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Deformed Heisenberg algebra with minimal length and the equivalence principle

V. M. Tkachuk*

Department for Theoretical Physics, Ivan Franko National University of Lviv, 12 Drahomanov St., Lviv, UA-79005, Ukraine
(Received 26 October 2012; published 19 December 2012)

Studies in string theory and quantum gravity lead to the generalized uncertainty principle (GUP) and suggest
the existence of a fundamental minimal length which, as was established, can be obtained within the deformed
Heisenberg algebra. The first look on the classical motion of bodies in a space with corresponding deformed
Poisson brackets in a uniform gravitational field can give an impression that bodies of different mass fall in
different ways and, thus, the equivalence principle is violated. Analyzing the kinetic energy of a composite
body, we find that the motion of its center of mass in the deformed space depends on some effective parameter
of deformation. It gives a possibility to recover the equivalence principle in the space with deformed Poisson
brackets and, thus, GUP is reconciled with the equivalence principle. We also show that the independence of
kinetic energy on composition leads to the recovering of the equivalence principle in the space with deformed
Poisson brackets.
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I. INTRODUCTION

Recently, much attention has been devoted to studies of
different systems in a space with a deformed Heisenberg
algebra that takes into account the quantum nature of space
on the phenomenological level. These works are motivated
by several independent lines of investigations in string theory
and quantum gravity (see, e.g., Refs. [1–3]) which lead to the
generalized uncertainty principle (GUP),

�X � h̄

2

(
1

�P
+ β�P

)
, (1)

and suggest the existence of the fundamental minimal
length, �Xmin = h̄

√
β, which is of order of Planck’s length,

lp =
√

h̄G/c3 � 1.6 × 10−35 m.
It was established that minimal length can be obtained in

the frame of small quadratic modification (deformation) of the
Heisenberg algebra [4,5],

[X,P ] = ih̄(1 + βP 2). (2)

In the classical limit h̄ → 0 the quantum-mechanical com-
mutator for operators is replaced by the Poisson bracket for
corresponding classical variables,

1

ih̄
[X,P ] → {X,P }, (3)

which, in the deformed case, reads

{X,P } = (1 + βP 2). (4)

We point out that, historically, the first algebra of that kind
in the relativistic case was proposed by Snyder in 1947 [6]. But
only after investigations in string theory and quantum gravity
did considerable interest in the studies of physical properties
of classical and quantum systems in spaces with deformed
algebras appear. Observation that GUP can be obtained from
the deformed Heisenberg algebra opens the possibility to study
the influence of minimal length on properties of physical
systems on the quantum level as well as on the classical one.
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Deformed commutation relations bring new difficulties into
quantum mechanics as well as classical mechanics. Only a
few problems are known to be solved exactly. They include
one-dimensional harmonic oscillator with minimal uncertainty
in position [4] and with minimal uncertainty in position
and momentum [7,8], D-dimensional isotropic harmonic
oscillator [9,10], three-dimensional Dirac oscillator [11],
(1 + 1)-dimensional Dirac oscillator within Lorentz-covariant
deformed algebra [12], one-dimensional Coulomb problem
[13], and the singular inverse-square potential with a minimal
length [14,15]. The three-dimensional Coulomb problem with
deformed Heisenberg algebra was studied within perturba-
tion theory [16–20]. In Ref. [21] the scattering problem in
the deformed space with minimal length was studied. The
ultracold neutrons in gravitational field with minimal length
were considered in Refs. [22–24]. The influence of minimal
length on the Lamb shift, Landau levels, and tunneling current
in a scanning tunneling microscope was studied [25,26]. The
Casimir effect in a space with minimal length was examined
in Ref. [27]. In Ref. [28] the effect of noncommutativity
and of the existence of a minimal length on the phase
space of cosmological model was investigated. The authors
of paper [29] studied various physical consequences which
follow from the noncommutative Snyder space-time geometry.
The classical mechanics in a space with deformed Poisson
brackets was studied in Refs. [30–32]. The composite system
(N -particle system) in the deformed space with minimal length
was studied in Refs. [33,34].

Note that deformation of Heisenberg algebra brings not
only technical difficulties in solving of corresponding equa-
tions but also problems of a fundamental nature. One of them
is the violation of the equivalence principle in space with
minimal length [35]. This is the result of the assumption
that the parameter of deformation for macroscopic bodies of
different mass is unique. In Ref. [33] we showed that the
center of mass of a macroscopic body in deformed space is
described by an effective parameter of deformation, which
is essentially smaller than the parameters of deformation for
particles comprising the body. Using the result of Ref. [33]
for the effective parameter of deformation, we show that the
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equivalence principle in the space with minimal length can be
recovered. In Sec. III we reproduce the result of Ref. [33]
concerning the effective parameter of deformation for the
center of mass on the classical level and, in addition, show that
the independence of kinetic energy on the composition leads
to the recovering of the equivalence principle in the space with
a deformed Poisson bracket.

