states can also be of two types (see, for example, [3,20]
and references therein): namely, the free entangled states
and bound entangled states. A nonseparable state with en-
tanglement which can be concentrated or purified is said
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to possess free entanglement; if, on the other hand, such
a procedure is not possible with a nonseparable state, it
is then said to have bound entanglement. Concentration of
entanglement means [3,20–25] combining the entanglement
of several of those pure states which possess partial (i.e.,
less than maximum possible) entanglement into a single, but
maximally entangled, pure state. More often than not, states
which have partial entanglement are impure, i.e., mixed. The
process of generating a maximally entangled pure state from
several partially entangled mixed states is called entanglement
purification or distillation (see, for example, [3,20,22,25–29]).
The successful implementation of the protocols hitherto devel-
oped for concentration or purification of entanglement involves
[3,20] only local operations and classical communications
(LOCC) on separately addressable (i.e., distant) qubits of
partially entangled pure or mixed states, respectively. Bennett
et al. [28] have suggested that the task performed by these
protocols in quantum information is equivalent to the reliable
transmission of data through a noisy channel in classical
information.

Although bound entangled states [3,20] too are nonsepara-
ble, their entanglement, however, can not [30] be concentrated
or purified to generate a pure maximally entangled state. This
kind of nondistillable entanglement is called [3,20,30] bound
entanglement. Horodecki et al. [3,20] have discussed several
consequences of bound entanglement. It has, for example,
been shown [31] that, with the support of a bound entangled
state, one can perform quantum teleportation [32] via a pair
of particles which, otherwise, have an insufficient amount
of free entanglement. Since their discovery, there have been
considerable efforts for the generation and detection of states
with bound entanglement (see, for example, [3,20,33–43] and
references therein). In this paper, we show that photoionization
in L-S coupling is capable of producing qubit-qudit pairs
possessing bound entanglement in a laboratory.

Section II contains a brief description of the required
density operator. This operator is then used in Sec. III to
obtain a density matrix (DM) needed to study the quantum
informatics properties of a spin state of a photoelectron-
photoion pair in Russell-Saunders coupling when SOI is not
taken into account. Therein, we also discuss the properties of
this DM. The respective Secs. III A and III B show how this
DM can be used to generate states possessing free or bound
entanglement between the spins of a photoelectron ep and
photoion A1+. Entanglement between a photoelectron’s spin
angular momentum and photoion’s total angular momentum
J1+ , on the inclusion of SOI, is described in Sec. IV. Finally,
Sec. V contains conclusions of the present investigations.
The density matrices derived in Secs. III and IV can readily
be reduced to obtain well-known expressions for angular
distribution of photoelectrons in L-S and in j -j couplings,
respectively, as well as that needed to study statistical tensorial
properties (i.e., state multipoles) [44–46] of a photoion.

II. DENSITY OPERATOR

Equation (1) represents the well-known process of ioniza-
tion of an atom A caused due to the absorption of a single
photon γr (the subscript “r ,” unless stated otherwise, stands

FIG. 1. Space-fixed (SF) [also called laboratory-fixed (LF)]
frame of reference OXYZ. Its origin “O” is at the atomic target
A. As explained in the text, direction of its polar OZ axis is shown
in this figure to be determined by the polarization of the incident
radiation γr which ionizes A in the processes (1). [According to that
mentioned elsewhere in this paper, LP: linearly polarized γr ; CP:
(right/left) circularly polarized γr ; UP: unpolarized γr .] Here, k̂p (θp ,
φp) and ûp (ϑp , ϕp) are, respectively, the directions of propagation
and of spin quantization of the photoelectron ep emitted in Eq. (1),
whereas the angular momenta of the target A as well as those of its
residual photoion A1+ are assumed to be quantized along the OZ axis.

for ionizing, incident, or absorbed radiation):

γr + A −→ A1+ + ep. (1)

Here, A1+ is the residual photoion formed after the ejection
of the photoelectron ep from the atom A. The respective kets
|0〉 and |1+〉 represent the antisymmetrized electronic states
of A and of the photoion A1+ possessing the energies E0 and
E1+ . The propagation vector �kp = (kp ≡ |�kp|, θp, φp) of the
photoelectron ep is such that its kinetic energy is given by
εp = h̄2 k2

p/2m; also, μp (= ± 1
2 ) is the projection of the spin

of ep along ûp(ϑp, ϕp) (both �kp and ûp are shown in Fig. 1).
Thus, energy

εp = hνr − (E1+ − E0) (2)

of ep varies with the frequency νr of the photon absorbed in
Eq. (1). In the following discussion, unless stated otherwise,
ket |1,mr〉 is used to suggest [47,48] that the process (1)
is in the electric dipole approximation (E1) specified by
γr ’s angular momentum |�	r | = 1 and polarization mr . Then,
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mr = +1 or −1 is for photons with positive or negative helicity
[also called photons with right circular polarization (RCP)
or left circular polarization (LCP)], respectively; whereas,
mr = 0 corresponds to a linearly polarized (LP) photon.
[An unpolarized (UP) electromagnetic wave is taken to be an
even mixture of photons with negative and positive helicities.]
Accordingly, a photon absorbed in the process (1) in the state
|1,+1〉 or |1,−1〉 is incident, but a photon in the |1,0〉 state has
its electric field vector along the polar (i.e., OZ) axis of the
space-fixed (SF) [or, laboratory-fixed (LF)] coordinate system
OXYZ shown in Fig. 1.

Processes taking place in an atomic or a molecular target
can, in general, be divided in two broad classes: namely, those
that (a) are completed in a single step or (b) require more than
one step for their completion. For example, photoionization in
Eq. (1) is a one-step process because electron ep is ejected
from A in the same step (i.e., from the same electronic
state of A) in which photon γr is absorbed by this atom.
Therefore, the process (1) has been called herein as a one-step
single photoionization (1-SPI). The other well-known one-
step process is double photoionization wherein simultaneous
ejection of two electrons from an atom or a molecule takes
place in the same step in which a photon is absorbed by this
target. Such processes have appropriately been named [49,50]
as one-step double photoionization (1-DPI). The simplest
example of a process requiring more than one step for its
completion is, on the other hand, the radiative, or nonradiative,
decay of an excited state of an atom or a molecule. This is
a two-step process: its first step consists of creation of an
excited state, say, due to the absorption of a photon. The
additional step of this two-step process requires decay of
the excited state to the ground state of the original atom by
fluorescence, or of the target’s singly charged positive ion
by ejecting an electron (called Auger electron). The resonant
Auger decay [51] of an atom, for example, is a two-step
single photoionization (2-SPI) as it consists of spontaneous
nonradiative decay of an excited state of an atom created in
a preceding step due to the absorption of a photon. Thus, in
2-SPI, an (Auger) electron comes out from an electronic state
of the atom which is different from that in which a photon was
absorbed.

It is shown in Appendix A [Eqs. (A4) and (A9a)] that
the most general form of a density operator for any one-step
process taking place due the absorption of a single photon
is [49,50]

ρf = Kp Fp ρ1 F †
p. (3a)

Here, while the constant Kp and the photoionization operator
Fp have been defined in Appendix A,

ρ1 = ρ0 ⊗ ρr, (3b)

with ρ0 = |0〉〈0| and ρr = |1,mr〉〈1,mr | being the respective
density operators [49,50] for the ionizing radiation γr and
for the target atom A, assumed to be uncorrelated before the
interaction between the two takes place.

The two important forces experienced by the constituents of
an atom are due to the Coulomb interaction of electrons among
themselves as well as with their nucleus, and the SOI. The latter
of the two is significant primarily for heavy atoms [52,53]. In
the absence of SOI, all the quantum informatics properties of a

(ep,A1+) pair we want to investigate in this paper will be due
only to the Coulomb forces occurring in an atom. It is for this
reason that the entanglement generated in these circumstances
has appropriately been called (in Sec. III) as Coulombic
entanglement. On the inclusion of SOI, the entanglement
properties of a (ep,A1+) system, on the other hand, are very
much controlled by the same physical variables (e.g., the
total angular momentum) which determine fine-structure (FS)
levels [52,53] in an atom. The entanglement studied in the
presence of SOI in Sec. IV has, consequently, been named as
FS entanglement.

III. COULOMBIC ENTANGLEMENT BETWEEN AN
ELECTRONIC QUBIT AND AN IONIC QUDIT

On the exclusion of SOI from the atom A, its residual
photoion A1+, and from the continuum of the photoelectron
ep, the most suitable scheme for coupling the angular momenta
relevant to the photoionization process (1) is the Russell-
Saunders (i.e., L-S) coupling [52,53]. Thus, in this section,
L-S coupling becomes applicable to the whole of the process
(1). In addition, due to the spin-independent nature [54,55] of
the photoionization operator Fp [see, for example, Eqs. (A7)
and (A9)] in the density operator( 3), both the total orbital and
total spin angular momenta, before and after the emission of
ep, are individually conserved, i.e.,

�	r + �L0 = �L1+ + �	p (4a)

and

�S0 = �S1+ + �sp. (4b)

Here, ( �L0, �L1+) and (�S0, �S1+ ) are, respectively, the total orbital
and spin angular momenta—quantized along the OZ-axis
in Fig. 1—of the electronic states (|0〉, |1+〉) of (A, A1+)
participating in the process (1), whereas [�	p, �sp (with |�sp| =
1/2)] are (orbital, spin) angular momenta of the photoelectron
ep in Eq. (1), quantized along ûp in the same figure.

