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Analytical study of quadratic and nonquadratic short-time behavior of quantum decay
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The short-time behavior of quantum decay of an unstable state initially located within an interaction region of
finite range is investigated using a resonant expansion of the survival amplitude. It is shown that in general the
short-time behavior of the survival probability S(t) has a dependence on the initial state and may behave as either
S(t) = 1 − O(t3/2) or 1 − O(t2). These cases are illustrated by solvable models. The experiment reported by
Wilkinson et al. [Nature (London) 387, 575 (1997)] does not distinguish between the above short-time behaviors.
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I. INTRODUCTION

The decay of unstable systems, corresponding to particle
emission by tunneling out of a potential, has been a subject of
attention since the early days of quantum mechanics. In 1928
Gamow derived an expression for the exponential decay law
and introduced the notion of the lifetime [1], which provides
the time scale for exponential decay and sets the meaning for
short or long times in decay. In 1958 Khalfin demonstrated
that if the energy spectrum of the system is bounded by below,
the exponential decay law cannot hold at long times [2]. At
short times there is also a departure from the exponential
decay behavior, which, however, is related to the energy
moments of the Hamiltonian to the system [3–6]. It is usually
assumed that decay at short times exhibits a quadratic behavior
with time [3,4,6–9]. The relevant quantity is the survival
probability S(t) = |A(t)|2, with A(t) = 〈0| exp(−iHt/h̄)|0〉,
which yields the probability that at time t the system remains
in the normalized initial state |0〉. Notice that expanding
exp(−iHt/h̄) one may write

A(t) = 1 − i〈0|H|0〉t/h̄ − 2〈0|H2|0〉t2/h̄2

+〈0|
∞∑

j=3

(−iHt/h̄)j

j !
|0〉, (1)

which leads to an expansion of S(t) that involves only even
powers of t . A quadratic behavior requires that at least the first
two moments of the Hamiltonian to the system are finite. The
experimental verification of the short-time behavior of decay
was provided some years ago and it seems to be consistent with
an initial quadratic behavior [10]. However, from a theoretical
point of view, it is not obvious that the series expansion of S(t)
mentioned above converges or even that it is defined. In this
context. there are problems that have been rarely explored as
the conditions that may lead to a nonquadratic behavior at short
times [6,11]. Several works have discussed a t3/2 short-time
behavior of decay in the context of specific models [12–15].
It is also worth mentioning that a t3/2 short-time behavior
has been found in studies involving transients in nondecay
problems [16].
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Here we consider an approach to the time evolution of decay
based on a resonant expansion of the survival amplitude that
has been studied intensively for the exponential and long-time
regimes [17–19]. The occurrence, however, of a double sum
in the expression for S(t), which in general does not commute,
prevented its application to the discussion of the short-time
behavior of decay [20]. Recently, however, motivated by
the considerations mentioned in the preceding paragraph, we
believe that we have found a way to circumvent the above
situation.

In this work we address a rigorous investigation of the
short-time behavior of decay for unstable systems. We obtain
general conditions on the initial states so that S(t) may exhibit
a time dependence as either t3/2 or t2. We also indicate that
the experiment on the short-time decay behavior reported in
Ref. [10] does not distinguish between the above two cases.

II. RESONANT EXPANSION

We consider a simple yet nontrivial description of the decay
process that involves real potentials of arbitrary shape that
vanish beyond the interval (0,L), which is well justified since
most effective potentials in physics are of short range, and
initial states that are confined initially within the interaction
region. The above conditions are commonly found in quantum
systems designed artificially as low-temperature multibarrier
resonant tunneling structures [21] or ultracold atoms confined
in optical traps [22]. A relevant feature of these systems is
that the decay process is essentially coherent (elastic). One
may then consider the analytical properties of the outgoing
Green’s function to the problem on the whole complex wave
number plane where it possesses an infinite number of poles.
These poles are in general simple and are distributed in a
well known manner [23]. This has led to a formulation of
the time evolution of decay in terms of a purely discrete
expansion that involves the residues (resonant states) at the
poles of the outgoing Green’s function to the problem [17–19].
The resonant states un(x) satisfy the Schrödinger equation
of the problem obeying purely outgoing boundary conditions
and hence they also include the bound and antibound states
of the problem. It is worth stressing that the resonant state
formulation yields exactly the same results as a calculation
using continuum states [24].

One should mention that the above analytical properties
of the outgoing Green’s function remain valid for potentials
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having tails that go faster than an exponential at infinity, as,
for example, those having Gaussian tails [23]. The outgoing
Green’s function for potentials having exponential tails may
be extended analytically only through a finite region of the
complex k plane and hence the corresponding expansion
will consist, in addition to a discrete pole expansion, of
an integral contribution involving continuum of states. We
believe, however, that this issue is mostly of mathematical
interest since, as pointed out above, most effective potentials
in physics are negligibly small after a distance and hence are
beyond experimental scrutiny.

