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Electron with orbital angular momentum in a strong laser wave
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Electrons carrying orbital angular momentum (OAM) have recently been discovered theoretically and obtained
experimentally, which opens up possibilities for using them in high-energy physics. We consider such a twisted
electron moving in the external field of a plane electromagnetic wave and study how this field influences
the electron’s OAM. Being motivated by the development of high-power lasers, we focus our attention on
a classically strong-field regime for which —6214_2/(1’}’!504) 2 1. It is shown that, along with the well-known
“plane-wave” Volkov solution, the Dirac equation also has the “non-plane-wave” solutions, which possess OAM
and spin-orbit coupling and generalize the free-electron’s Bessel states. Motion of an electron with OAM in a
circularly polarized laser wave reveals a twofold character: the wave-packet center moves along a classical helical
trajectory with some quantum transverse broadening (due to OAM) existing even for a free electron. Using the
twisted states, we calculate the electron’s total angular momentum and predict its shift in the strong-field regime,
which is analogous to the well-known shifts of the electron’s momentum and mass (and to a less-known shift
of its spin) in intense fields. Since the electron’s effective angular momentum is conserved in a plane wave, as
well as in some more general field configurations, we discuss several possibilities for accelerating nonrelativistic

twisted electrons by using focused and combined electromagnetic fields.
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I. INTRODUCTION

Inrecent years, photons carrying orbital angular momentum
(OAM) have become objects of an intensive study, which
has led to the creation of a new subfield in quantum optics
(see a recent review in Ref. [1]). The beams of such twisted
photons are no longer plane waves, since their wavefront
rotates around the propagation axis, and the Poynting vector
looks like a corkscrew. The simplest objects revealing these
properties were shown to be focused laser beams; in particular,
Laguerre-Gaussian wave packets [2]. These photons have
already found many different applications in condensed matter
physics, atomic physics, biology, microscopy, etc., since they
are used, for instance, as optical tweezers for trapping and
moving different nano- and micro-objects [3—5]. It has recently
been shown that rotating black holes can produce OAM in the
photons radiated near them [6,7]. A way of obtaining twisted
photons with energies up to the GeV range via the Compton
backscattering process has recently been proposed in Ref. [8].

It is evident that massive particles (e.g., electrons) can
also carry OAM being quantized along the propagation axis.
Such non-plane-wave solutions for the Dirac equation, which
describe an electron possessing some OAM along with the
spin, were given, for example, in Refs. [9—11]. The method
for creating such electrons was proposed by Bliokh et al.
in Ref. [12] by analogy with the twisted photons, for which
the spiral phase plates or diffraction gratings with an edge
dislocation are often used. Soon after this, twisted electrons
were obtained experimentally by several groups with the
values of the OAM-projection m onto the direction of motion
up to m ~ 100 [13-15] (see also more recent results in
Refs. [16,17]). Although the energies of these electrons
are not high yet, ¢, ~ 300 keV, their creation itself opens
up possibilities for using twisted particles in high-energy
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physics. The simplest quantum processes with twisted scalar
particles were studied theoretically by Ivanov and Serbo in
Refs. [18,19].

The OAM as a quantum degree of freedom of massive
particles leads to a number of intriguing effects; for instance,
it leads to some quantum broadening of the free electron’s
classical rectilinear trajectory together with the appearance
of a “doughnut” spatial structure in the transverse plane
analogous to that of focused laser beams [12]. Moreover,
the gyromagnetic ratio for such twisted electrons is modified:
the electron’s magnetic moment becomes proportional to the
OAM (with a g factor equal to 1) [20], whose values can be,
in principle, arbitrary large. For electrons with m ~ 100%, the
magnetic moment is, roughly speaking, 10? times larger than
the Bohr magneton that can lead to the different phenomena
in particle and nuclear physics; for instance, to the significant
increase of all the radiation effects related to the magnetic
moments. Whereas the ordinary magnetic moment’s radiation
(the so-called “spin light” [21]) is usually too tiny to be
measured, the radiation of the twisted electron’s magnetic
moment (regardless the radiation type) is likely to be detected
much more easily, especially in the coherent regime of a
beam’s emission (see, e.g., Ref. [22]).

However, in order to make quantitative predictions about
these effects, it is necessary in most cases to have ultrarela-
tivistic twisted electrons (e.g., in order to increase the radiated
power) as well as to understand how the electron’s OAM
changes when some external electromagnetic field is applied.
Since the direct experimental production of the ultrarelativistic
twisted electrons seems to be impossible due to extremely
small de Broglie wave length, the only way we are left with is
to use some accelerating field.

In this paper, we consider a twisted electron moving in the
external field of a plane electromagnetic wave and present the
corresponding exact solution of the Dirac equation. The study
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of twisted states in the background fields is important at least
for two reasons:

(1) It allows one to describe the motion of the particles in
these fields as well as the conservation (nonconservation) of the
OAM, which, consequently, can suggest a way for accelerating
twisted electrons up to the GeV energy range;

(2) It makes possible to bring these particles into the sub-

ject of high-energy physics and to calculate the corresponding
quantum processes, the simplest of which is the Compton
scattering of a plane-wave photon by a twisted electron (or
vice versa [8]).
The investigation of these collisions can be of both fundamen-
tal and applied interest, since the value of OAM can be arbitrary
large and its importance for different quantum processes may
turn out to be much greater than that of the spin.

Thus, one of the paper’s main goals is to understand whether
or not the external laser field changes the properties of the
twisted electron. In particular, we shall demonstrate that the
average angular momentum of a twisted electron is conserved
in a plane wave, appearing as an effective integral of motion.
In fact, our main conclusion of the OAM’s conservation
stays valid for even more general field configurations since,
as demonstrated by Bagrov and Gitman, the problem with
a combination of longitudinal electric and magnetic fields,
E, 4+ H,, together with the copropagating laser field A (with
a wave vector k = ke;) can always be effectively reduced to
the one with the longitudinal magnetic field H, only by using
the special transformation [10]. As is well known, the electron
OAM'’s z projection is an exact integral of motion in the last
case (see, e.g., Refs. [23,24]) by analogy with a free twisted
electron. These facts make the acceleration of nonrelativistic
twisted electrons possible.