The most general form of the density operator ρ0 ⊗ρr ,
which represents in Eq. (3) an unpolarized atom A in the
L-S coupling plus a noninteracting photon, can be written as
[49,50]

ρ1 ≡ ρ0 ⊗ ρr

= 1

(2L0 + 1)(2S0 + 1)

∑
ML0 MS0

|0; 1,mr〉〈0; 1,mr |. (5)

Here, |0; 1,mr〉 ≡ |0〉 |1,mr〉 represents a state of the
noninteracting (atom + photon) system; ML0 (=êz · �L0) and
MS0 (=êz · �S0) are the projections of the respective angular
momentum vectors �L0 and �S0 along the polar axis of our
coordinate system in Fig. 1. Further, taking the target atom
to be unpolarized, we have averaged in Eq. (5) over all the
degenerate Zeeman components of A in its ground electronic
state |0〉. Consequently, one can now write [52,53] |0〉 ≡
|L0 S0 ML0 MS0〉 for the target atom A in L-S coupling in the
absence of SOI. Similarly, |1+〉 ≡ |L1+ S1+ ML1+ MS1+ 〉 for the
ground electronic state of the residual photoion A1+. Here, we
have ML1+ (=êz · �L1+ ) and MS1+ (=êz· �S1+ ).
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In the entanglement between the spins of photoelectron ep

and of the residual photoion in the process (1), the Zeeman
components (ML1+ = −L1+ , −L1+ + 1, . . . ,0, . . . ,L1+ −1,
L1+) of A1+ due to the space quantization of its orbital angular
momentum L1+ are not observed. The required DM, obtained
from (3), can therefore be written as〈

L1+ S1+ MS1+ ; μp ûp
�kp

∣∣ ρf

∣∣L1+S1+M ′
S1+ ; μ ′

p ûp
�kp

〉
= Kp

L1+∑
ML1+ =−L1+

〈
L1+ S1+ ML1+ MS1+ ;

μp ûp
�kp

∣∣ (Fp ρ1 F †
p)
∣∣L1+S1+ML1+ M ′

S1+ ;

μ ′
p ûp

�kp

〉
. (6a)

This, on substituting (5), finally becomes〈
L1+S1+MS1+ ; μp ûp

�kp

∣∣ ρf

∣∣L1+S1+M ′
S1+ ; μ ′

p ûp
�kp

〉
= Kp

(2L0 + 1)(2S0 + 1)

∑
ML0 MS0 ML1+

× 〈1+; μp ûp
�kp| Fp |0; 1mr〉

×〈0; 1mr | F †
p

∣∣L1+S1+ML1+ M ′
S1+ ; μ ′

p ûp
�kp

〉
. (6b)

Expression (6b) is evaluated in Appendix B. In its final
simplified form, given in Eq. (B2), it is shown to be written
as a product of two independent terms. In the derivation of
(B2), only the Coulomb interactions among the constituents
of an atom have been taken into account. Expression (B2) has,
therefore, been called as Coulombic DM.

The first term (B3), present on the right-hand side of the
Coulombic DM (B2), contains, among other things, the state
of polarization (specified by mr ) of the ionizing radiation used
in Eq. (1) and the kinematics (i.e., direction of propagation k̂p,
energy εp) of the photoelectron ep. It, in addition, has total
orbital angular momenta (L0, L1+) of (A, A1+), the dynamical
amplitudes (B3b) for the E1 photoionization (calculated using
the bound electronic states of A, A1+, and the continuum
wave function of the photoelectron ep). Also, this first term
[i.e., (B3)] in Eq. (B2) has an implicit dependence upon
the spins (S0, S1+ ) because, in L-S coupling, the energies
(E0, E1+ ) of the electronic states (|0〉, |1+〉) of (A,A1+)
depend upon their respective spin multiplicity. It is, however,
totally independent of the quantization directions ûp as well
as of the spin of the photoelectron ep emitted in Eq. (1).
Hence, d2σ (mr )/dεp dk̂p in Eq. (B3) describes purely angular
correlation between (ep,A1+). Expression (B3) is, indeed, the
spin-unresolved angular distribution [56] for electrons emitted
in photoionization of an atom in E1 approximation in L-S
coupling. Its presence in the Coulombic DM (B2) is merely
as a positive multiplicative factor which does not have any
explicit dependence on any spin quantum numbers.

Let us now consider the second term (B4), present on
the right-hand side of the Coulombic DM (B2). Unlike the
angular distribution d2σ (mr )/dεp dk̂p, (B4) does not contain
any of those physical variables which are present in Eq. (B3)
and, hence, is totally independent of both the kinematical and
dynamical effects contributing to the process (1). Moreover,

(B4) is completely determined by the spins of all the three
particles (i.e., A, A1+, ep) involved in the process (1) and by
the direction ûp of the spin quantization of the photoelectron
ep. Hence, the second term (B4), in the Coulombic DM (B2),
represents purely spin correlation between (ep,A1+).

The separation obtained in Eq. (B2) of the DM into its two
parts describing purely angular and purely spin correlations
between (ep,A1+) in the absence of SOI in Russell-Saunders
coupling is completely rigorous and independent of all dynam-
ical models. It is well known (see, for example, [44,52–54])
that the state of an atom or a molecule, in the absence of SOI, is
a product of its spatial and spin parts. A DM too represents [45]
the state of a system. The separation of angular and spin parts
in Eq. (B2) for the 1-SPI process (1) in the present case, and
for other such processes elsewhere (e.g., [49,50]), is also a
consequence of the exclusion of SOI, i.e., consideration of the
Hamiltonians (A5) and (A6a).

In expression (B4), although the allowed values for each of
μp and μ ′

p are ± 1
2 , the spin magnetic quantum numbers MS1+

and M ′
S1+ of the photoion A1+ can each take (2S1+ + 1) values

−S1+ , −S1+ + 1, . . . ,S1+ − 1, S1+ . Consequently, (B4) is a
matrix of size [2(2S1+ + 1) × 2(2S1+ + 1)] representing spin
correlation between the electronic qubit ep and d[=(2S1+ +
1)]-dimensional ionic qudit A1+. Hence, the dimensionality d

of the qudit can be chosen according to one’s requirement by
considering the atomic target A and photoion A1+ in Eq. (1)
of appropriate spins S0 and S1+ , respectively.

The diagonal terms (i.e., those with μp = μ ′
p and M1+ =

M ′
1+ ) in the DM (B2) describe spin-resolved angular distri-

bution of photoelectrons ejected in the process (1) in L-S
coupling, whereas the nondiagonal terms (i.e., those with μp

	= μ ′
p or M1+ 	= M ′

1+ ) represent coherent effects in the DM
(B2). The other interesting thing about the spin-correlation
matrix (B4) is that each of its [2(2Si + 1) × 2(2S1+ + 1)]
elements is readily calculated once the the spins (S0, S1+ ) of
the electronic states (|L0 S0 ML0 MS0〉, |L1+ S1+ ML1+ MS1+ 〉)
of (A, A1+), participating in the photoionization process (1) in
L-S coupling, are known.

It is obvious from the spin-conservation condition (4b), as
well as from the 6-j symbol [57] present in Eq. (B4), that spins
(S0, S1+ ) of (A, A1+) in the process (1) in the absence of SOI
are related by S0 − S1+ = ± 1

2 . The only two possibilities are
therefore (i) S0 = S1+ − 1

2 or (ii) S0 = S1+ + 1
2 , with S1+ � 1

2
in both cases. (For S1+ = 0, multiplicity of the electronic state
|1+〉 of the photoion A1+ will be one and, hence, it will simply
become a single-state system.)

In the following, we investigate the spin-entanglement
between (ep,A1+) in both of these cases. This property of
the qubit-qudit system will be completely determined by the
matrix (B4) as the angular correlation in Eq. (B2) is always
positive and acts as a multiplicative factor. Therefore, unless
stated otherwise, we write the Coulombic DM (B2) as〈

L1+S1+MS1+ ; μp ûp
�kp

∣∣ ρf

∣∣L1+S1+M ′
S1+ ; μ ′

p ûp
�kp

〉
−→ σ (S0; S1+ ; ûp)μp, MS1+ ; μ ′

p M ′
S1+

. (7)

In order to study the entanglement properties of a (ep,A1+)
pair, one needs to calculate the partial transpose [58,59] of
the DM (7) with respect to either of its two subsystems, i.e.,
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photoelectron ep or photoion A1+. These are given by

σTe (S0; S1+ ; ûp)μp, MS1+ ;μ ′
p M ′

S1+

= σ (S0; S1+ ; ûp)μ ′
p, MS1+ ; μp M ′

S1+
(8a)

and

σT1+(S0; S1+ ; ûp)μp,MS1+ ;μ ′
p M ′

S1+

= σ (S0; S1+ ; ûp)μp, M ′
S1+ ; μ ′

p,MS1+ (8b)

respectively. Although the matrices (8a) and (8b) are certainly
different, their eigenvalues will, nevertheless, be always
identical because one is the (full) transpose of the other.
Consequently, one can calculate either of the two partial
transposes (8) for studying the Coulombic entanglement
properties of a (ep,A1+) pair generated in the process (1) in the
absence of SOI in L-S coupling. In this study, we have always
calculated, unless stated otherwise, the partial transpose of
the DM (7) with respect to the photoelectron ep, i.e., used
Eq. (8a).

