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Phase diagram of spin-1 antiferromagnetic Bose-Einstein condensates
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We study experimentally the equilibrium phase diagram of a spin-1 Bose-Einstein condensate with
antiferromagnetic interactions, in a regime where spin and spatial degrees of freedom are decoupled. For a
given total magnetization mz, we observe for low magnetic fields an “antiferromagnetic” phase where atoms
condense in the m = ±1 Zeeman states, and occupation of the m = 0 state is suppressed. Conversely, for large
enough magnetic fields, a phase transition to a “broken-axisymmetry” phase takes place: The m = 0 component
becomes populated and rises sharply above a critical field Bc(mz). This behavior results from the competition
between antiferromagnetic spin-dependent interactions (dominant at low fields) and the quadratic Zeeman energy
(dominant at large fields). We compare the measured Bc as well as the global shape of the phase diagram with
mean-field theory, and find good quantitative agreement.
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One of the most active topics in the field of ultracold
quantum gases is the study of interacting many-body systems
with spin [1–4]. Atoms with arbitrary Zeeman structure can
be trapped using far-detuned optical traps. Quantum gases of
bosons with spin 1 [3,4], 2 [5,6], or 3 [7] and fermions with spin
larger than 1/2 [8,9] have been demonstrated experimentally.
This opens a whole class of new experiments with spinful
many-body systems, such as coherent spin-mixing dynamics
analogous to an internal Josephson effect [5,6,10–14], squeez-
ing among the different spin components [15–17], or the study
of sudden quenches across magnetic phase transitions [18,19].

The simplest example is the spin-1 Bose gas. The spin-
dependent interaction between two atoms with spins s1 and
s2 can be written as V12 = gss1 · s2. Depending on the sign
of the coupling constant gs , this interaction leads to either
ferromagnetic (gs < 0, the case of atomic 87Rb [10]) or
antiferromagnetic (gs > 0, the case of atomic 23Na [20])
behavior. This naturally leads to different equilibrium phases.
An additional but essential feature in experiments with gases
of alkali-metal atoms is the conservation of the longitudinal
magnetization mz = n+1 − n−1, which follows from the spin
rotational symmetry of V12. Here nm denotes the relative
populations of the Zeeman state labeled by the magnetic quan-
tum number m = 0, ± 1. The only possible spin-changing
two-body process is

m = 0 + m = 0 → m = +1 + m = −1, (1)

where two m = 0 atoms collide to yield one atom in each
state m = ±1 (or vice-versa), leaving mz unchanged. In most
physical systems, the magnetization would relax by coupling to
an external environment. In contrast, quantum gases are almost
perfectly isolated and the conservation of magnetization plays
a major role [21].

In spite of intense theoretical activity [4], the equilibrium
properties of spinor gases remain relatively unexplored exper-
imentally. Most experimental work so far has focused on dy-
namical properties. For ferromagnetic rubidium condensates,
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a recent experimental study concluded that the time needed to
reach an equilibrium state, typically several seconds or tens of
seconds, could easily exceed the condensate lifetime [22]. For
antiferromagnetic 23Na, the stationary regime after damping
of spin-mixing oscillations has been studied for relatively high
magnetization (mz � 0.5) [14]. Here also, long equilibration
times on the order of 10 s were observed. Both experiments
worked with condensates with large atom numbers, well in the
Thomas-Fermi regime, where spin domains are expected and
observed in transient regimes.

In this Rapid Communication, we present an experimental
study of the phase diagram of spin-1 sodium Bose-Einstein
condensates with antiferromagnetic interactions. We work
with small atomic samples containing a few thousand atoms
held in a tightly focused optical trap. In this regime, spin
domains are energetically costly, and spatial and spin degrees
of freedom are largely decoupled. We prepare the sample
well above the condensation temperature with a well-defined
longitudinal magnetization and no spin coherence. At the
end of the cooling stage, equilibration times of 3 s are used
to ensure that thermal equilibrium is reached. We find, in
agreement with theoretical predictions, a phase transition from
an “antiferromagnetic” phase where only the m = ±1 Zeeman
components are populated to a mixed “broken-axisymmetry”
phase where all three Zeeman states can coexist. We determine
the phase boundary and the shape of the phase diagram versus
applied magnetic field and magnetization by measuring the
population of the m = 0 state. Our measurements can be
explained quantitatively by mean-field theory in the single-
mode regime, where the atoms condense in the same spatial
wave function irrespective of their internal state.