The survival amplitude may be expanded in terms of
resonant states as [17–19]

A(t) = 1

2

∞∑
n=−∞

CnC̄nω(iyn), (2)

where ω(iyn) refers to the Faddeyeva function [25] with yn =
− exp(−iπ/4)(h̄/2m)1/2κnt

1/2; κn = αn − iβn relates to the
complex energy eigenvalue En = h̄2κ2

n/2m. Notice that for
bound states κn = iγn with γn > 0, and similarly for antibound
states with γn < 0. The coefficients Cn and C̄n in Eq. (2) are

Cn =
∫ L

0
ψ(x,0)un(x)dx, C̄n =

∫ L

0
ψ∗(x,0)un(x)dx.

(3)

The above coefficients fulfill the relationship [18,19]

1

2

∞∑
n=−∞

CnC̄n = 1 (4)

and the sum rules
∞∑

n=−∞
CnC̄nκn = 0 (5)

and
∞∑

n=−∞

CnC̄n

κn

= 0. (6)

Notice that Eq. (2) follows using

ψ(x,t) = (1/2)
∞∑

n=−∞
Cnun(x)ω(iyn), (7)

where 0 � x � L [17–19]. Since ω(0) = 1 [25], then
ψ(x,0) = (1/2)

∑∞
n=−∞ Cnun(x). Using that Hun(x) =

Enun(x) and the definition of C̄n given in Eq. (3) allows one
to express the first moment of H as

〈0|H|0〉 ≡ 〈H〉 = 1

2

(
h̄2

2m

) ∞∑
n=−∞

CnC̄nκ
2
n, (8)

which is a finite quantity as follows by inspection of the
conditions satisfied by the potential and the initial wave
function.

The function ω(iyn), which may be evaluated by well
developed numerical methods [26], may be written as the
convergent expansion (for any value of iyn) [25]

ω(iyn) =
∞∑

s=0

(aκnt
1/2)s

	(1 + s/2)
, a = e−iπ/4(h̄/2m)1/2. (9)

One may therefore write ω(iyn) at short times as ω(iyn) = 1 +
(2a/

√
π)κnt

1/2 + a2κ2
nt + · · ·. Substitution of this expression

into Eq. (2) allows one to write A(t) at short times as

A(t) = 1

2

∞∑
n=−∞

CnC̄n + a√
π

∞∑
n=−∞

CnC̄nκnt
1/2

+ a2

2

∞∑
n=−∞

CnC̄nκ
2
nt + 1

2

∞∑
n=−∞

CnC̄n

∞∑
s=3

(aκnt
1/2)s

	(1 + s/2)
.

(10)

The term with s = 3 in Eq. (10) reads

a3

2	(5/2)

( ∞∑
n=−∞

CnC̄nκ
3
n

)
t3/2. (11)

However, depending on the characteristics of the initial state
ψ(x,0), the sum in Eq. (11) may vanish, be a constant, or
diverge. Let us first analyze the case where it vanishes. Then
we may write Eq. (10) with the sum over s starting from s = 4
in the form

A(t) = 1 − i

h̄
〈H〉t + 1

2

∞∑
n=−∞

CnC̄nOn(t2), (12)

where we have used Eqs. (4), (5), and (8), respectively, and
On(t2), with O the O symbol [27], expresses the fact that as
t → 0, the leading term in the remaining absolutely convergent
sum over s is t2. Hence the survival probability may be written
as

S(t) = 1 + 1

h̄2 〈H〉2t2 − O(t r ). (13)

Since as t → 0, On(t2)/tν → 0 requires that ν < 2, it follows
that O(t r )/tν → 0 provided r � 2. Notice, however, that since
S(0) = 1, the decay process implies S(t) < 1 for t > 0. Hence,
in order to avoid that the term proportional to t2 in Eq. (13)
yields an unphysical time interval where S(t) > 1, necessarily
r = 2. This guarantees that S(t) diminishes with time and
hence

S(t) = 1 − O(t2). (14)

The above result seems to hold independently of whether or
not the second moment 〈H2〉 ∝ ∑∞

n=−∞ CnC̄nκ
4
n is finite; the

second case, where the sum in Eq. (11) is a constant, gives that
the leading term of S(t) at short times is t3/2 and the last case,
where the sum in Eq. (11) diverges, implies that such a term
cannot be extracted from the sum over s in Eq. (10), i.e., for
each value of n one has to perform the convergent sum over s,
and hence