A. Free Coulombic entanglement

Let us consider first [i.e., (i) S0 = S1+ − 1
2 , with S1+ � 1

2 ]
of the two cases mentioned earlier herein. For this case, the
DM (7) readily simplifies to

σ

(
S0 = S1+ − 1

2
; S1+ ; ûp

)
μp, MS1+ ; μ ′

p M ′
S1+

= 1

2(2S1+ + 1)
δμpμ′

p
δMS1+ M ′

S1+
+ (−1)

1
2 +μ ′

p+S1+ −MS1+

×
√

3(S1+ + 1)

2S1+ (2S1+ + 1)

∑
m n

(
1
2

1
2 1

μp −μ′
p m

)

×
(

S1+ S1+ 1

MS1+ −M ′
S1+ −n

) [
D1

mn(ωp)
]∗

(9)

with ωp = (ϕp, ϑp, 0). It is not possible to diagonalize the DM
(9) without specifying a value of the spin S1+ of the photoion
A1+ participating in the photoionization (1). Consequently,
we individually calculated (9) for each of S1+ = ( 1

2 , 1, 3
2 , 2, 5

2 ,
3) corresponding to S0 = (0, 1

2 , 1, 3
2 , 2, 5

2 ), respectively. It, in
other words, means that one is here looking at the bipartite spin
states of the qubit of the photoelectron ep and the qudit of the
photoion A1+ defined in the Hilbert spaces of dimensions d =
(2, 3, 4, 5, 6, 7), while the spin multiplicities of the electronic
states of A in Eq. (1) are (1, 2, 3, 4, 5, 6). The diagonalization
of each of these six DMs and of their partial transpose (PT)
gave us the following eigenvalues (EVs):

DM(9)

[
2(S1+ + 1) EVs = 0

2S1+ EVs = (2S1+ )−1

]
, (10a)

PT (8a) of DM (9)[
2(S1+ + 1) EVs = (2S1+ + 1)−1

2S1+ EVs = −[2S1+ (2S1+ + 1)]−1

]
. (10b)

The eigenvalues (10) mean that a spin state of (ep,A1+),
formed in a photoionization process (1) taking place in an
unpolarized atom when its constituents experience only the
Coulomb interaction, has the following properties:

(a) The total number of eigenvalues in each of the two cases
in Eq. (10) is equal to 2(2S1+ + 1), i.e., the dimensionality of
the DM (9).

(b) The sum of all the eigenvalues in Eq. (10a), as well as
in Eq. (10b), is always equal to one, implying that the DM (9)
is normalized to unit trace.

(c) According to (10a), all density matrices (9), other than
those with (S0 = 0, S1+ = 1

2 ), have more than one nonzero
eigenvalue. Consequently [45], (ep,A1+) are in a pure spin
state if the photoion is also a qubit; otherwise, for all values
of the spin S0 = S1+ − 1

2 of A, with S1+ � 1 of A1+, (ep,A1+)
always form a mixed state.

(d) Some of the eigenvalues (10b) of the partial transpose
of the DM (9) are always negative. Thus, each of the spin states
(9), generated in the photoionization (1) with (S0 = S1+ − 1

2 ,
where S1+ � 1

2 ), has negative partial transpose (NPT). These
are called [3,20] NPT states.

(e) A straightforward application of the very stringent,
necessary, and sufficient condition [58,59] for the separability
of a bipartite state shows that, in the present case, (ep,A1+) are
always entangled with respect to their spin angular momenta.

(f) Negativity [60–62], concurrence [63], and entangle-
ment of formation [63] (EoF) are the three measures currently
in vogue for quantifying the amount of entanglement present
in a nonseparable state. Of the three, however, negativity is the
only measure which can be calculated for a bipartite state of
other than one or both qubits. It is defined as [62]

N (ρ) = 2 max

{
0,−

∑
[negative eigenvalues of

partial transpose of (σ )]

}
. (11)

On substituting the eigenvalues (10b) in the definition (11),
one immediately obtains

N
[
σ

(
S0 = S1+ − 1

2
; S1+ ; ûp

)]
= 2

2S1+ + 1
with

S1+ � 1

2
(12)

for the negativity of the state (9) of a (ep,A1+) system.
(g) Thus, negativity is one for a state with (S0 = 0, S1+ = 1

2 )
and asymptotically goes to (S1+ )−1 with increasing spin of
the electronic state |1+〉 of the photoion A1+ generated in the
process (1). In other words, (ep,A1+) are maximally entangled
if the photoion formed in Eq. (1) is also a qubit; otherwise, an
increase in the dimensions (2S1+ + 1) of the Hilbert space of
the ionic qudit weakens the entanglement of its spin angular
momentum with that of the electronic qubit.

(h) In view of the properties (c) and (g), (ep,A1+) are
in a pure and maximally entangled state when S0 = 0 and
S1+ = 1

2 . It, nevertheless, is an obvious result. In this case, the
ground electronic states (|0〉, |1+〉) of (A, A1+) participating
in the photoionization process (1) are (singlet, doublet). Then,
the conservation condition (4b) demands that the sum of the
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spin angular momenta of (electronic, ionic) qubits (ep,A1+)
should also be zero, i.e., these two particles should be in a
singlet spin state which is pure as well as maximally entangled.
Indeed, it can readily be verified by explicitly calculating
all the 16 elements of the DM (9) for S0 = 0 and S1+ = 1

2 .
On specializing, in the resulting matrix, the spin quantization
direction ûp(ϑp, ϕp) of photoelectron ep along the polar axis
of the SF in Fig. 1 (i.e., taking ϑp = 0), one finds that it reduces
to the (4 × 4) matrix given in Ref. [1] for the singlet state of
two spin- 1

2 particles. This is one of the pure and maximally
entangled four Bell states [1–3].

(i) Eigenvalues of the DM (9) and of its partial transpose
(8a) are only of two different varieties in each of (10a)
and (10b), respectively. These are, almost, evenly distributed
{with values [0 and (2S1+ )−1 in Eq. (10a)], [(2S1+ + 1)−1 and
−[2S1+ (2S1+ + 1)]−1 in Eq. (10b)]}.

(1) The preceding point (h) gives one of the plausible
reasons for this even distribution of the eigenvalues in
Eq. (10a). The conservation of the spin angular momentum
for the Coulombic Hamiltonians (A5) and (A6a) requires
that, whenever (S0 = 0, S1+ = 1

2 ), (ep,A1+) have to be in
a singlet spin state which is pure. It means, for these values of
(S0, S1+ ) in the photoionization process (1), three of the four
eigenvalues of the DM (9) must be zero, while the remaining
fourth eigenvalue must be unity. This requirement determines
in Eq. (10a) how many of the eigenvalues of the DM (9) should
be 0 even for S1+ > 1

2 . The number of nonzero eigenvalues will
then obviously be [(total number of eigenvalues) − (number
of zero eigenvalues)]. This, in the present case, is equal to
2S1+ [=2(2S1+ + 1) − 2(S1+ + 1)]. Obviously, as required, the
sum of all the nonzero eigenvalues in Eq. (10a) is unity.

(2) It has theoretically been shown [64] that the partial
transpose of an entangled bipartite state of qubits can have only
one of its four eigenvalues to be negative, while, in the case of
a qubit-qudit bipartite entangled state, the number of negative
eigenvalues of the DM (9) may be more than one. This is one
of the possible reasons for the distribution to certain values
in Eq. (10b) of the eigenvalues of the partial transpose of the
DM (9).

(j) Some of the simplest possible examples of the
result discussed in (h) are photoionization of He(1s2 1S)
−→ He1+(1s1 2S), Be(1s2 2s2 1S) −→ Be1+(1s2 2s1 2S),
C(1s2 2s2 2p2 1S/1D) −→ C1+(1s1 2s22p1 2P ), etc. The SOI
is obviously absent in these electronic states of He, He1+,
Be, Be1+, and C; it certainly is negligible also for C1+ and
for the photoelectron ep moving in the continuum of these
photoions of some of the lightest atoms. In each of these
cases, (ep,A1+) are in a singlet spin state which is pure and
maximally entangled.

(k) The examples of mixed (ep,A1+) states wherein their
spin angular momenta have less than maximum possible
Coulombic entanglement (i.e., are partially entangled) include
F(1s2 2s2 2p5 2P ) −→ F1+(1s1 2s2 2p4 3P ). Here, (ep, F1+)
are in a mixed Coulombic state of a qubit-qutrit system
whose negativity is 2

3 . Yet, another example of mixed and
partial Coulombic entanglement is O(1s2 2s2 2p4 3P ) −→
O1+(1s1 2s2 2p3 4S) with negativity equal to 1

2 . That is,
spins of (ep, O1+) are in a mixed and partially entangled
Coulombic state of a qubit-qudit system. Each of these, and

other, Coulombic bipartite states can readily be produced and
detected in a laboratory.

Earlier, Kim et al. [65] have considered spin entanglement
of (ep,A1+) generated in the photoionization of only the
singlet and triplet electronic states of an atom A described in
the independent particle model [52,53] by two equivalent (i.e.,
ns2), or nonequivalent (i.e., ns1 n′ s1), bound electrons in L-S
coupling. The analysis given in this section, on the other hand,
is completely general, independent of all dynamical models,
and applicable to any allowed states (|0〉, |1+〉) of (A, A1+),
irrespective of their electronic configurations, participating in
the photoionization process (1) in Russell-Saunders coupling
in the absence of SOI.