On the other hand, here we try to connect this physics
of twisted particles with strong-field QED. The development
of high-power lasers could allow one to achieve the laser
intensities exceeding 10> W/cm? within the next few years
(see, for example, the Extreme Light Infrastructure project
[25]). When being observed in the rest frame of a relativistic
electron, the field strength of such a laser can approach
the Sauter-Schwinger limit E. ~ 1.3 x 10'® V/m that leads
to the different non-linear quantum phenomena (see, e.g.,
Refs. [26,27] and references therein). Being motivated by this
fact, we focus our attention on the case of the strong laser
wave, which is characterized with the well-known “classical”
parameter 7% = —62A2/(m§c4) (see §101 in Ref. [28]).

The electron’s twisted states presented in this paper general-
ize the free-electron’s Bessel states recently obtained by Bliokh
et al. in Ref. [20]. They are, in addition, the simplest example
of the non-Volkov solutions for the Dirac equation with the
external plane-wave field, as was demonstrated in Ref. [10].
Using these states, we calculate the electron’s effective angular
momentum (OAM + spin) in a wave and predict its shift in
the strong-field regime for which = 1. Such a shift appears
due to the electron’s spin precession and is analogous to the
well-known change of the electron’s momentum and mass in
a strong laser wave. Although this effect is negligible when
m > h, it can lead to the effective reduction of spin (for
helicity states: A — 0 for n 2 1), or even to inversion of one
(A - —Aforn > 1), which can, consequently, influence some
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quantum processes such as nonlinear Compton scattering and
Breit-Wheeler pair production.

Finally, we discuss several possibilities for accelerating
nonrelativistic twisted electrons with OAM conservation and
show that such an acceleration is possible with the use
of azimuthally symmetric electromagnetic fields such as
the focused laser beams and the “combined” fields (plane
wave + longitudinal electric and magnetic fields).

The paper is organized as follows: In Sec. II we consider
a free twisted scalar particle and discuss some general mo-
ments in solving the Klein-Gordon equation and normalizing
its solutions. The free twisted electron described with the
corresponding solution of the Dirac equation is considered
in Sec. III. In Sec. IV we study the electron moving in the
field of a plane circularly polarized electromagnetic wave
and present the corresponding non-Volkov states. We also
calculate the electron’s current density using these states and
discuss the normalization. At each step we pay attention to
the transformation of the twisted states to the well-known
plane waves in the corresponding limiting case. Then in
Sec. V we calculate the electron’s effective spin and study
its shift in the strong-wave regime. The total (OAM + spin)
electron’s angular momentum in the laser wave is calculated in
Sec. VI. We discuss in Sec. VII the possibilities for accelerating
nonrelativistic twisted electrons and also some new effects that
the OAM can bring into high-energy physics. We conclude in
Sec. VIII. System of units # = ¢ = 1 and the metric with a
signature (+———) are used throughout the paper.

II. FREE TWISTED SCALAR

Consider a quantum system described with a vector |i)
that obeys the Klein-Gordon equation. Let us expand this state
over the plane waves:

_ [ |
) —/mwmm (1)

with |p) o< e=P", p? = m2. The projection onto the plane-
wave state ¥ (p) = (p|y) determines the physical model to
which the initial state |y/) corresponds. In the simplest case,
the choice

v(p) =)' (p - p)
gives the ordinary plane wave |Y) = | p) thatis usually utilized
within the framework of high-energy physics. It is clear that
such an expansion is possible only if the first state represents
a complete set of functions that allows one to invert the
expansion.

The free scalar state with a given projection of OAM onto
the direction of average motion (z axis) is defined as a state with
definite energy &, longitudinal momentum py, and absolute
value of the transverse momentum k. We shall call this the
twisted state. According to this definition, one can choose

im¢,

Y(p) = 1) (=i)"8(po — &)8(p. — p)(pL — k)

pL
2

where ¢, is the azimuthal angle of the momentum p, and m =

0,=%1, £2, ... can be called the azimuthal quantum number
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FIG. 1. (Color online) Probability density (in arbitrary units) of a scalar for a given px as a function of the OAM value. The left panel
shows pk = 10; the central and right panels show px = 200. The points are joined with straight lines in order to illustrate the quasicontinuous

limiting case pk 2 m. > Am = 1. Everywhere R = 100p.

[29]. Inserting Eq. (2) into Eq. (1), we have the following state:

|w> = |8,pH,K,m) — ij(pK)e—i£t+iPHZ+im¢r. (3)

Here, J,, is the Bessel function, ¢, is the azimuthal angle of the
vector r = {p,z}, and N is a normalization constant. As can be
seen, this state is an eigenfunction of the OAM’s z-projection
operator:

= X = —1l—.

[F x pl. i3 S
It can also be shown with the use of the Bessel functions
recurrence relations that the transverse momentum of this state
is(U|pLIY)/(WlY) = k.

A transition to the plane-wave case is performed when k —
0, so that

(o)™
2mT(1 4+ m)
Here and below one can put m > 0 without loss of generality.
In what follows, we shall call the infinitesimal-« limiting case
the paraxial limit.

It can be easily checked that the states (3) represent an
orthogonal and complete set of functions in the infinite volume:

/d3”p:p"|_Kf,mf(’")ws,ﬁn,lc,m(r)

Jm(pK) ~ g (Sm,Ov |w> g N€7i8t+i1’\\z_ (4)

A2 2 _ /l )
= N8 8(p) = )8k = ).

Z/(Z )3 ‘9I’H»K,m(r/)w*?’l’nsk»m(r)

= N28(r —r').

®)

The normalization constant N can be chosen from the
condition

/ Bri® =1, j*=y*idhy +cc., (6)
Vv

where the integration is carried out over the large, but finite
cylindrical volume V = 7 R?L. Taking into account Eq. (3),
we have

2 L/2 R
/d3rj0 = 2£N2/ d¢/ dz/ dppJ,f,(Kp)
v 0 —L)2 0

R
= 227 LN? / dppJ2(kp). (7
0

The integral over p is evaluated with the use of Lommel
formula [30] (it can also be derived from Eq. 6.521.1 of
Ref. [31]):

R R2 m2
/ dpp 2Py = {[J,;,<KR>]2+J£(KR) (1 = )}
0

k2R?
®)
As a result, we find the following expression for the normal-
ization constant:
1 1

VeV \/[J,,g(/cR)P + 2 R)(1 — Km—z)'

2R2

€))

For a given value of p«, the probability density j° of this
scalar state as a function of m gets the maximum atm, < pk.In
the limiting case when p« is greater than the Am = 1 interval,
the distribution over m becomes almost continuous (see Fig. 1).
Mathematically, such behavior is somewhat similar to the
spectral distribution of synchrotron radiation (just due to the
same Ji dependence; see, e.g., Ref. [32]).