II. FREE FALL OF PARTICLE IN A UNIFORM
GRAVITATIONAL FIELD

The Hamiltonian of a particle (a macroscopic body which
we consider as a point particle) of mass m in a uniform
gravitational field reads

H = P 2

2m
− mgX, (5)

where the gravitational field is characterized by the factor g

is directed along the x axis. Note that here the inertial mass
(m in the first term) is equal to the gravitational mass (m in the
second one). The Hamiltonian equations of motion in space
with deformed Poisson brackets are as follows:

Ẋ = {X,H } = P

m
(1 + βP 2), (6)

Ṗ = {P,H } = mg(1 + βP 2). (7)

We impose zero initial conditions for position and momentum,
namely X = 0 and P = 0 at t = 0. These equations can be
solved easily. From the second equation we find

P = 1√
β

tan(
√

βmgt). (8)

From the first equation we obtain for velocity

Ẋ = 1

m
√

β

tan(
√

βmgt)

cos2(
√

βmgt)
(9)

and for position

X = 1

2gm2β
tan2(

√
βmgt). (10)

One can verify that the motion is periodic with period T =
π

m
√

βg
. The particle moves from X = 0 to X = ∞ and then

reflects from ∞ and moves in the opposite direction to X = 0.
But from the physical point of view, this solution is correct
only for time t � T , when the velocity of particle is much
smaller than the speed of light. In other cases, the relativistic
mechanics must be considered.

It is instructive to write out the results for velocity and
coordinate in the first order over β,

Ẋ = gt

(
1 + 4

3
βm2g2t2

)
, (11)

X = gt2

2

(
1 + 2

3
βm2g2t2

)
. (12)

In the limit β → 0 we reproduce the well-known results

Ẋ = gt, X = gt2

2
, (13)

where kinematic characteristics, such as velocity and position
of a free-falling particle depend only on initial position and
velocity of the particle and do not depend on the composition

and mass of the particle. It is in agreement with the weak
equivalence principle, also known as the universality of free
fall or the Galilean equivalence principle. Note that in the
nondeformed case, when the Newtonian equation of motion
in a gravitational field is fulfilled, that the weak equivalence
principle abides by the statement of equivalence of inertial and
gravitational masses.

As we see from (9) and (10) or (11) and (12), in the
deformed space, the trajectory of the point mass in the
gravitational field depends on the mass of the particle if we
suppose that parameter of deformation is the same for all
bodies. So, in this case, the equivalence principle is violated.
In Ref. [33] we showed on the quantum level that, in fact, the
motion of the center of mass of a composite system in deformed
space is governed by an effective parameter (in Ref. [33] it is
denoted as β̃0, and here we denote it as β). So, the parameter
of deformation for a macroscopic body is

β =
∑

i

μ3
i βi, (14)

where μi = mi/
∑

i mi , mi and βi are the masses and
parameters of deformation of particles which form composite
system (body). Note that in the next section we derive this
result considering the kinetic energy of a body consisting of
N particles.

First, let us consider a special case, mi = m1 and βi = β1,
when a body consists of the same elementary particles. We
then find

β = β1

N2
, (15)

where N is the number of particles of a body with mass
m = Nm1. Note that expressions (9) and (10) contain
combination

√
βm. Substituting the effective parameter of

deformation β1/N
2 instead of β we find√

βm =
√

β1m/N =
√

β1m1. (16)

As a result, the trajectory now depends not on the mass of the
macroscopic body but on

√
β1m1, which is the same for bodies

of different mass. So the equivalence principle is recovered.
The general case when a body consists of different

elementary particles is more complicated. The situation then is
possible when different combinations of elementary particles
lead to the same mass but with different effective parameters
of deformation. The motion of bodies of equal mass but
different composition then will differ. This also violates the
weak equivalence principle. The equivalence principle can be
recovered when we suppose that√

β1m1 =
√

β2m2 = · · · =
√

βNmN = γ. (17)

The effective parameter of deformation for a macroscopic body
is

β =
∑

i

m3
i( ∑

i mi

)3 βi = γ 2

( ∑
i mi

)2 = γ 2

m2
(18)

and, thus, √
βm = γ, (19)

which is the same as (17). Note that the trajectory of motion
in this case does not depend on mass and depends only on
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γ , which takes the same value for all bodies. It means that
bodies of different mass and different composition move in
a gravitational field in the same way and, thus, the weak
equivalence principle is not violated when (17) is satisfied.
Equation (17) brings one new fundamental constant, γ .
Note that parameter 1/γ has the dimension of velocity. The
parameters of deformation βi of particles or macroscopic
bodies of mass mi are determined by fundamental constant
γ as follows:

βi = γ 2

m2
i

, (20)

So the parameter of deformation is completely determined by
the mass of a particle. In the next section we derive formula
(14) on the classical level and give some arguments concerning
the relation (17).