B. Bound Coulombic entanglement

In this section, we investigate the second [i.e., (ii) S0 =
S1+ + 1

2 , with S1+ � 1
2 ] of the two possibilities arising from

the spin-conservation condition (4b). On specializing the DM
(7) to this case, one finds

σ

(
S0 = S1+ + 1

2
; S1+ ; ûp

)
μp, MS1+ ; μ ′

p M ′
S1+

= 1

2(2S1+ + 1)
δμpμ ′

p
δMS1+ M ′

S1+
+ (−1)μ

′
p− 1

2 +S1+ −MS1+

×
√

3S1+

2(S1+ + 1)(2S1+ + 1)

∑
mn

(
1/2 1/2 1

μp −μ ′
p m

)

×
(

S1+ S1+ 1

MS1+ −M ′
S1+ −n

) [
D1

m n(ϕp,ϑp,0)
]∗

(13a)

= 1

2(S1+ + 1)
δμpμ ′

p
δMS1+ M ′

S1+

− S1+

S1+ + 1
σ

(
S0 = S1+ − 1

2
; S1+ ; ûp

)
μp, MS1+ ; μ ′

p M ′
S1+

.

(13b)

In Eq. (13b), the required DM (13a) has been written in terms
of the DM (9) obtained earlier for S0 = S1+ − 1

2 with S1+ � 1
2 .

The relationship (13b) between the two density matrices is true
also for their partial transpose as well as for their diagonalized
forms.

Using (13b) and (10a), one readily obtains the following
eigenvalues:

2(S1+ + 1) EVs = [2(S1+ + 1)]−1,

2S1+ EVs = 0
(14a)

for the DM (13a). Similarly,

2(S1+ + 1) EVs = [2(S1+ + 1)(2S1+ + 1)]−1,

2S1+ EVs = (2S1+ + 1)−1 (14b)

are the eigenvalues of the partial transpose of the DM (13a) and
are gotten by combining Eqs. (13b) and (10b). The eigenvalues
(14) show that a spin state of (ep,A1+) formed in the present
case has the following properties:
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(a) Properties (a) and (b), mentioned in Sec. III A for the
case [(i) S0 = S1+ − 1

2 , with S1+ � 1
2 ] are applicable even in

the present case.
(b) For all values of (S0, S1+ ) appropriate for the DM (13),

the number of nonzero eigenvalues in Eq. (14) is always greater
than one. Hence, none of the spin state of (ep,A1+), generated
in the present case is pure.

(c) None of the eigenvalues (14b) of the partial transpose
of the DM (13) is negative. Thus, each of the spin states of
(ep,A1+), generated in the photoionization process (1) with
(S0 = S1+ + 1

2 and S1+ � 1
2 ), has positive partial transpose

(PPT).
(d) Peres [58] has shown that if the DM of a composite

system has PPT, its quantum state is then necessarily separable.
Horodecki et al. (see, for example, [3,20,59]), while analyzing
Peres’s suggestion, found that it [58] is also a sufficient
condition for the separability, provided the product of the
dimensions of the Hilbert spaces of the subsystems does not
exceed six. It, in other words, means [58,59] that a PPT state
of a qubit-qubit, or a qubit-qutrit, system is always separable.
Hence, (ep,A1+) generated in the photoionization process (1)
with (S0 = 1, S1+ = 1

2 ) or (S0 = 3
2 , S1+ = 1), have no Coulom-

bic entanglement at all. Examples include C(1s2 2s2 2p2 3P )
−→ C1+(1s2 2s2 2p1 2P ). Here, C1+ is obviously a two-level
system and, according to the eigenvalues (14), (ep, C1+) are in
a mixed product state. Similarly, in the photoionizing transition
N(1s2 2s2 2p3 4S) −→ N1+(1s1 2s2 2p2 3P ), the residual
photoion N1+ forms with the photoelectron ep a qubit-qutrit
system which too is in a mixed, separable state.

(e) Horodecki [66] has shown that a PPT state with
dimension of the Hilbert space of its composite system more
than six may also be nonseparable, i.e., entangled. However,
the entanglement present in such PPT states has come to be
known (see, for example, [3,20,30] and references therein) as
bound entanglement whose properties are very different from
that, called free entanglement, of a NPT state discussed in
Sec. III A.

(f) In view of the discussion given in (e) herein, for a
PPT state (13) of (ep,A1+) to possess bound entanglement,
it is necessary that 2(2S1+ + 1) > 6, i.e., the spin multiplicity
of its residual photoion A1+, formed in the photoionization
process (1), must be more than three, i.e., the spin angular
momentum of its electronic state |1+〉 must at least be 3

2 . It,
in other words, means that A1+ must, at least, be a four-state
system.

(g) Many inequalities (see, for example, Refs. [66–69] or
review articles [3,20,70]) have been obtained, the satisfaction,
or violation, of which is suggested to decide the presence, or
absence, of bound entanglement in a given PPT bipartite state.
In order to see whether the PPT states (13) with 2(2S1+ + 1) >

6 are nonseparable, we have used two different criteria based
upon the rank [71] and range [72] of the DM (13). According
to the first of these two criteria [3,20,67–69], for the PPT state
(13) with S1+ > 1 to be nonseparable, its rank must satisfy the
inequality

Rank

[
σ

(
S0 = S1+ + 1

2
; S1+ > 1; ûp

)]
� Max{Rank[ρep ], Rank[ρ1+

]}. (15)

Here,

ρep = �MS1+σ

(
S0 = S1+ + 1

2
; S1+ > 1; ûp

)
μp, MS1+ ; μ ′

p,MS1+

(16a)

and

ρ1+ = �μp
σ

(
S0 = S1+ + 1

2
; S1+ > 1; ûp

)
μp, MS1+ ; μp,M ′

S1+

(16b)

are the reduced matrices, calculated from the DM (13),
for the photoelectron ep and the residual photoion A1+,
respectively. Both of these reduced matrices were found to
be diagonal of the respective sizes (2 × 2) and [(2S1+ + 1) ×
(2S1+ + 1)]. Each of the diagonal elements of ρep is 1

2 and
that of ρ1+

is (2S1+ + 1)−1, always. Hence, ranks of the
two respective reduced matrices are two and (2S1+ + 1). But,
according to (14a), DM (13) is of rank 2(S1+ + 1). Thus, in
the present case, the PPT state (13) always satisfies the bound
(15) for S1+ � 3

2 and, hence, possess bound entanglement.
(h) Let us take |vn〉 to be the eigenvector of the nth nonzero

eigenvalue (14a) of the PPT DM (13) for S1+ � 3
2 . Then, the

range

Range

[
σ

(
S0 = S1+ + 1

2
; S1+ > 1; ûp

)]
=

2(S1+ +1)∑
n=1

Cn |vn〉
(17)

of this state is the linear combination of the 2(S1+ + 1)
eigenvectors of the nonzero eigenvalues given in Eq. (14a). In
Eq. (17), Cn are the coefficients of this linear combination. The
range criterion for the nonseparability of the PPT bipartite state
(13) requires [34,66] that the following 2(2S1+ + 1) coupled
simultaneous equations

(
x1

x2

)
⊗

⎛⎜⎜⎜⎜⎜⎝
yS1+

yS1+ −1

. . .

. . .

y−S1+ −1

y−S1+

⎞⎟⎟⎟⎟⎟⎠ =
2(S1+ +1)∑

n=1

Cn |vn〉 (18)

should have only trivial solutions. The DM (13) was found
to meet this requirement for all the (ep,A1+) states with
S1+ � 3

2 .
(i) Hence, a spin state of (ep,A1+), generated in the pho-

toionization process (1) in the L-S coupling with S0 = S1+ + 1
2

and S1+ � 3
2 is always nonseparable, although it possesses

PPT. One of the several examples of such photoionizing
transitions is Fe(1s2 2s2 2p6 3s2 3p6 4s2 3d6 5D) −→
Fe1+(1s2 2s2 2p6 3s2 3p6 4s2 3d5 4D/4G) wherein (ep, Fe1+)
form a PPT state of qubit-qudit (with d = 3

2 ) possessing bound
entanglement. Although the SOI is negligible in none of the
species (Fe, Fe1+, ep) participating in the E1 process (1),
nevertheless, the present example very well illustrates as to
how one can generate states of an electronic qubit and ionic
qudit possessing bound Coulombic entanglement. It further
shows that this entanglement can readily be predicted with a
knowledge of the spins (S0, S1+ ) of (A,A1+) obtained simply
by measuring the energy of the photoion in a laboratory in the
L-S coupling.
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Although both Secs. III A and III B discuss properties of
the Coulombic entanglement between the spins of (ep,A1+),
however, the results obtained in the two cases are quite
different. The Coulombic DM (7) [i.e., (B4)] contains, among
other things, spins (S0, S1+ ) of (A,A1+) in one of its two 3-j
symbol and one 6-j symbol. It is therefore very natural that,
with a change in the relationship between the values of S0 and
S1+ used to arrive at (13a), the PPT DM should be very different
from that [i.e., expression (9)] for the NPT states. This indeed
is obvious from the expression (13b) for the former given in
terms of the latter [i.e., DM (9)]. Consequently, the properties
of the Coulombic entanglement of a spin state of (ep,A1+)
generated in the photoionization process (1) in Sec. III B are
very different from those discussed in Sec. III A, although the
physical assumption (i.e., absence of SOI) involved in the two
cases is the same.