We work with sodium atoms cooled deeply in the quantum-
degenerate regime using an all-optical cooling sequence
[23,24]. In order to prepare the sample with a well-defined
longitudinal magnetization and no spin coherences, we start
from a cold cloud in a crossed optical dipole trap loaded from
a magneto-optical trap [24], with a magnetization mz ≈ 0.6
resulting from the laser cooling process. To obtain higher
degrees of spin polarization, we perform evaporative cooling in
the presence of a vertical magnetic field gradient for about 1 s.
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FIG. 1. (Color online) (a) Absorption image of a spin-1 BEC
after expansion in a magnetic gradient. (b) Horizontal cuts through
the images in (a). The same function (shown by straight lines), only
recentered and reweighted, is used to fit the density profile of each
Zeeman state. OD indicates the optical density.

Each Zeeman state experiences a slightly different potential
depth. Because of the combined action of gravity and the
magnetic gradient, evaporative cooling in this configuration
favors the Zeeman state with the higher trap depth [25].
This results in partially or almost fully polarized samples
with magnetization up to mz ≈ 0.85. To obtain lesser degrees
of polarization than the initial value mz ≈ 0.6, we remove
the gradient and apply instead an additional oscillating field
resonant at the Larmor frequency. The two procedures together
allow us to prepare well-defined magnetizations ranging from
0 to ≈0.85 with good reproducibility and keeping the same
evaporative cooling ramp in all cases. After spin preparation,
we transfer the cloud in the final crossed dipole trap and resume
evaporative cooling (see [26] for more details).

After the evaporation ramp, we obtain quasipure spin-
1 Bose-Einstein condensates (BECs) containing N ≈ 5000
atoms in a trap with average frequency ω ≈ 2π × 0.7 kHz.
To ensure that the cloud has reached a steady state, we allow
for an additional hold time of 3 s after the evaporation ramp.
We have investigated the dynamics of the spin populations as
this hold time is varied for several values of magnetization and
applied magnetic field. We found that the populations relaxed
to steady-state values with a characteristic (1/e) time smaller
than 1 s, much smaller than the finite lifetime of our sample,
around 10 s.

The populations of the Zeeman states m = 0,±1 are ana-
lyzed after expansion in a magnetic field gradient producing
a Stern-Gerlach force that accelerates atoms in m = ±1 in
opposite directions. After a given expansion time (typically
t ≈ 3.5 ms), we take an absorption picture of the clouds [see
Fig. 1(a)], and count the normalized populations nm of the
Zeeman state m = 0,±1. Note that the condensate is in a
regime intermediate between the ideal gas and the Thomas-
Fermi limits (we estimate a chemical potential μ ≈ 4h̄ω from
a numerical solution of the Gross-Pitaevskii equation).

For a Bose-Einstein condensate held in a tight trap as in our
experiment, the energetic cost of spin domains is large (com-
parable to h̄ω per atom, much larger than the spin-dependent
interaction energy). In this limit, it is reasonable to make the
single-mode approximation (SMA) for the condensate wave
function [27,28], which amounts to considering that all atoms
share the same spatial wave function independently of their
internal state; the condensate spin remains as a degree of free-
dom. To support this approximation, we note that absorption
images as in Fig. 1(a) do not reveal any spatial structures or spin
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FIG. 2. (Color online) Sample data showing the population n0

of the m = 0 Zeeman state versus applied magnetic field B, for a
magnetization mz ≈ 0.4. The solid line is a fit to the data using Eq. (5).
Vertical error bars show statistical uncertainties on the measured
values (one standard deviation).

domains during the 3 s hold time. Furthermore, we compare
in Fig. 1(b) the observed distributions with a common mode
distribution. This common mode function is extracted from
a Gaussian fit to the most populated cloud (m = +1 in this
example), and then recentered and reweighted to match the
populations of the other Zeeman states. We find very good
agreement between the three spatial distributions in the whole
range of parameters explored, and conclude that the SMA is
indeed a good approximation in our case.

Because the longitudinal magnetization mz = n+1 − n−1

is conserved, the relevant magnetic energy in an applied
magnetic field is the second-order (quadratic) Zeeman shift
of magnitude q = qBB2, with B the applied magnetic field
and qB ≈ 277 Hz/G2. The larger (first-order) linear Zeeman
shift has no influence (it can be absorbed in the Lagrange
multiplier associated with the fixed magnetization [4]). As
other spin-changing mechanisms than collisions are possible,
this conservation law is only approximate. For example, it
no longer holds when spin flips are induced on purpose by
applying oscillating fields as described above, or for systems
with magnetic dipole-dipole interactions [7]. In the absence
of such applied fields, we find no evidence for violation of
this conservation law within our experimental limit of a few
percent.