III. KINETIC ENERGY OF A COMPOSITE SYSTEM
IN DEFORMED SPACE AND PARAMETER

OF DEFORMATION

In this section we use the following statement: The kinetic
energy has the additivity property and does not depend on the
composition of a body but only on its mass.

First, we consider the additivity property of the kinetic
energy. Let us consider N particles with masses mi and
deformation parameters βi . It is equivalent to the situation
when the macroscopic body is divided into N parts which can
be treated as point particles with corresponding masses and
parameters of deformation. We consider the case when each
particle of the system moves with the same velocity as the
whole system.

Let us rewrite the kinetic energy as a function of velocity.
From the relation between velocity and momentum (6) in the
first approximation over β we find

P = mẊ(1 − βm2Ẋ2). (21)

The kinetic energy as a function of velocity in the first-order
approximation over β then reads

T = mẊ2

2
− βm3Ẋ4. (22)

The kinetic energy of the whole system is given by (22),
where m = ∑

i mi . On the other hand, the kinetic energy of
the whole system is the sum of kinetic energies of particles
which constitute the system,

T =
∑

i

Ti = mẊ2

2
−

∑
i

βim
3
i Ẋ

4, (23)

where we take into account that velocities of all particles
are the same as the velocity of the whole system, Ẋi = Ẋ,
i = 1, . . . ,N . Comparing (22) and (23) we obtain (14).

Now let us consider the independence of kinetic energy on
the composition of a body. It is enough to consider a body of
a fixed mass consisting of two parts (particles) with masses
m1 = mμ and m2 = m(1 − μ), where 0 � μ � 1. Parameters
of deformation for the first and second particles are β1 = βμ

and β2 = β1−μ; here we write explicitly that parameters
of deformations are some function of mass (μ = m1/m is

dimensionless mass). The particles with different masses
constitute the body with the same mass, m = m1 + m2. So,
in this situation, we have a body of the same mass but with a
different composition.

The kinetic energy of the whole body is given by (22) with
the parameter of deformation

β = βμμ3 + β1−μ(1 − μ)3. (24)

Since the kinetic energy does not depend on the composition,
the parameter of deformation for the whole body must be fixed,
β = const, for different μ. Thus (24) is the equation for βμ as a
function of μ at fixed β. One can verify that the solution reads

βμ = β

μ2
. (25)

Taking into account that μ = m1/m we find

β1m
2
1 = βm2, (26)

which corresponds to (17). So the independence of the kinetic
energy from the composition leads to the one fundamental
constant, γ 2 = βm2. The parameters of deformation βi of
particles or composite bodies of different masses mi then are
βi = γ 2/m2

i , which is in agreement with relation (20).

IV. CONCLUSIONS

One of the main results of the paper is the expression for the
parameter of deformation for particles or bodies of different
mass (20) which recovers the equivalence principle and, thus,
the equivalence principle is reconciled with the generalized
uncertainty principle. It is necessary to stress that expression
(20) was derived also in Sec. III from the condition of the
independence of kinetic energy on composition.

Note that (20) contains the same constant γ for different
particles and parameter of deformation is inverse to the squared
mass. The constant γ has dimension inverse to velocity.
Therefore, it is convenient to introduce a dimensionless
constant γ c, where c is the speed of light. In order to make
some speculations concerning the possible value of γ c, we
suppose that for the electron the parameter of deformation βe

is related to Planck’s length, namely

h̄
√

βe = lp =
√

h̄G/c3. (27)

We then obtain

γ c = c
√

βme =
√

α
Gm2

e

e2
� 4.2 × 10−23, (28)

where α = e2/h̄c is the fine structure constant.
Fixing the parameter of deformation for electron we can

calculate the parameter of deformation for particles or bodies
of different mass. It is more instructive to write the minimal
length for space where the composite body of mass m lives,

h̄
√

β = me

m
h̄
√

βe = me

m
lp. (29)

As an example, let us consider nucleons (protons or neutrons).
The parameter of deformation for nucleons βnuc or the minimal
length for nucleons reads h̄

√
βnuc � lp/1840. So the effective

minimal length for nucleons is three orders smaller than that
for electrons.
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