Thus, purely Coulombic interaction, experienced by the
constituents of an atom, is capable of generating (qubit,
qudit) spin states of (ep,A1+) with bound entanglement for
appropriate values of the spins (S0, S1+ ) of the electronic states
(|0〉, |1+〉) of (A, A1+) participating in as simple a process as
photoionization in the absence of SOI.

IV. FINE-STRUCTURE ENTANGLEMENT BETWEEN AN
ELECTRONIC QUBIT AND AN IONIC QUDIT

In this section, we study the E1 process (1) taking SOI into
account, i.e., using the Hamiltonians (A5) and (A6b). Then,
j -j coupling [52,53] of angular momenta is, obviously, the
most appropriate choice to work with. If �J0 = �L0 + �S0 and
�J1+ = �L1+ + �S1+ are the total angular momenta of atomic

target A and of its residual photoion A1+ participating in
Eq. (1), then the condition for their conservation becomes

�	r + �J0 = �J1+ + �jp

[
=�	p + �sp

(
=

�1
2

)]
. (19)

Here, �jp is the total angular momentum of the photoelectron
ep. Thus, two conditions [(4a) and (4b)] for the conservation of
(orbital, spin) angular momenta individually in L-S coupling
are replaced by a single condition (19) in j -j coupling.
Although the conservation condition (2) for energy in the
process (1) still remains the same, however, (E0, E1+ ) are
now the energies of (A, A1+) in their ground electronic states
(|0〉 = |J0M0〉, |1+〉 = |J1+M1+〉) in j -j coupling [52,53].
Here, M0 = êz · �J0 and M1+ = êz · �J1+ are the projections
of the total angular momenta �J0 and �J1+ , respectively, along
the polar OZ axis of the SF shown in Fig. 1.

A. Density matrix

It has already been mentioned in this paper that the
expression (3) for the DM is not only applicable to any one-step
photoabsorption process, but also completely general (i.e.,
independent of all dynamical models, or angular momentum
coupling schemes, etc.). It can therefore be readily used for
calculating the required DM even in the present case of j -j
coupling when the photoionization process (1) is taking place
in the presence of SOI, in addition to the Coulomb forces
experienced by the constituents of an atom [i.e., Hamiltonians
(A5) and (A6b) are used].

Consequently, the DM for the process (1) in an unpolarized
atom A in j -j coupling becomes

〈J1+M1+ ; μp ûp
�kp| ρf |J1+M ′

1+ ; μ ′
p ûp

�kp〉 = Kp

2J0 + 1

∑
M0

〈1+; μp ûp
�kp| Fp |0; 1mr〉〈0; 1mr | F †

p |J1+M ′
1+ ; μ ′

p ûp
�kp〉. (20)

In order to proceed further, we need to know the photoionization matrix element present on the right-hand side of (20) such that
it meets both of the conservation requirements (2) and (19). It can be shown to be given by [73]

〈1+; μp ûp
�kp|Fp |0; 1 mr〉 = (−1)−

1
2

∑
	p m	p jp mjp νp

(−i)	p (−1)	p+mjp eiσ	pjp

√
2jp + 1

(
	p

1
2 jp

m	p
νp −mjp

)

× Y
m	p

	p
(k̂p) D

1
2
μp νp

(ωp) 〈J1+ MJ1+ ; jp mjp
|Fp|J0 MJ0 ; 1mr〉−. (21a)

The “minus” superscript on the Dirac’s bracket on the right-hand side of (21a) means that the continuum orbital of the
photoelectron in j -j coupling satisfies the incoming wave boundary conditions [74] appropriate for a photoionization process.
Further, in Eq. (21a), we have defined [73]

〈J1+ MJ1+ ; jp mjp
|Fp|J0 MJ0 ; 1mr〉− ≡ (−1)1−J0−J1+∗ +jp

∑
J MJ

(−1)2MJ

× (2J + 1)

(
J0 1 J

M0 mr −MJ

)(
J1+ jp J

JM1+ mjp
−MJ

)
〈J1+ jp|F (J )|J0 1〉− (21b)

and

〈(J1+ jp)J MJ |Fp|(J0 1)J ′ M ′
J 〉− = δ(JJ ′) δ(MJ M ′

J ) 〈J1+ jp|F (J )|J0 1〉− (21c)

for satisfying the angular momentum conservation condition (19).
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Next, we substitute (21a) and its Hermitian conjugate in Eq. (20) and simplify the resulting expression by analytically
evaluating as many sums as possible using Racah algebra. In its fully simplified form, the DM can finally be written as

〈J1+M1+ ; μp ûp
�kp| ρf |J1+M ′

1+ ; μ ′
p ûp

�kp〉

= (−1)μ
′
p +M1+

∑
JT MJp

∑
Sp MSp NSp

(
1
2

1
2 Sp

μp −μ ′
p MSp

)(
J1+ J1+ JT

M1+ −M ′
1+ MJp

) [
DSp

MSp NSp
(ωp)

]∗
A
(
Sp NSp

; JT MJp
; mr ; �kp

)
,

(22a)

where

A
(
Sp NSp

; JT MJp
; mr ; �kp

) = (−1)
1
2 + mr + J0 − J1+ + JT (2JT + 1)(2Sp + 1)

Kp

(2J0 + 1)
√

4π

∑
	p jp J

	 ′
p j ′

p J ′

∑
Lp MLp

Jp Lr

(−1)	
′
p + jp + j ′

p + J + Lr

× (2Lr + 1)(2Jp + 1)
√

2Lp + 1

(
	p 	 ′

p Lp

0 0 0

)(
1 1 Lr

mr −mr 0

)(
Lp Sp Jp

MLp
NSp

MJp

)

×
(

Jp Lr JT

MJp
0 −MJp

){
1 1 Lr

J J ′ J0

}⎧⎨⎩
	p 	 ′

p Lp

1
2

1
2 Sp

jp j ′
p Jp

⎫⎬⎭
⎧⎨⎩

jp j ′
p Jp

J J ′ Lr

J1+ J1+ JT

⎫⎬⎭[YLp

MLp
(k̂p)

]∗
× [(−i)	p (−1)	p + jp eiσ	pjp (2J + 1)

√
(2	p + 1)(2jp + 1) 〈J1+jp|F (J )|J01〉−]

× [(−i)	
′
p (−1)	

′
p + j ′

p e
iσ	 ′

pj ′
p (2J ′ + 1)

√
(2	 ′

p + 1)(2j ′
p + 1) 〈J1+j ′

p|F (J ′)|J01〉−]∗ (22b)

with amplitudes 〈J1+jp|F (J )|J01〉 given in Eq. (21b).

1. Properties of the density matrix

Let us briefly analyze the properties of the present DM (22),
obtained in j -j coupling, vis a vis the one derived earlier in L-S
coupling and given in Eqs. (B2)–(B4). Although both of these
two density matrices represent the residual photoion A1+ with
angle- and spin-resolved photoelectron ep generated in the
same process (1) of photoionization, however, their structures
and levels of complexity are quite different from each other.
The reason for these differences is, obviously, the presence of
SOI in the derivation of (22) which, otherwise, is absent in the
Coulombic DM (B2) derived in Appendix B and discussed in
Sec. III.

The FS levels [52,53] of the atomic target A and of the
residual photoion A1+ are known to be determined by their
respective total angular momenta �J0 and �J1+ . Here, too, we
find that any properties of a (ep,A1+) system, calculated from
(22), will depend, among other things, upon ( �J0, �J1+ ). It will,
therefore, be quite appropriate to call (22) as fine-structure
DM. Any physical property calculated using this DM will also
be prefixed by the word FS, e.g., FS entanglement, etc.

Unlike the Coulombic DM (B2), the FS DM (22) can not
be written as a product of two terms representing angular
correlation and spin correlation. In the expression (22), on the
other hand, angular and spin terms are intermixed in a way that
they can not be separated. It is a consequence of the presence
of the SOI in the Hamiltonians (A5) and (A6b). Moreover,
unlike the earlier case, now the entanglement between the spin
of electronic qubit and the total angular momentum J1+ of

the ionic qudit depends upon many things, e.g., kinematics
(i.e., directions of motion k̂p and of spin quantization ûp

of photoelectron), dynamics [i.e., phases and amplitudes of
the photoionization matrix elements (21)], characteristics (i.e.,
frequency νr and polarization mr ) of the ionizing radiation γr ,
orbital angular momentum 	p of ep, etc., in addition to the
total angular momenta (J0, J1+ ). Thus, the inclusion of SOI
in the photoionization process (1) has resulted in coupling
the (ep,A1+) entanglement with many physical variables,
including both the kinetics and dynamics of this process.

This property of the fine-structure entanglement is seen
even in the other photon-induced processes studied else-
where (see, for example, [49,50]). Consequentially, unlike
the Coulombic entanglement, it is not possible to predict or
predetermine the properties of the FS entanglement merely
with a knowledge of the electronic states (|J0 MJ0〉, |J1+ MJ1+ 〉)
of (A,A1+) participating in the photoionization (1) in the j -j
coupling. One is now required to have dynamical parameters
in order to be able to calculate the properties of the FS
entanglement using the DM (22).

The dimensionality of the Hilbert space of the photoion
A1+, which will be entangled with the electronic qubit ep, is
determined by its total angular momentum J1+ and is equal
to (2J1+ + 1). Thus, one of the simplest possible single-step
process, namely, photoionization, is capable of realistically
generating in a laboratory qubit-qubit (for J1+ = 1

2 ), qubit-
qutrit (for J1+ = 1), and qubit-qudit (for J1+� 3

2 ) pairs
of flying (electron + ion), both in the presence or absence
of SOI.