For the large values of the cylinder’s radius (R > «~!), we

have (compare with Refs. [8,18])
K
— 10
“Varr 1Y

We now return to the problem of transition from the twisted
states |1) to the plane-wave states in the limiting case k — 0.
As can be seen from the last expression, a correct transition
can be performed when we get rid of 4/« from the numerator
of N:

R— o0 R
2
/ dppJ,(kp) > —,
0 TK

—ist-&-ipuz

H &, K — 0 m
\/_| pH ) vV 25” 1?2
(11)

It is this approach that was used in the papers [8,18,19].
Such a fact has appeared because the formula (10) itself is
correct for nonzero transverse momenta  >> R~! only. When
normalizing the twisted states in a finite volume [i.e., for the
constant N from Eq. (9)], such an additional multiplication
is superfluous. Indeed, expanding the Bessel function for the
small values of momenta, x < R~!, we have

2
\/[J,;l(/cR)]z + ]2(KR)<] _m

2R2> X b0+ 0. (12)
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Taking into account Eq. (4), we finally arrive at the ordinary
plane-wave state

| ) ! Jm(pK)e_i”""il’HZ-i-imqb,
&, p,k,m) =
— ;e—ist-ﬁ-imz, (13)
2eV

with the normalization constant being equal to N = 1/4/2¢V.

We would like to stress that when considering the twisted
photons, a somewhat “classical” interpretation of the trans-
verse momentum spread (nonzero «) is often given. Namely,
they speak of rotation of the Poynting vector around the prop-
agation axis (corkscrew-like energy trajectory). Whereas this
may be useful for photon beams (see, e.g., Ref. [33]), for a sin-
gle particle (especially for a massive electron) such an interpre-
tation is somewhat misleading, because these rotations of the
momentum vector in a free space should result in the radiation
of electromagnetic waves (similar to the undulator radiation).

Actually no radiation is emitted by a free twisted electron,
since when choosing the Fourier transform according to
Eq. (2), the azimuthal angle of the momentum, ¢, stays
undetermined and we integrate over it. This implies some
quantum broadening of the classical rectilinear trajectory in
the transverse plane rather than rotations in the classical sense.
We shall return to this discussion later.

III. FREE TWISTED ELECTRON

A free electron with a projection of OAM onto the
propagation axis is described via solution of the Dirac equation
(iyd — m,)¥(r) = 0 that can be sought in a way analogous to
Eq. (1):

d4[) —ipr
v = [ SN (14)
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In the standard representation of Dirac matrices y*, the
bispinor u#(p), which obeys the Lorentz-invariant normaliza-
tion condition ity = 2m, (here i = u'y?), can be written as
follows (see, for example, Ref. [28]):

u(p) = (Ve + mew, Ve — m(no)w)". (15)
Here, o are the Pauli matrices. The two-component spinor
w, which obeys the normalization condition wfw = 1, can
determine the helicity states of a free electron by the following
equation:
Hnoyw® =rw®, rA£1/2,

n = p/p={sinf,cos¢,, sinf,sing,, cosd,}.

The solution for this equation can be written as follows:

w(’\)(n)
1 . .
= ﬁ(zx,/l + 2 cosf,e /2 /T — 2 cosB,e /)T

x e*r, (16)
where the common phase factor is chosen so that the azimuthal
dependence vanishes in the paraxial limit 8, — 0:

w'?@, - 0)= 1,07, w="?@, - 0)=(,1)".
Note that the bispinor u(p) can be represented in the following
way:

u(p) = w1/ pidp(—1/2) + w2 pidp(t1/2) (17)

Choosing the function ¥ (p) in the form analogous to
Eq. (2), but with the factors (—i)"***1/2 instead of just (—i)",
we get the Bessel states of the free electron, which were
obtained in a bit different form in Refs. [11,20]:

Y(r) = Ne 2 gy a (o) m =172
+u(—l/Z)Jm+)L+]/z(pK)ei¢,(m+x+1/2))' (18)

The bispinors

1
w1 = E(O, Ve +mv/1T—=20c0s0,0,2xe — mo/1 —2xcos ),

(19)
1
ul/? = E(ZA\/S F mo1+21cos6,0,4/c — me/1+ 2% cos6, 0)
are the eigenfunctions of the spin’s z-projection operator with the eigenvalues s, = 41/2:
§.uE? = %2314(*1/2) = i%u(im), (20)

where in the standard representation ¥ = diag(o,0). Here, 6
is the polar cone angle: sinf = K/(pﬁ )
The twisted state (18) can be rewritten as follows:

le, py. &, J; =1 + 5, =m+ A)
=|--l,=m+A—-1/2,s, =+1/2)
+|-lb=m+A+1/2,s, =—1/2), (21)
vAvhich means the Bessel state (18) is an eigenfunction of the

J. = [, + §. operator with eigenvalue m + A. Unlike the wave
function of a scalar particle, this state represents a sum of

two components, which illustrates the spin-orbital connection
of the free electron. Note that the operators I,, §. do not
commute separately with the Dirac Hamiltonian, but the sum
of them j. = I, + §, commutes, which means the z projection
of the total angular momentum is an integral of motion. In
the paraxial case, the operator j. transforms into the one of
helicity.

In order to calculate the density of the probability current
for twisted states, one needs to calculate the products of
the form i1 2y*u+,,. By direct calculation in the standard
representation of Dirac matrices one can obtain the following
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expressions:

iipytuip =1{e,0,0,2ap}(1 + 21 cos 0)
= poy(l + 21 cosb),
iy u_ipp =«{0,1,—i,0} = ke_y, «k = psinb,
d_ipytuin ={0,1,1,0} = ke, (22)
d—_1py"u_ip =1{¢,0,0, =2Ap}(1 — 21 cos 0)

= pn( —2Acos0).
It is easy to check that
ay"u = ity pyPurs + iy u_ype?
T iy pytuy, = 2pt
= 2{e, k cos ¢, k sing,, p cos b},

+i_1py uype
(23)

as should be.
Thus, for the current density one obtains the following
formula (arguments of the Bessel functions are omitted):

i) = vyty
= N*(Jpssm12P6(1 + 22 cos 6)
+ 2Jmta-1/2dmat1 /26"

+ Jri+x+1/2pél—»\>(1 — 24 cos 9))’ 24)

where
k" = {0, k cos ¢,, k sin ¢, 0}

is denoted.