A(t) = 1 − i

h̄
〈H〉t + 1

2

∞∑
n=−∞

CnC̄nOn(t3/2). (15)

Notice that otherwise it would be a contradiction with the
argument leading to Eq. (14), which rests on the assumption
that Eq. (11) vanishes exactly. Hence necessarily r = 3/2 and
therefore as t → 0,

S(t) = 1 − O(t3/2). (16)

It is worth mentioning here that Ref. [6] reports the
possibility of a t3/2 short-time dependence of S(t) provided the
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second energy moment diverges. Though reference to a pole
expansion of A(t) involving ω functions is made to account
for a possible fractional behavior, the analysis there is actually
based on the finiteness or lack thereof of the expressions

[Ȧ(t)]t=0 = −(i/h̄)〈H〉 (17)

and

[Ä(t)]t=0 = −(1/h̄2)〈H2〉, (18)

(with the dot indicating a derivative with respect to time),
which are obtained from the series expansion of exp(−iHt/h̄).
Using the exact expansion (2), one sees that [Ȧ(t)]t=0 remains
as given by Eq. (17) above, but

Ä(t) = a4
∞∑

n=−∞
CnC̄nκ

4
nω(iyn) + a3

√
π

∞∑
n=−∞

CnC̄nκ
3
n

1

t1/2

(19)

is different. One sees therefore that [Ä(t)]t=0 diverges unless
Eq. (11) vanishes, independently of whether or not 〈H2〉 is
finite, contrary to the result given in Ref. [6]. This indicates that
the series expansion of exp(−iHt/h̄) may lead to misleading
results. The short-time expressions given by Eqs. (14) and (16)
suggest to consider the expression for S(t)

S(t) ≈ 1 −
(

t

τ ∗

)ϑ

, (20)

with parameters ϑ and τ ∗, to adjust the short-time behavior of
exact calculations, using Eq. (2), or experiment.

III. MODEL

As pointed out above, the distinction between the t3/2 and
t2 short-time behaviors of S(t) depends on the properties of
the initial states. Theoretically, this necessarily leads to model
calculations. For simplicity, we consider as a model a double-
barrier resonant tunneling nanostructure [21,28] that extends
from 0 to L = 15 nm, with b = 5 nm (barrier widths), w =
5 nm (well widths), V = 0.23 eV (barrier heights), and m =
0.067me (effective electron mass). There exist well developed
procedures to obtain the set of resonant states {un(x)} and
complex poles {κn} for a given problem [19,29]. We choose two
different types of initial states within the interaction potential
region 0 � x � L: a cutoff Gaussian pulse

ψ(x) = (1/2πσ 2)1/4 exp[−(x − x0)2/4σ 2] (21)

centered at x0 = L/2 with pulse width σ � w, to guarantee
that the effect of cutting off the tails is negligible, and a
sinusoidal pulse

ψj (x) =
√

2/w sin[kj (x − b)] (22)

with b � x � b + w and zero elsewhere, where kj = jπ/w

for a fixed integer value j .
The reason for the above choice of initial states is that, in

addition to mathematical simplicity, one expects on physical
grounds that the decaying particle is initially confined within
the interaction region and hence that possible tails beyond that
region are negligible. Of course, one may envisage an initial
state having large non-negligible external tails. In that case, as
time evolves, part of the external portions of the initial state

would head towards the internal region and would interfere
with the decaying part giving origin to a transient behavior.
We are not addressing such a possibility in this work, though
it might be of interest to investigate it.

In order to study numerically the behavior of the survival
probability at short times, it is convenient to define the quantity

AN (t) = 1

μN (0)

N∑
n=−N

CnC̄nω(iyn), (23)

where

μN (j ) =
N∑

n=−N

CnC̄nκ
j
n , j = 0,1,2, . . . . (24)

Hence the moments of the Hamiltonian may be written
as 〈Hj 〉 = (1/2)(h̄2/2m)j limN→∞ μN (2j ). Since μN (0) →
2 when N → ∞, one finds that SN (t) = |AN (t)|2 fulfills
limN→∞ SN (t) → S(t). Here SN (0) = 1 for any value N > 0.
Moreover, if for two values N and N ′ such that N  N ′ the
corresponding survival probability satisfies SN (t) = SN ′ (t) in
a time interval, that implies that both approximations yield the
correct behavior of S(t).