Furthermore, the 2(2J1+ + 1) diagonal elements (given
by μ ′

p = μp and M ′
1+ = M1+) of the FS DM (22) are the
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cross sections for angle- and spin-resolved photoelectron
spectroscopy in the E1 approximation with the photoion
observed in one of its |J1+ MJ1+ 〉 electronic state in the j -j
coupling. The remaining nondiagonal elements (with μ ′

p 	=
μp or M ′

1+ 	= M1+) in Eq. (22) represent, on the other hand,
the coherence effects in the photoionization (1) in the j -j
coupling.

The (2 × 2) reduced matrix

〈μp ûp
�kp| ρ(ep) |μ ′

p ûp
�kp〉

=
J1+∑

M1+=−J1+

〈J1+M1+ ; μp ûp
�kp| ρf |J1+M1+ ; μ ′

p ûp
�kp〉

(23)

describes angle- and spin-resolved photoelectron ep emitted
in photoionization (1) in the j -j coupling. Its two diagonal
terms are the angular distribution of photoelectrons moving
in the direction k̂p with their spins having components μp =
± 1

2 along ûp. The expression for the diagonal elements in
Eq. (23) can readily be shown to be identical to that already
given in Ref. [75] in terms of the total angular momentum J [=
| �J| with �J = �	r + �J0 = �J1+ + �jp, see Eq. (19)], or equivalent
to that derived by Chandra [73] in terms of the angular
momentum �jt ≡ �	r − �jp = �J1+ − �J0 transferred from absorbed
photon γr to the photoelectron ep observed with its spin.

On reducing the FS DM (23) over the variables related to
the photoelectron ep, we obtain

〈J1+M1+| ρ1+ |J1+M ′
1+〉

=
∫ ⎛⎝ + 1

2∑
μp=− 1

2

〈J1+M1+ ; μp ûp
�kp| ρf

|J1+M ′
1+ ; μ ′

p ûp
�kp〉
⎞⎠ dk̂p. (24)

This matrix is of size [(2J1+ + 1) × (2J1+ + 1)]. It can
be used to calculate state multipoles (also called statistical
tensors) [44–46] for A1+ in the j -j coupling. These state
multipoles describe [44–46], among other things, orientation
and alignment of the photoion A1+.

Earlier, Radtke et al. also have derived expressions for the
density matrices for the process (1) taking relativistic and
nondipolar effects [76] plus electron-electron interaction [77]
into account. Unlike the presently obtained DM (22), the
expressions obtained in Refs. [76,77] are for an experimental
geometry wherein the polar axis is along the direction of
propagation of the photoelectron ep (i.e., OZ axis in Fig. 1 is
taken along k̂p by Radtke et al. [76,77]) and the photoelectron
therein is longitudinally polarized (i.e., ûp ‖k̂p), with SOI
always taken into account. Recent studies (e.g., [78]) have,
however, shown that the nonrelativistic description of the
process (1) for as heavy an atom as Xe is both sufficient
and accurate. Moreover, the presence of nondipolar terms,
which are of second order, in the photoionization operator
Fp in Eq. (3a) [specified in Eqs. (A7) and (A9) in the E1
approximation] is not expected to have any significant effects
on the entanglement properties of a (ep,A1+) pair.

Prior to Radtke et al. [76,77], Fedorov et al. [79] had inves-
tigated narrowing of the wave packets of the photoelectron ep

and of the residual photoion A1+ in a coincident observation
of these two particles in the photoionization process (1).
They [79] argued that this type of localization of two wave
packets is directly related to the (ep,A1+) entanglement and,
hence, to the Einstein-Podolsky-Rosen [80] localization.

B. Example

For an application of the DM (22) and to compare the
properties of the entanglement generated in a (ep,A1+) pair
with and without the SOI, let us consider the following
photoionization process in a Xe atom:

γr + Xe(4d10 5s2 5p6 1S0)

−→ Xe1+∗
(4d10 5s2 5p5 2P1/2) + ep(εps1/2, εpd3/2). (25)

Angle- and spin-resolved photoelectron spectroscopy of this
process has been studied both theoretically [81] and experi-
mentally [82].

As far as Coulombic entanglement for the process (25) is
concerned, it corresponds to (S0 = 0, S1+ = 1/2). According
to the discussion given in Sec. III A, spin angular momenta
of (ep,A1+), in this case, are maximally entangled in the
pure singlet state of two qubits in the absence of SOI. This
Coulombic entanglement between the spins of (ep,A1+) is
completely independent of all those physical variables (e.g.,
those related to the characterization of γr , kinematics of ep,
dynamics of photoionization, etc.), other than (S0, S1+ ), which
one may need to specify the photoionization process (25) in
the absence of SOI.

On the inclusion of SOI, the photoion A1+ has total angular
momentum J1+ = 1

2 in the process (25). Consequently, even
in the case of FS entanglement, (ep,A1+) form a bipartite state
of two qubits. Further, entanglement is well known [1–3,20]
to be independent of the direction of spin quantization. For
simplicity, we have therefore taken the photoelectron ep to
be polarized longitudinally along its direction of propagation,
i.e.,

ûp ‖ k̂p =⇒ ϑp = θp and ϕp = φp (26)

in our present calculation.
In order to study FS entanglement of (ep,A1+) for the

example (25), we need to know magnitudes (i.e., d1, d3) and
the phases (i.e., δ1, δ3) of both of the E1 amplitudes

D1 ≡ 〈J1+ = 1
2 ,jp = 1

2

∣∣F (J = 1)|J0 = 0,1〉 = d1 eiδ1

(27a)

and

D3 ≡ 〈J1+ = 1
2 ,jp = 3

2 |F (J = 1)
∣∣J0 = 0,1〉 = d3 ei(δ1−�)

(27b)

with

� ≡ δ1 − δ3 (27c)
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contributing to the FS DM (22) through (21c). These quantities
were extracted from the data given in Refs. [81,82] on the
process (25) as follows.

Angular distribution of spin-resolved photoelectrons emit-
ted in any E1 process (1) can be completely characterized
by five parameters [75,81,82], namely, (σ , β, ξ, η, ζ ). We
have derived analytical expressions for each of these five
parameters from our reduced matrix (23). On specializing
these expressions to the process (25), we could exactly
reproduce those given in Refs. [81,82] provided we replace
�, wherever it is present in our expressions for any of the
parameters (σ , β, ξ , η, ζ ), by π − �.

The three dynamical parameters (i.e., d1, d3, �), specified in
Eqs. (27), were extracted for 10 different values of energy Er of
the ionizing photon γr from the graphs for (σ , β, ξ, η, ζ ) given
as a function of Er in Ref. [81]. These dynamical parameters
were then used in the DM (22) for calculating all 16 elements
for each of the 4 polarizations of the absorbed photon γr : linear
(mr = 0), left circular (mr = − 1), right circular (mr =+ 1),
and unpolarized (i.e., an even mixture of mr = ±1). In this
way, 40 different density matrices (22) (10 for each of these
4 different kinds of polarization of γr ) were calculated. These
density matrices were found to have the following features:

(a) Although, for the experimental geometry (26), each
element of these matrices, as well as of their partial transpose,
involves both of the spherical angles specifying the direction of
propagation k̂p (θp, φp) of the photoelectron ep, however, their
eigenvalues were always independent of the azimuthal angle
φp and, hence, contained only the polar angle θp. The trace
of this DM was normalized to unity by dividing it, wherever
necessary, by the sum of these eigenvalues.

(b) For all �kp’s considered by us, each DM (their total
number being 30) always has 3 of its 4 eigenvalues 0 for any
of the LP, RCP, or LCP γr ; whereas, the remaining 10 density
matrices, corresponding to an UP γr , have more than 1 nonzero
eigenvalue. This, in other words, means [45] that (ep,A1+) FS
states [generated due to the absorption of a LP, RCP, or RCP γr

in Eq. (25) with specifications (26) and (27)] are always pure,
while absorption of an UP γr in the same process produces a
mixed state of this system. According to (a) herein, all nonzero
eigenvalues of the 40 density matrices, as well as of their partial
transpose, depend only on the polar angle θp.

(c) For each of these 40 FS states, we have calculated
negativity [60–62] N (ρf ), concurrence [63] C(ρf ), and EoF
[63] E(ρf ), the three measures of entanglement currently
in vogue. It has theoretically been shown that for a pure
bipartite state of qubits, negativity and concurrence are always
identical [62]. Our results for ionization in Eq. (25) by a LP,
RCP, or LCP γr were always in agreement with this prediction.
Although, negativity and concurrence were different when γr

in Eq. (25) is UP because these are now for a mixed FS state
of an entangled (ep,A1+) system; however, on the scale of the
Figs. 2–4, these two measures for ionization by an UP
photon are almost identical. Consequently, in Figs. 2–4, the
concurrence curve also represents the negativity for each
polarization of γr used by us.