This current density acquires the transverse components
as well as a dependence on the transverse coordinates. Due
to the properties of Bessel functions, the radial distribution
of the probability density over p has an oscillating character
with the central minimum resembling the doughnut spatial
structure of the focused photon beams (see, e.g., figures
in the second article of Ref. [8]). Such a feature for the
particle is a pure quantum effect and it is sometimes called
the OAM-Zitterbewegung [12]. Nevertheless, in our view
it is more correct to speak of the OAM-induced quantum
broadening of the classical trajectory than of the effective
spiral trajectories of a free electron, because the latter would
mean the necessity of some undulator-like radiation, which is
forbidden in actual fact. In addition, the current density (24)
does not depend on time similar to a plane-wave free electron,
which does not allow one to interpret the current’s transverse
components as some vibrations in the classical sense.

As can be checked, the set of functions (18) is also
orthogonal and complete:

/dSVlﬂ:,p"‘,K/_m/_y(r)%,p”,K,m,,\(r)

Sk — k')

= N*(Q2)*2e8(py = p)———— 81,

o (25)
Z/ (27)3 w:.m,K,m,}\(r/)ws,p”.K,m,k(r)
= N22e8(r —r).

We determine the normalization constant in Eq. (18) with
the condition 1 = [ d3rj% j° = |y(r)|?, which leads to the

PHYSICAL REVIEW A 86, 062102 (2012)

following expression:

N =

1
«/W[(l +2Xcos ) Tnyi-1,2
+ (1 =21 c080) Tpiat1/2] 2,

where J,41+1/2 is defined as follows [see Eq. (8)]:

(26)

2
Tk R) = [J (R + J,ﬁ(KR)(l - K'f?) 27)

Note also that in the paraxial limit (6 — 0) the twisted
state transforms into a plane wave with m =0, and the
normalization constant in this case is N — 1/4/2¢V.

IV. TWISTED ELECTRON IN PLANE
ELECTROMAGNETIC WAVE

The twisted states of fermions in external potentials were
previously studied in Refs. [9-11]. For a field of a plane
electromagnetic wave with a potential A* = A¥(p), ¢ =
k*r,, the so-called Volkov states are usually used (see, e.g.,
Refs. [28,34]), which can be called the plane-wave states
since they transform to the free electron’s plane-wave states
when the external field is switched off. Here we construct the
twisted states of an electron moving in a plane electromagnetic
wave. The existence of such “non-Volkov solutions” for the
Klein-Gordon and Dirac equations was indicated in Ref. [10].

Let the wave move in the negative z direction:

k={w,0,0, —w} = wn,
¢ = kr = w(t + 2),

n= {1501 07 _1}5

and it be adiabatically switched off in the far past and future.
Let the twisted electron move in the positive z direction on
average, whereas it does so strictly along the z axis in the
paraxial case when k — 0. We shall choose the potential of
the laser wave in the usual way (see, e.g., Refs. [28,34]).
Namely, we imply the Lorentz gauge, which in the case
under consideration means kA = w(A° + A%) =0, and we
also suppose that the potential is a space-like four-vector:
A? < 0. These suggestions completely fix the gauge.

The wave functions of the electron with some z projection
of OAM can be sought as the integral over the plane-wave
Volkov solutions of the Dirac equation:

_ [ dp
|w>—f(2n)4z/f(p>|p>,

_ _ e is
|p) = ¥v(r) = N(l + 2(pk)(7/k)(VA)>M(P)€ , o (28)

e e
S=—(pr)—— | d A) — —A2>.
(pr) o0 qﬁ((p ) 3

Here, S is the classical action for the electron in the wave,
while the bispinor

e € v
(1 + m(yk)(ym) = exp {m / dpFno } (29)

takes into account an interaction of the electron’s spin with the
wave’s field. Here, F*’ = 9# A” — 3" A* and o™’ = (y*y" —
y"y")/2 are denoted. The constant vector p, which has all
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four components, in the limiting case k — 0, A — 0 trans-
forms to the four-momentum of a free plane-wave electron
{e,0,0, p}.

PHYSICAL REVIEW A 86, 062102 (2012)

Choosing the function ¥ (p) is the form analogous to Eq. (2)
[remember the factors (—i)*!/2, which are hidden in u(p)], we
obtain the following intermediate result:

2
Y(r) = N(—=i)"™ exp{ —iet +ipjz+ iﬁ / d<pA2} (1 + —(J/k)(VA))

2(pk)

x/o ¢pu(p)exp{lm¢,,+mpcos(¢, op) — ( k)/d(p(pA)} (30)

Since p* has the transverse components, the product (pA)
may depend upon the integration variable ¢,. Indeed, all the
terms depending upon the azimuthal angle in the action (28)
are

—(pr) — (—k) de(pA) = —(pR),
(3D
e
R =rt+ — | dpA™.
(pk)
Note that if the time averaging is applied, one has
R=r

It is clear already from this ratio that the electron in the wave
may not have a definite z projection of the OAM (or even of
the total momentum OAM +- spin) and it may have only the
time-averaged “effective” angular momentum. This situation
is analogous to the existence of the mean quasimomentum of
the electron without OAM in the wave’s field (see, for example,
Refs. [28,34] and below).

In order to evaluate the integrals in Egs. (30) and (31),
it is necessary to define the model of the plane wave. Let
us consider for definiteness a 100% circularly polarized laser
wave with the following potential:

A = a{0, cos g, sing, 0}, A’ = —d°. 32)

Thus, we have

imy + ikp cos(@, — $,) - i(pik) f dg(pA)
=ime¢, +ikR cos(pr — ¢p),
2
2 _ —_
Ry = <”L+( 3 d§0AJ_) ,

R =1{0, R cos pr, R sindr, 0}. (33)

Inserting this into Eq. (30), one finally obtains the following
wave function:

e2a?
Y(r) = Nexp { —iet +ipjz —1i 20 k)( )} (1 + —(yk)(yA)) W Jpss I/Z(KRl)ewR(mH_l/z)

D 1 R O,

which is in a close analogy with Eq. (18).

As can be seen, when the field of the wave vanishes, A — 0,
we are left with the Bessel states of the free electron (18),
whereas we have the ordinary Volkov solutions in the paraxial
case (k — 0) [35]. Thus, the twisted states obtained differ
from the free-electron twisted states (18) in the replacement
of the energy and the longitudinal momentum by the quasi-
energy and the corresponding quasimomentum (see their
definitions below) and also in the replacement of the transverse
coordinates: p — R .

Note that the orthogonality and completeness of the
states (34) follow already from the adiabatic switching on
and off of the laser wave at t — 4o00.