We have evaluated Eq. (11) for N = 103 and 2 × 104 for
both the Gaussian and the sinusoidal pulses and found that it
vanishes for the Gaussian pulse and diverges for the sinusoidal
pulse. This implies, according to our analysis above, that the
initial Gaussian state should produce a quadratic short-time
behavior and the initial sinusoidal state a nonquadratic one.
This needs to be confirmed by a comparison between an exact
calculation, using Eq. (2), and the adjustment formula (20).
We have also evaluated μN (j ) for values j = 4, . . . ,8 for the
above pulses and found that these quantities are finite for the
Gaussian pulse and diverge for the sinusoidal one.

Figures 1(a) and 1(b) exhibit, respectively, plots of ln SN (t)
at short times in units of the lifetime τ1, for the initial Gaussian
pulse with σ = w/10 and for the initial sinusoidal pulse with
j = 1, using the exact pole expansion (2) with N = 103 poles
(dotted line) and N = 2 × 104 (solid line). One sees in each
figure that these curves are indistinguishable from each other,
which indicates excellent convergence using N = 103 poles.
Each of these figures also exhibits the results of the calculation
using the adjustment formula (20) employing, respectively,
the origin and two other points of the corresponding exact
calculation. In Fig. 1(a) the adjustment yields ϑ = 2 and
τ ∗ ≈ 0.819 fs (dashed line), which confirms the quadratic
short-time behavior given by Eq. (14). In this case we find that
τ ∗ ≈ τZ , where τZ is the Zeno time defined by τZ = h̄/�E,
with �E2 = 〈H2〉 − 〈H〉2 [9]. We have obtained similar
results for initial Gaussian states having different values of
the width σ provided σ � w. Similarly, in Fig. 1(b), the
adjustment (dashed line) yields ϑ = 3/2 and τ ∗ = 3.802 fs,
which confirms the fractional t3/2 short-time behavior given
by Eq. (16). Similar results occur for other values of j . It is
worth emphasizing that if the first two moments of H exist
in the expansion given by Eq. (1), then consistency with the
expansion given by Eq. (2), which in general involves both
quadratic and nonquadratic powers of t , requires that the
term proportional to t3/2 should vanish, as indeed we have
numerically corroborated.
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FIG. 1. (Color online) Plot of ln SN (t) as a function of time in
lifetime units at short times for (a) an initial Gaussian pulse and
(b) an initial sinusoidal pulse. Both cases exhibit a comparison
with the exact calculation (2) for N = 103 (dotted line) and N =
2 × 104 (solid line) poles, respectively. Each figure exhibits also
the corresponding comparison with Eq. (20) (dashed line), with the
adjustment parameters (a) ϑ = 2 and τ ∗ = 0.819 fs and (b) ϑ = 3/2
and τ ∗ = 3.802 fs. See the text for further details.

IV. EXPERIMENT

The experiment of Ref. [10] involves an external potential
that goes linearly with distance and hence our analysis is not
strictly applicable. However, we find it interesting to perform
an elementary adjustment using Eq. (20) to the data given
in Ref. [10], which assumed a quadratic short-time behavior
[10,30]. Since our analysis predicts that the value of ϑ in
Eq. (20) is either 2 or 3/2, we need to consider only two
experimental points to make the adjustment. We choose the
points with a minimum error bar, in particular at t = 0, and
these correspond to Fig. 3b of Ref. [10]. In Fig. 2 we plot
the experimental data of Fig. 3b at very short times and the

ln[1

ln[1

]

]

FIG. 2. (Color online) Plot of the numerical adjustments at short
times, using Eq. (20), to the corresponding experimental data taken
from Fig. 3b of Ref. [10]. See the text for further details.

corresponding adjustments using Eq. (20) for ϑ = 2 and τ ∗ =
12.55 μs (full line) and ϑ = 1.5 and τ ∗ = 23.15 μs (dotted
line). We see that both short-time behaviors are consistent
with experiment yet with a different value of the time scale
τ ∗. May be future experiments will be able to discriminate
between these two time scales.

V. CONCLUSION

It is worth emphasizing that, in general, the expansion
of A(t) in powers of t is not defined. This means that the
corresponding Taylor expansion around t = 0 does not exist
in general. The vanishing or not of Eq. (11), which determines
a quadratic or nonquadratic time evolution at short times, is
very sensitive to the tails of the initial state, as exemplified
by the Gaussian and sinusoidal initial states discussed here. It
is not clear, therefore, that initial physical states possess finite
moments, a point that has been a subject of debate [31]. Further
study of the characterization of initial states is needed [32]. It
is also worth mentioning that a nonquadratic t3/2 short-time
behavior does not prevent the occurrence of the quantum Zeno
effect [4,13,15]. Finally, we believe that our results may be
relevant for quests regarding the description of the short-time
behavior of unstable systems in relativistic quantum field
theory where it has been found that the second moment to
the Hamiltonian diverges [33].
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