(d) It is obvious that, on account of the second 3-j symbol
present in Eq. (22b), a DM for RCP (i.e., mr = +1) ionizing
radiation should be different from that for LCP (i.e. mr = −1)
for the same Er . Our calculations showed that the eigenvalues
of these two different density matrices were always the

FIG. 2. Variations with the polar angle θp [defined in Eq. (26)]
of the concurrence and EoF for FS entanglement between spin of
photoelectron ep and angular momentum J1+ of the residual photoion
A1+ generated in the E1 process (25). See point (c) in the present
Sec. IV B. These measures have been calculated for energy Er = 0.5
a.u. of the ionizing radiation γr and the experimental geometry (26).
The dynamical amplitudes (27) are extracted from the data given
in Ref. [81]. Use of LCP (i.e., mr = −1) γr in Eq. (25) gave the
values of negativity and concurrence and of EoF identical to those
obtained when a RCP (mr = +1) γr is used for ionizing a Xe atom.
This, in other words, means that there is no circular dichroism [83]
in the FS (ep,A1+) entanglement, generated in the process (25).
(a) Ionizing radiation in Eq. (25) LP [i.e., mr = 0 in the FS DM
(22)]; (b) ionizing radiation in Eq. (25) left and right CP [i.e.,
mr = +1 or −1 in the FS DM (22)]; (c) ionizing radiation in
Eq. (25) UP.
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FIG. 3. Same as Fig. 2, but for energy Er = 1.0 a.u. of the ionizing
radiation γr in Eq. (25).

same. Also, each of the three entanglement measures for
a left circularly polarized γr [i.e., mr = −1 in Eq. (22)]
was always identical to that when the ionizing radiation
in Eq. (25) has right circular polarization [i.e., mr = +1
in Eq. (22)]. Thus, in the present case, none of the three
measures of entanglement calculated by us shows any circular
dichroism (see, for example, [83]) in the process (25) with

FIG. 4. Same as Fig. 2, but for energy Er = 3.0 a.u. of the ionizing
radiation γr in Eq. (25).

specifications [(26) and (27)]. Figures 2–4, therefore, contain
concurrence and EoF only for ionization in Eq. (25) by linearly
polarized, (right or left) circularly polarized, and unpolarized
radiation.
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(e) Both concurrence and negativity and EoF for photon
energy Er = 0.50 a.u. are shown together in each of the
Figs. 2(a)–2(c) for ionization by mr = 0,+1/−1, and un-
polarized light, respectively. Figures 3(a)–3(c) and 4(a)–4(c)
contain the same information for Er = 1.0 and 3.0 a.u.,
respectively.

(f) One may wonder that if an UP electromagnetic wave is
an even mixture of RCP plus LCP radiation, then why are the
measures of entanglement shown in Figs. 2–4 for UP and CP γr

in Eq. (25) not always the same? It has already been mentioned
in the item (d) herein that the density matrices, obtained from
(22) for LCP and RCP light, are different. Consequently, a
DM for UP light, obtained on dividing by two the sum of these
two different density matrices, need not be equal to either
of them. Consequently, measures of entanglement shown in
Figs. 2–4 for UP and CP ionizing radiation in Eq. (25) may
not always be the same.

(g) Figures 2–4 clearly show the dependence of the FS
entanglement between spin angular momentum of the photo-
electron ep and total angular momentum J1+ of the photoion
A1+ [both particles produced in the 1–SPI process (25)] on
the energy Er and polarization of γr , direction of motion of
ep, and on the dynamics of the process (25). In particular, a
heavy dependence on polarization as well as energy of the
photon absorbed in the process (25), and on the direction
of motion of the photoelectron ep, is very obvious from
Figs. 2 (Er = 0.5 a.u.) and 3 (Er = 1.0 a.u.) wherein the
entanglement measures for LP light are very different from
those for CP or UP radiation, except in Fig. 4 (Er = 3.0 a.u.),
where one finds that variations with θp for LP [Fig. 4(a)]
and for UP [Fig. 4(c)] γr are more prominent than those
shown in Figs. 2 and 3, although variations with θp for CP
ionizing radiation in Eq. (25) do not change much for the three
energies Er considered herein. Obviously, this behavior of the
entanglement measures shown in Figs. 2–4 is due to a very
complex dependence of the FS DM (22) on the characteristics
of the γr absorbed in Eq. (25) as well as on both the kinematics
and dynamics of this process in the presence of SOI.

(h) Thus, the presence of SOI in a photoionization process
(1) strongly couples the entanglement between the emitted
photoelectron and residual photoion with the characteristics of
the ionizing radiation, experimental geometry, and dynamics
of this process. It is very unlike the Coulombic entanglement
generated between the same two particles in the same process
of photoionization but in the absence of SOI.

V. CONCLUSIONS

Photoelectric effect is an extremely simple phenomena in
science: its theoretical explanation by Einstein [84] has had
profound effects on the development of science in general and
of physics in particular. It has certainly played a very important
role in the development of quantum theory as it led to suggest
the wave-particle duality first of light and, subsequently, of
matter. In this paper, we have tried to show that the same
photoelectric effect can also be a very powerful tool (or, in
other words, an entanglement factory) for producing various
kinds of entangled states of a free electron and a free ion.
Here, one can realistically generate in a very simple manner
in a laboratory qubit-qudit bipartite states which can be pure
or mixed, possess free or bound entanglement.

From the DMs [(7) and (22)] derived herein, one can
theoretically determine properties of the (Coulombic, FS)
entanglement of a (ep,A1+) pair generated in the 1-SPI
process (1). In the FS entanglement, one necessarily requires
dynamical amplitudes for the photoionization process (1).
But, properties of the Coulombic entanglement can readily
be predicted merely with a knowledge of the spins (S0, S1+ ) of
(A,A1+) which can experimentally be obtained simply by mea-
suring energy of the ep in a photoionization experiment in the
L-S coupling. However, verification of the properties of either
or both of the Coulombic and FS entanglements, obtained from
the theoretical procedures described in this paper, will certainly
require experimental measurements. It can be done using an
entanglement witness [18], or any other such protocols [19],
or by performing a full quantum-state tomography involving
both the photoelectron ep and the photoion A1+.
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APPENDIX A: DERIVATION OF EQ. (3a) FOR DENSITY
OPERATOR FOR A PHOTON-INDUCED

ONE-STEP PROCESS

Equation (3a) for the density operator for any one-step
process is readily derived [45] using the concept of scattering
operator (S operator) or scattering matrix (S matrix) from
quantum theory of scattering (QTS). In QTS (see, for example,
[85,86]), the S operator and S matrix connect the initial state
(say, |�1〉) of the combined system of a projectile and a
target with the final state (say, |�f 〉), formed after the reaction
between the two has taken place, of the particles receding from
each other. Both |�1〉 and |�f 〉 describe the noninteracting
states, i.e., separated by infinite distances, of their respective
members. Then, one has [45,85,86]

|�f 〉 = S |�1〉. (A1)

This immediately leads us to

ρ̃f = S ρ1 S† (A2a)

with the definitions

ρ1 ≡ |�1〉〈�1| (A2b)

and

ρ̃f ≡ |�f 〉〈�f | (A2c)

for the two respective density operators appearing in
Eq. (A2).

The diagonal elements of the S matrix include also those
contributions for which |�1〉 and |�f 〉 are not different. In
order to remove such contributions, one defines [45,85,86] a
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transition operator

T = S − 1. (A3)

Consequently, the density operator [45]

ρf = T ρ1 T † (A4)

provides information only about those reaction products which
are different from the ones represented by ρ1. Equation
(A4) is applicable to all those processes which are com-
pleted in a single step, e.g., those explained in Sec. II. It
can readily be generalized to two-step (see, for example,
[87,88]), three-step (e.g., [89]), and other multistep processes.
The form of the transition operator T will, naturally, be
determined by the kind of the reaction being considered, which
may be different for different steps in a multistep process,
giving rise to the desired products represented by the final-state
DO ρf .

In the present one-step process (1), the final reaction
products (ep,A1+) are generated due to the absorption of a
single photon γr by the atom A. The semiclassical Hamiltonian
for this system is given by (see, for example, [47,54,55,85])

H = H0 + F . (A5)

Here,

H0 = − h̄2

2me

ne∑
i=1

�2
i −

ne∑
i=1

Ze2

ri

+
ne∑

i < j

e2

|�ri − �rj | (A6a)

and

H0 = − h̄2

2me

ne∑
i=1

�2
i −

ne∑
i=1

Ze2

ri

+
ne∑

i < j

e2

|�ri − �rj |

+
ne∑

i=1

ξ (ri) �	i · �si (A6b)

are the Coulombic (i.e., without SOI) and FS (i.e., with SOI)
forms of the Hamiltonian of the target atom A, respectively.
In Eqs. (A6), symbols, not explained herein, have their usual
(see, e.g. [52,53]) meanings. The operators

F =
√

4 π α3 E3
r

3 e4

ne∑
i=1

ξ̂mr
· �ri (A7a)

and

F =
√

4 π α3 Er a2
0

3

ne∑
i=1

ξ̂mr
· ��i , (A7b)

present on the right-hand side of the Hamiltonian (A5),
represent the interaction of the atomic electrons (their number
being ne) with the incident electromagnetic radiation in the E1
length and velocity approximations, respectively. In Eqs. (A7),
�ri is the position vector and ��i [=(−1)1/2 �pi/h̄] is the linear
momentum of the ith bound atomic electron, and α and a0 are,
respectively, the FS constant and Bohr radius. Further, in the
last two equations, ξ̂mr

is a spherical unit vector [57] which
specifies polarization of the electromagnetic wave incident in

the process (1). Then,

ξ̂−1 = + 1√
2

(êx − iêy), ξ̂0 = êz, and

(A8)

ξ̂+1 = − 1√
2

(êx + iêy)

for the respective LCP, LP, and RCP radiations. Here, (êx , êy ,
êz) are unit vectors along the (OX, OY , OZ) axes of the SF
shown in Fig. 1.