2(pk)

(34)

Before normalizing the states (34), let us calculate their
current density. The calculation is performed with the use of
Eq. (22) and the identity

(1 + ﬂw)(yk)) (1 + m(yk)(ym)

eA2<yk>)
A)————). (35
<(y S0 ) @9

(k) e
—h A | g
e o0 T ol

As a result, we obtain the following expression (arguments of
the Bessel functions are not shown):

. - (kpg) e*A%(kp)) (kR A)
mry=vyty = N2| J2 142 cos0)( pl, —eA” —k* 2Jmir-1/29m R+ ekl ——
JHrY =gyt |:m+x—l/2( +2AcosO)| pg)—e k) 2(pk R t 2Imvi—12dmvir12\ kg T € b
(kp—1)) e A2 (kp(-3))
+J2 1- 2)\cos9)<p“_ — eA* — k" , (36)
2 = (pk) 2(pky?
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where
Ky = {0, k cos ¢, k sin gr, 0}

is denoted.

This current density reveals a twofold character of the
electron’s motion: the terms with A*(¢), which vanish on
average, describe the helical quasiclassical motion of the
wave packet’s center, whereas the nonparaxial terms with k7,
correspond to the purely quantum broadening of the classical
trajectory due to OAM. In contrast to the free twisted electron,
this current does depend on time, but this dependence has
appeared solely due to the laser wave A. Thus, the electron’s
effective trajectory in this case is a classical spiral with some
OAM-induced transverse momentum spread. Note that such
an effect is somewhat similar to the well-known quantum
broadening of the classical trajectory in synchrotron radiation
due to emission of hard photons [32], but the difference
is that, in this case, this spreading has no relation to the
radiation process, since it remains even for a free twisted
particle.

The mean value of Eq. (35) gives the electron’s kinetic
momentum in the wave sm#. Its time average is called
the quasimomentum g* := 7* (see Refs. [28,34] for more

(k)

detail):
e <( A)_eAz(yk)>i|u
ok o\ 2(pk)

. e eA?
R (AR y)

e2 A2 "
= 2qg". 37
2<pk>) 1 &7

+ k"

7] |:y“ — e A

=21t — 2<p” — K

It is clear from this expression that the terms at the Bessel
functions in Eq. (37) represent the components of the
electron’s kinetic momentum. Here A2 denotes the time
average of A2. Note also that, in terms of the vector q",
the common exponent in Eq. (34) can be represented simply
as exp{—iqot +iq)z}.

We would like to stress the noticeable difference between
the expressions obtained and the ones for a free twisted
electron. Here, the arguments of the Bessel functions depend
upon the plane wave’s phase and, consequently, on time:
Ri=Ri(¢). On the face of it, if we normalized the
twisted states in a way analogous to the Volkov electron as
[drjo =1 (see, for example, § 101 in Ref. [28]), this fact
would forbid the time averaging simply by striking off all
the terms linear in the wave’s phase ¢. Nevertheless, thanks
to the fact that ¢ = (kr) = (kR) = o(R° + R?), the Bessel
functions standing under the integral over coordinates can
be considered to be independent of R°, which allows one
to perform the time averaging in the usual way. Moreover,
for the model of the laser wave (32) the time averaging
is actually unnecessary, since A> = —a? does not depend
on time and A° = 0. We shall return to this problem a bit
later.

Finally, it is easy to check that in the case under consid-
eration: d°r = d>R (the Jacobian equals unity), so for the
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normalization constant we get

/d3rj°=/d3Rj°
\4 \4

R
= N227TL/ deRl[in+A—l/2(l + 2A cos G)Q&)
0
+ Jn21+x+1/2(1 — 2 cos@)q?_k)] =1

1
N = W[jm-ﬁ-k—l/Z(l + 2X cos 9)48\)

+ Tsrsry2(1 = 20 cos 0)g”, ]2 (38)

Here, 7, (which is not a Bessel function) is defined in Eq. (27)
and we have also introduced the notations

0 €2A2(kp(,\))
Aoy =&~ @55
2(pk) (39)
0 _._ wezAz(km—A))
e 2pky

In the paraxial limit (& — 0), we have the ordinary Volkov state
with m = 0 and the normalization constantis N — 1/,/2¢°V,
as expected.

As in the case of a free twisted electron, the state (34)
represents a sum of two functions. Each of these terms is an
eigenfunction for the operator —idy,, but the differentiation
now is done over the azimuthal angle of the vector R
instead of the one of p. As is easy to show, it is the operator
I:z = —i0g,, which is an integral of motion for a scalar
particle in the laser field instead of f = —idy, [10]. Let us
calculate for simplicity the mean value of these operators
by using the corresponding solutions of the Klein-Gordon
equation:

W(r) = N exp{—iqot + iq z}Jn(kKRL)e'"™.  (40)

Note that this solution has a form of the one of a free twisted
electron [compare with Eq. (3); see also Ref. [10] and the
discussion on this in Sec. VII hereafter]. After rewriting the

operator [, = —idy, in terms of new variables:
R 0 i — a
=0 _,-<1 + iw>_
99, (pb)  R. PR
110 cos(r — 9) e 1)
i cos(pr — ¢ )
(pk) R L

we arrive at
(L) = f EPRY* ()L (r) / SRV =m=(L,). 42)

All the “superfluous” terms here have vanished after the
integration over ¢x.

V. SPIN OF PLANE-WAVE ELECTRON IN STRONG
LASER WAVE

The twisted state obtained describes the electron with an
“almost” definite OAM due to spin-orbit coupling. Let us take
a closer look at the spin characteristics of this state. It is easy
to see that when the free-electron bispinor u(p) is a helicity
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state with p = {0,0, p}, the Volkov state is not:
Z () # 209y (r).