The transition operator T , needed in Eq. (A4) for the
photoionization process (1), is given by [47,55]

T = √
Kp Fp (A9a)

with

Fp =
√

me

h̄2 F (A9b)

and

Kp = 3 π

(
e2

α Er

)2

. (A9c)

Use of these relations gives [54]

d σ

d �
= |〈�f |T |�1〉|2 (A10a)

= Kp |〈�f |Fp|�1〉|2 (A10b)

angular distribution of photoelectrons ejected into the solid
angle d� about their direction of propagation in a bound-
free transition �1 −→ �f . Here, �f , which represents
photoelectron ep moving in the field of A1+ after leaving A,
satisfies incoming wave boundary conditions [74] appropriate
for any photoionization process. Furthermore [54,55], �f

has normalization (see, for example, Eq. (17) in Ref. [55])
corresponding to the unit density of states in the contin-
uum of ep and orthonormality of the bound states of the
photoion A1+.

APPENDIX B: DENSITY MATRIX FOR ONE-STEP SINGLE
PHOTOIONIZATION OF AN ATOM IN THE ABSENCE OF

SPIN-ORBIT INTERACTION

This Appendix contains a derivation of the DM needed in
Sec. III for studying the Coulombic entanglement between
the spins of photoelectron ep and photoion A1+ produced in
the single-step process (1) resulting from the absorption of
a photon γr by the target atom A. The following derivation,
although independent of all dynamical models, does not take
SOI into account either in the bound electronic states (|0〉,
|1+〉) of (A, A1+) or in the continuum of ep. It, in other
words, means that only the Coulomb interactions plus, of
course, the interaction with the incident light in the E1
approximation [both specified by the Hamiltonians (A5) and
(A6a)] experienced by the constituents of an atom, are included
in the present derivation and, hence, it is carried out in the
L-S coupling wherein both of the conservation conditions (4)
become applicable.

It is obvious from Eq. (6b) that derivation of the
needed DM requires a knowledge of the photoionization
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amplitude 〈1+; μp ûp
�kp| Fp |0; 1mr〉 calculated in the L-S

coupling. Details of this calculation are already given
in Eqs. (A7)–(A9) in Ref. [87]. The final desired
expression [87] is

〈1+; μp ûp
�kp|Fp |0; 1 mr〉 ≡ 〈

L1+ S1+ ML1+ MS1+ ; μp ûp
�kp

∣∣Fp |0; 1 mr〉
= (−1)

1
2 +L0+L1++S1+ +MS0

√
2S0 + 1

∑
	p mp νp L ML

(−i)	p (−1)	p eiσ	p (2L + 1)

×
(

L1+ 	p L

ML1+ mp −ML

)(
L0 1 L

ML0 mr −ML

)(
S1+ 1

2 S0

MS1+ νp −MS0

)
× Y

mp

	p
(k̂p)D1/2

μp νp
(ωp)〈(L1+ 	p)L|Fp |(L01)L〉. (B1)

Equation (B1) has been arrived at by using〈
(L1+ 	p)LML;

(
S1+ 1

2

)
S MS

∣∣Fp

∣∣(L01)L′ ML′ ; S0 MS0

〉− = δL L′ δML ML′ δS S0 δMS MS0
〈(L1+ 	p)L|Fp |(L01)L〉

to meet the requirements arising from the conservations conditions (4). Here, the superscript “minus” means that the continuum
wave function representing the photoelectron ep in Eq. (1) satisfies the incoming wave boundary conditions [74] appropriate for
photoionization. For brevity, however, this “minus” superscript has not been shown on the amplitude 〈(L1+ 	p)L|Fp |(L01)L〉
present on the right hand side of Eq. (B1) and elsewhere in this paper.

Next, we substitute the amplitude (B1) and its Hermitian conjugate in Eq. (6b). The resulting expression is simplified by
analytically evaluating as many sums as possible present therein. It requires, for example, use of (a) the addition theorems (i.e.,
Eqs. (4.3.2) and (4.6.5) from [57]) for rotational and spherical harmonics, (b) identity (5) given on page 453 in Ref. [90] for
converting a single sum of the product of two 3-j symbols into a product of two 3-j and one 6-j symbols summed over two
variables, (c) Eq. (14.42) from [91] which transforms a quadruple sum of the product of four 3-j symbols into a double sum
containing two 3-j and one 9-j symbols, (d) Eq. (3.7.9) [57] for changing a phase factor into a 3-j symbol, (e) orthogonality
(3.7.7) [57] of 3-j symbols, and (f) relation (6.4.14) [57] for writing a 9-j symbol (whose one of the nine arguments is zero) in
terms of a 6-j symbol. These and some other simplifications lead one to write the DM (6b) in the following form:

〈
L1+ S1+ MS1+ ; μp ûp

�kp

∣∣ ρf

∣∣L1+ S1+ M ′
S1+ ; μ ′

p ûp
�kp

〉 = d2σ (mr )

dεp dk̂p

σ(S0,S1+ ; ûp)μp,MS1+ ;μ ′
p,M ′

S1+
. (B2)

Here, we have defined

d2σ (mr )

dεp dk̂p

= (−1)L0+L1+ +mr
Kp

4π (2L0 + 1)

∑
	p 	 ′

p Lr L L ′
(2Lr + 1)

(
	p 	 ′

p Lr

0 0 0

)(
1 1 Lr

mr −mr 0

){
1 1 Lr

L ′ L L0

}{
	p 	 ′

p Lr

L ′ L L1+

}
×〈L1+	p|F(L)|L01〉 〈L1+	 ′

p|F(L ′)|L01〉 PLr
(cos θp), (B3a)

with

〈L1+	p|F (L)|L01〉 = (−i)	p eiσ	p (−1)	p (2L + 1)
√

2	p + 1〈(L1+ 	p)L|Fp|(L0 1)L〉 (B3b)

and

σ (S0; S1+ ; ûp)μp, MS1+ ; μ ′
p M ′

S1+

= (−1)μ
′
p+S0+MS1+

∑
Q m n

(2Q + 1)

(
1
2

1
2 Q

μp −μ′
p m

)(
S1+ S1+ Q

MS1+ −M ′
S1+ −n

){
1
2

1
2 Q

S1+ S1+ S0

} [
DQ

mn(ωp)
]∗

. (B4)

In both Eqs. (B2) and (B4), M ′
S1+ (=êZ · �S1+ ) (similar to MS1+ ) also is a projection of the spin angular momentum of the

photoion A1+ along the polar axis of the SF shown in Fig. 1. Further, in Eq. (B3a), PLr
(cos θp) is the Legendre polynomial [57] of

order Lr and argument cos θp; (B3b) are the dynamical amplitudes [87] related to the matrix elements (B1) for the photoionization
process (1).
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H. Weinfurter, R. Werner, and A. Zeilinger (Springer, Berlin,
2001).

[4] B. Schumacher, Phys. Rev. A 51, 2738 (1995).
[5] P. Rungta et al., in Directions in Quantum Optics: A Collection

of Papers Dedicated to the Memory of Dan Walls, edited by
H. J. Carmichael et al. (Springer, Berlin, 2001), pp. 149–164.

[6] A. Galindo and M. A. Martin-Delgado, Rev. Mod. Phys. 74, 347
(2002).

[7] H. Bechmann-Pasquinucci and A. Peres, Phys. Rev. Lett. 85,
3313 (2000).
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[19] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).
[20] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,

Rev. Mod. Phys. 81, 865 (2009).
[21] S. Bandyopadhyay, Phys. Rev. A 62, 032308 (2000).
[22] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher,

Phys. Rev. A 53, 2046 (1996).
[23] S. Bose, V. Vedral, and P. L. Knight, Phys. Rev. A 60, 194

(1999).
[24] H. K. Lo and S. Popescu, Phys. Rev. A 63, 022301 (2001).
[25] M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight,

Phys. Rev. A 57, R4075 (1998).
[26] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett.

78, 574 (1997).
[27] S. J. van Enk, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 78, 4293

(1997).
[28] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.

Wootters, Phys. Rev. A 54, 3824 (1996).
[29] D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu,

and A. Sanpera, Phys. Rev. Lett. 77, 2818 (1996).

[30] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett.
80, 5239 (1998).

[31] P. Horodecki, M. Horodecki, and R. Horodecki, Phys. Rev. Lett.
82, 1056 (1999).

[32] C. H. Bennett, C. Brassard, C. Crepau, R. Juzsa, A. Peres, and
W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[33] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A.
Smolin, and B. M. Terhal, Phys. Rev. Lett. 82, 5385 (1999).

[34] D. Bruß and A. Peres, Phys. Rev. A 61, 030301 (2000).
[35] L. Clarisse, Phys. Lett. A 359, 603 (2006).
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[40] D. Chruściński, J. Jurkowski, and A. Kossakowski, Phys. Rev.

A 77, 022113 (2008).
[41] J. M. Leinaas, J. Myrheim, and P. Ø. Sollid, Phys. Rev. A 81,

062329 (2010).
[42] J. M. Leinaas, J. Myrheim, and P. Ø. Sollid, Phys. Rev. A 81,

062330 (2010).
[43] J. Tura, R. Augusiak, P. Hyllus, M. Kuś, J. Samsonowicz, and
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