An analogous situation takes place for the twisted state (34):
action of the X, operator does not lead to the simple
multiplication on £1. To begin with, let us calculate the mean
value of the spin’s z projection over the ordinary Volkov states
without OAM:

1
(5 = f U3 S )

- NZ/d3rﬁ<1 + L(yA)(yk)>y°
2(pk)

1 e
X=X, |14+ —=Wk)(yA . 43
> ( +2(pk)(y )y ))u (43)
Noting that for the wave model under consideration the spin
exponential (29) contains only the matrices [36] X, ,, oy y,
which all anticommute with ., we obtain the simple expres-
sion:

S.9v(r) = Aexp {—ﬁ dfﬂFuu(TW}l/fV(r)
= A(l + L(yA)(yk)) ) (44)
(k)

Multiplying this on vy, from the left, then taking into account
the following easily verifiable formulas (remember that o =
—3%, Y% = Xy’ [23,28)]):

wou =2p, uw'S.u=4ex, u*yu=—4pir, (45)

and performing the time averaging, we arrive at the following
expression for the mean value of the effective spin [remember
that N2 = 1/(2qoV)]:

2,2

= 242 26 — &L
Gy =N | dPraf2e —w—) =2 09 4

(pk) 2 e2a?

p £+w®

This formula means that the electron’s spin in a laser wave
experiences precession with some mean value of the helicity,
which is shifted due to the laser wave (in analogy with the
quasimomentum). It is interesting that such a shift occurs to
the “wrong” direction, resulting in a reduction of the effective
spin. In the formal limiting case of the strong laser wave with
a’ — 0o, we have a spin inversion (nonradiative spin flip):
(§.) = —A.

A difference of (§,) from A may be caused by two
reasons: the change of the electron polarization (the effective
spin invariant s> stays equal to —1), or by the effective
depolarization of the electron (|s?| < 1). Therefore, let us
study a similar shift for the invariant s> of the spin four-vector
(by analogy with the mass shift). The general expression
for the effective polarization vector in a laser wave is
calculated as the mean value of y*y> over the Volkov
states [34]:

e e2 A2

[A¥(sk) — k' (sA)] — k*
(pk) 2(pk)?
Indeed, without a time averaging the square of the electron’s
kinetic momentum 7# [see Eq. (37)] coincides with the square
of the free electron’s momentum and, consequently, with its

st = sH

(sk). (47)
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“bare” mass: 72 = p?> = m?2. However, after time averaging

one gets an effective mass:

2 A2
e"A

2 _ 2. 21 2
q —m*.—me(l m2>>me.

e

at =:q",

An analogous situation takes place for the spin invariant:
before the time averaging we have for helicity states just

sl=st=-=—-20)*=—1. (48)
However, after the averaging we arrive at the following:
242
s = st — k* ¢ (sk),
2(pk)?

(sk)? @

(pk)*
For a head-on collision of a longitudinally polarized electron

with a circularly polarized wave, we have (see components of
the spin four-vector, e.g., in Ref. [28])

(sk)? (21)? 52

As a result, we arrive at the following shift for the spin
invariant, which is always negative [this is clear already from

Eq. (49)]:
2A'2
5 =s2<1+ — >
mE

1
Ex/—s;2=k\/1—n2, 0= -

So in contrast to the mass shift, here

—s;2 < —s2.

52 =sr— A2

e2 A2 Gl

7
ULy

Actually, the shifts of the mass and spin occur in the different
directions just because the momentum p* is a time-like four-
vector, p> > 0, whereas the spin four-vector is space like:
52 < 0.

As follows from these formulas, the electron’s effective spin
in a strong laser wave can formally turn into zero and, what is
maybe even more unexpected, the invariant s> changes its sign
in the point n = 1. In fact, this means that in the classically
strong laser fields with n = 1 the electron (or the electron
beam) can behave itself as being spontaneously depolarized.
We would like to emphasize that such an effective reduction
of spin is absolutely “kinematic” (because it appears due to
precession) and it has no relation to the so-called radiative
polarization (or the Sokolov-Ternov effect) arising due to the
radiation of photons (see discussion on this process in a laser
wave, e.g., in Ref. [37]). In other words, in the case under
consideration the electron in the laser wave is absolutely
“stable,” so such a shift appears only when it moves in the
wave.

On the other hand, for a realistic laser pulse of finite
duration, the electron’s spin state after leaving the wave
may not coincide with the state before entering the wave.
In principal, this makes such a spin shift experimentally
detectable (see also a recent discussion on the similar effects
for a quantized laser wave in Ref. [38]). Investigating the
effective spin’s z component in the laboratory frame [see
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Eq. (46)], we find that its mean value (3.) turns into zero
under the following condition:

e2a§ 2 m?
€= =n . (52)
2(pk) 2(p+e)
From this, we have (y = ¢/m.,):
no =2y>(1+ B), (53)

with the minimum value of n(z) equal to 2. Thus, for the
lasers with n 2 1 such a shift may be distinguished for the
nonrelativistic electrons.

VI. TOTAL ANGULAR MOMENTUM OF ELECTRON
IN STRONG LASER WAVE

Consider now the twisted electron in a laser wave. Let us
calculate the mean value of the total angular momentum’s

2(pk) 2(pk)

<1 + —(J/A)(Vk)> (1 + —(VA)(Vk)> = ex
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operator,
2 . 1
Jz = —i0p, + 5%,

over the states (34). Taking into account Egs. (22) and (35),
we arrive at the following expression for the mean value of
OAM:

(L)) = / dPRY*(r)(—i 3y )W (r)

= N? / d*R[(m + 1 — 1/2)q3,(1 + 22 cos 0)

X T 1t m+ 2+ 1/2)‘1(0%)
x (1 —=2Akcos6)J, +k+l/2] (54)

which is in a close analogy with the free twisted electron. Here,
we have omitted the terms vanishing after the integration over
the azimuthal angle ¢r. When calculating the mean value of
the spin’s z projection we use the following formula:

e e
——— [ dopFu0" 1y’ — —— [ dpF,,0"
p{ apky | 9T }V exp{ apky | 40 }

= ‘}/0[1

e2a’w? ie . j 2
———(HX
2(pk)? (Pk)( ) 2( k)?

(HE)(Eoc)i| (55)

E :=/d(pE, fI::/dq)H.

When integrating the mean value of this expression over ¢z, the nonzero contribution comes solely from the terms independent
of the azimuthal angle. Furthermore, the term (H %) does not make a contribution at all, since u’, , Xy yu+1/2 = 0, as is easy to
check. Finally, the contribution of the last term in Eq. (55) is reduced to the calculation of the following averages:

uT/2y5u1/2 =
”*71/27/5”71/2 =

* 5 _
Upipy Uz12 =

—2Ap(1 4+ 2A cos ),
—2Ap(1 — 2X cosB), (56)

As a result, we have (arguments of the Bessel functions are not shown)

2

1
5<zz> = ENZ/d3R|:(1 +2xcos9)131+“/2(8 -

e
wm(kp(x))) — (1 —2A COSG)J +)L+1/2(

ezaz
Erlay)

(57

If the terms g(y,, = & + we’a*(kp(x))/[2(pk)*] took place in this expression instead of & — we?a®(kp())/[2( pk)2 ] [see

Eq. (39)], we would obtain exactly (j.) = m + A (as for the free twisted electron) when summing up Eq. (57) with (L

..) from

Eq. (54) [see the expression for the normalization constant in Eq. (38)]. However, as stated above, the laser wave results in the
shift of the electron’s spin in the direction opposite the momentum. It leads to the following final expression for the z projection

of the total angular momentum:

2.2
(o) = / [(1 + 20008 0)J25 1) <(m +A)e+ (m 42— 1)wa ‘;{)2 (kp(,\))>
32612
+ (1 —2Acos 9)] Hat1)2 ((m +AMe+(m+r+ l)a)z( 17 (kp(,\))>}. (58)

062102-9



DMITRY V. KARLOVETS

0.61

041

021

(Jz> 0.0¢
-0.2¢
-04¢

0
100.6
100.4f
100.2f

{J=)100.0}

99.8}
99.6}

PHYSICAL REVIEW A 86, 062102 (2012)

m—1/2

FIG. 2. (Color online) Electron’s effective total angular momentum (in units of 72) as a function of the laser wave’s intensity. Panels (a) and
(b) show m = 0, k — 0; panels (c) and (d) show m = 100, k = 50 keV. Panels (a) and (c) show y = 2; panels (b) and (d) show y = 10. The

angular momentum is shifted due to precession of the spin.

A

Itis clear that the intensity-induced shift of (j,) is negligible
when m >> 1, so the total angular momentum in this case is

) ~m+r~m,

being the “effective” integral of motion. In Fig. 2 we represent
this shift as a function of the laser intensity parameter 1 in
two cases: nonrelativistic electron with the Lorentz factor
y = 2 and the relativistic electron with y = 10. As can be
seen in Fig. 2, in the formal limit n >> 1, which is known to
correspond to a constant crossed field [28,34], the electron’s
effective helicity changes its sign (a nonradiative spin flip
due to precession), which can be significant for nonrelativistic
electrons with the small values of m only. It can also be shown
that the plots for m # 0 are almost independent of the value
of k. Nevertheless, high-power lasers providing the values
n > 1 already exist (such as, for example, Vulcan [39]) and
even more powerful facilities are under construction (such as
the Extreme Light Infrastructure [25]). It means that such a
shift of angular momentum can, in principle, influence some
quantum processes in strong laser fields.

Finally, note that in the current model of the circularly
polarized wave the time average in Eq. (58) was not performed.
However, such an average, as is easy to show, is equivalent to
the integration over the azimuthal angle ¢%. In other words,
the very same formulas for OAM and spin could be obtained
a bit easier when initially performing the average over R,
which would result in the striking out the terms like (A X)
and in the replacement of (H X)(Ea) with w?a*[a x X]./2
in Eq. (55). On the other hand, in the paraxial limit (x — 0),
Eq. (58) for (J.) transforms into Eq. (46) for (5.) multiplied
by 68m.0- This supports the claim that the time average used
when deriving Eq. (46) is actually unnecessary for this model
of the laser wave: we just omitted from the very beginning

the terms that would vanish anyway after integration over the
azimuthal angle.

VII. DISCUSSION

Until now, only twisted electrons with the energies not
higher than 300 keV are experimentally realized, so the crucial
question is how to accelerate them to relativistic energies
without losing the OAM. Since the direct experimental
production of the relativistic twisted electrons seems to be
unrealizable due to extremely small de Broglie wave length,
the simplest way is to apply some external field for which the
angular momentum’s projection onto the direction of motion
(z axis) is conserved in time, at least, on average. Such a
field is a plane wave, but it actually cannot accelerate particles
effectively. In order to transmit some energy to the particle, it
is preferable to have a nonzero z component of electric field.
We see two principal possibilities:

(1) One can use the focused laser beams whose TM-
modes are known to have the nonzero z components of
electric field. It is also known that, at least for the weakly
focused (along z axis) laser waves, the z projection of the
electron’s angular momentum is an integral of motion [40].
On the other hand, a tightly focused laser beam can acquire
its intrinsic spin-orbit coupling, which makes such a beam
equivalent to a Bessel electromagnetic beam with the small
(but nonzero!) value of m [see, for example, Eq. (3) in
Ref. [41]]. The trapping of charged particles in such beams can
be effective, as has recently been discussed in Refs. [24,42],
though conservation of the electron’s OAM in this field is
questionable for its not-very-high values. Nevertheless, this
technique seems to be applicable for twisted electrons with
m > 1.

062102-10



ELECTRON WITH ORBITAL ANGULAR MOMENTUM IN A ...

(2) Another possible way is to combine the longitudinal
electric field, which will accelerate electrons, together with the
copropagating laser field and (or) the longitudinal magnetic
field, which will trap and focus the electrons, by analogy
with the usual electron gun. The conservation of the averaged
angular momentum in such a scheme follows from the fact
that both the electric field and the plane-wave field can always
be effectively excluded from the equations of motion as well
as from the Klein-Gordon equation [10]. In other words, the
problem of motion in the so-called “combined” field (E, +
H, + A with k = ke,; see, for example, Refs. [10,23,24])
can be reduced to the well-known problem of motion in a
constant z-directed magnetic field. The key fact here is that
the electron OAM’s z projection is an integral of motion for
the constant magnetic field as for a free particle (see, for
example, Ref. [23]). It allows one to effectively apply the
“combined” field configuration for accelerating nonrelativistic
twisted electrons.

For the sake of convenience, we demonstrate here the
simplest example of the effective excluding the laser wave
from the twisted states. First, one could expand the initial state
|[Y) in Eq. (28) over the |g) states instead of |p). For this
purpose, one should rewrite the Volkov solution in terms of
the quasimomentum ¢. For the circularly polarized laser wave
from Eq. (32), after the integration by parts one can present
the action in the following way:

e

= —(pr) — —
S= T 0
This action has a form of that for a free electron with
replacements: p — g, r — R (compare with Ref. [10]). In
addition, instead of the free-electron bispinor u(p), which
enters the Volkov solution, it is necessary to take the bispinor
u(q) obeying the equation (yq — m.)u(q) = 0. As aresult, we
find the required |g) states:

d(/)((pA) - §A2) = —(qR). (59)

— _¢ —i(qR)
Ve(r) =N <1 + 2(qk)(yk)(yz‘\)> u(q)e . (60)
Formally, this expression differs from the plane-wave state of
the free electron only in the spin term and from the Volkov
solution it differs only in the replacement u(p) — u(q).
Expanding now the twisted state over these |g) states, as in
Eq. (28), we obtain for i (r) the formula, which differs from
Eq. (34) only in that the bispinors u*!/? now depend on the
polar angle of the vector ¢ instead of that of p, and also on ¢°
instead of ¢ [43].

Thus, the field of a plane wave can be effectively excluded
from the Volkov solution of the Klein-Gordon equation. The
same trick can be applied to the longitudinal electric field as
well [10]. It means the electron’s effective angular momentum
is conserved in the “combined” field (neglecting the spin’s
shift), which allows one to accelerate nonrelativistic twisted
electrons without a loss of OAM.

On the other hand, this conservation is justified only
when neglecting the radiation of photons, which can take
the electron’s OAM away. In order to estimate the OAM
radiation losses, it is necessary to calculate the amplitude of
the nonlinear Compton effect with a twisted electron. For the
weak laser fields with n <« 1 and the big values of OAM,
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m > 1, one can use the “bare” QED with the scalar twisted
particles, as was demonstrated in Refs. [18,19].

Let us now discuss some new effects the electron’s OAM
can bring into high-energy physics. Although an effective
reduction of the spin (or even inversion of spin) in a strong
laser field seems to be negligible for the twisted electron
with m >> 1, it can bring about some changes in the quantum
cascade processes in the strong fields of the modern lasers
with n 2 1. Indeed, when propagating through a beam of the
strong laser the plane-wave electron with m = 0 is known
to produce an electron-positron avalanche via the nonlinear
Compton scattering and the Breit-Wheeler pair production
processes [26]. The parameters of such an avalanche were
shown to be very sensitive to polarization of the laser beams
[27]. It is clear that changes in the effective polarization state
of the electrons and positrons (due to precession of their spins
in a strong field) would lead to some variations in the scattering
cross section that can, therefore, influence the avalanche-like
process. More detailed calculations are required to see how
strong this effect is.

On the other hand, the shift of the electron’s helicity just
illustrates the obvious fact that the helicity is no longer an
integral of motion for the electron in the plane-wave field. One
can suppose that the choice of another spin quantum number,
whose spin operator commutes with the Dirac Hamiltonian,
would be more effective, since there will be no spin shift
whatsoever in this case. Such spin operators, which are
integrals of motion, are given, for example, in Ref. [23];
however, their physical interpretation remains unclear.

Another possible effect is an increase of the electron’s
magnetic moment due to OAM that can lead, in particular,
to the substantial rise in the energy radiated by this moment in
some external field. The question is far from being academic.
Indeed, it is well known that the anomalous magnetic moment
of the electron, which is proportional to the fine structure con-
stant and is almost 103 times smaller than the Bohr magneton,
changes the radiation properties dramatically. In particular,
it reduces the time of radiative polarization of the electron
(positron) beams due to synchrotron radiation [21]. The similar
“positive” effect may take place for the radiative polarization
in a helical undulator [44]. On the contrary, the OAM-induced
magnetic moment of the electron is proportional to the OAM
itself becoming approximately 107 times lager for a twisted
electron with m ~ 100%; the experimental production of which
seems not to be a problem, at least for energies of 200 to
300 keV. Since in the lowest order of perturbation theory
the radiated energy W oc u?, for a twisted electron with
m ~ 1007 the radiation power increases in ~10* times. This
estimate becomes even more optimistic when considering the
coherent regime of emission of the electron beam, as was
discussed for the plane-wave electrons by Gover in Ref. [22].
It seems that the most suitable process for observation of this
effect is exactly the head-on collision of twisted electrons
with the laser pulses, since the OAM stays almost stable in
this case (in contrast to the synchrotron radiation scheme, in
which the “longitudinal orbital polarization” will turn into the
transverse one). Of course all the calculations of the radiation
by magnetic moments can be performed within the framework
of classical electrodynamics, as is often done for plane-wave
electrons (see, e.g., Ref. [21]), which allows one to consider,
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in addition, such processes as Vavilov-Cherenkov radiation,
transition radiation, etc.

Finally, another possible application of twisted electrons,
positrons, and other particles with m >> 1 is worth noting. It
is well known that the polarization states of particles are of
the great importance for a number of processes to be studied
at the future colliders such as the Compact Linear Collider and
the International Linear Collider (see, for example, Refs. [45,
46]). Since the value of the particle’s OAM can, in principal,
be arbitrary large, the influence of the OAM degree of freedom
on the different quantum processes may turn out to be even
more powerful than that of the spin. While a production of
the highly polarized positron beams for the next-generation
colliders seems to be a serious problem, it can be reasonable
to consider the alternate schemes with OAM-polarized twisted
beams.

The production of twisted electrons in this case can be
realized by analogy with the conventional source of the
longitudinally polarized electrons based on the laser-driven
photocathode (see, e.g., Ref. [47]). Namely, one can expect that
if the initial laser photons carry OAM, the resultant electrons
will be twisted as well, which can also be used as another way
for creating twisted electrons.

VIII. CONCLUSION

In most cases, the plane-wave states of particles are used
in calculations of high-energy physics. Nevertheless, the
quantum processes where such states are inapplicable are well
known (see, for example, Ref. [48]). The massive particles
carrying orbital angular momentum, which may be called
twisted particles by analogy with photons [1], represent one of
the simplest examples of the non-plane-wave states preserving
azimuthal symmetry. The experimental production of these
particles (namely, electrons with m up to ~1007) by several
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groups at the almost same time opens up possibilities for
studying a number of new physical effects, the simplest of
which is an increase of the electron’s magnetic moment.

On the other hand, there exist some other non-plane-wave
states being explored nowadays in quantum optics, including
the azimuthally nonsymmetric Airy electron beams recently
obtained in Ref. [49]. An inclusion of all these states into
the research area of high-energy physics requires, along with
the other topics, some adaptation of the S-matrix formalism
developed mostly for the plane-wave states.

The OAM may turn out to be highly important for a number
of processes in atomic physics, nuclear physics, particle
physics, astrophysics, etc., since the values of OAM can be
much higher than those of spin. In particular, the electron’s
twisted states in an external plane electromagnetic wave,
which we have presented in this paper, allow one to calculate
such quantum processes as nonlinear Compton scattering and
Breit-Wheeler pair production. On the other hand, the exact
solutions of relativistic wave equations describing the twisted
states enable the study of motion of these particles in external
fields that can, consequently, suggest a way for accelerating
nonrelativistic electrons with OAM. As we have demonstrated,
the special combination of fields makes the acceleration of
twisted electrons possible.
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