We show in Fig. 2 the measured values of n0 for a range
of applied magnetic fields B and mz ≈ 0.4. The population in
m = 0 is small at low applied fields and rises sharply above
a critical value Bc before settling at an asymptotic value. We
have repeated these measurements for a wide range of B and
mz, and generically observed this behavior. We show the results
in a reconstructed contour plot in Fig. 3(a). The phase diagram
shows unambiguously the presence of two different phases
which differ in their spin composition, or more precisely are
characterized by the absence or presence of condensed atoms
in m = 0.

We now explain the observed behavior of n0 in terms
of the competition between the spin-dependent interactions
and the applied magnetic field (entering quadratically through
the second-order Zeeman effect). The mean-field energy
functional in the single-mode approximation is given by [4]

Es

N
= Us

2
|S|2 − qn0. (2)

Here, S = 〈ζ |Ŝ|ζ 〉 is the expectation value of the spin operator
Ŝ taken in the normalized spinor ζ describing the condensate
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FIG. 3. (Color online) (a) Experimental phase diagram showing the population n0 of the m = 0 Zeeman state versus magnetization mz

and applied magnetic field B. The plot shows a contour interpolation through all data points, with magnetization ranging from 0 to 0.8. The
white line is the predicted critical field Bc separating the two phases, deduced from Eq. (4) via qc = qBB2

c . (b) Theoretical prediction for n0 at
T = 0 K.

spin wave function, and Us denotes the spin-spin interaction
energy (see [26]). For antiferromagnetic interactions (Us > 0),
no applied field (q = 0) and zero magnetization, the spin-1
BEC realizes a polar, or “spin-nematic,” phase according to
mean-field theory [1,2]. The spin wave function ζ belongs
to the family of eigenstates of Ŝ · n with zero eigenvalue
(and zero average spin), with n a headless vector called
the “nematic director” in analogy with the similar order
parameter characterizing nematic liquid crystals. When q = 0,
any direction n is a possible solution, while any positive q

favors occupation of the m = 0 state (along z) and pins the
nematic director in the z direction.

When mz is nonzero, there is a competition between
the spin-dependent interactions and the quadratic Zeeman
energy. The constraint of a fixed magnetization is essential to
understand the spin structure of the condensate [29]. The BEC
spin wave function can be parametrized generically as [1,2,29]

ζ =

⎛
⎜⎜⎝

√
1
2 (1 − n0 + mz)eiφ+1

√
n0e

iφ0√
1
2 (1 − n0 − mz)eiφ−1

⎞
⎟⎟⎠ . (3)

We introduced the phases φm of the components of ζ in the
standard basis. The effect of antiferromagnetic spin-dependent
interactions (Us > 0) is twofold: First, they lock the relative
phase φ+1 + φ−1 − 2φ0 to π in the minimal-energy state.
Second, they favor the coexistence of the m = ±1 components
and disfavor mixing them with the m = 0 component [20]. As
the quadratic Zeeman energy favors the latter, the competition
between the two results in two distinct phases, as observed
experimentally.

The equilibrium population n0 is found by minimizing the
mean-field energy functional [29]. For low q and nonzero
magnetization mz, spin-dependent interactions are dominant,
and result in a two-component condensate where the Zeeman
states m = ±1 are populated (n0 = 0). Following [3], we will
call this phase antiferromagnetic (AF). When mz → 0, this
gives an “easy-plane” polar phase where the nematic director
is confined to the x-y plane. Above a critical value qc given by

qc = Us

(
1 −

√
1 − m2

z

)
, (4)

n0 increases continuously from zero, indicating a second-order
quantum phase transition. Again following [3], we call this
the broken-axisymetry (BA) phase. For large q, the energy
is minimized by increasing n0 as much as possible given the
constraint of a given mz: The spin populations therefore tend
to n+1 = mz, n0 = 1 − mz, and n−1 = 0 for mz > 0. When
mz → 0, one recovers the easy-axis polar phase with all atoms
in the m = 0 state along z. More generally, the BA state with
n0 �= 0 has nonzero longitudinal and transverse magnetization
(both vanish when mz goes to zero), and a nematic director
orthogonal to the direction of the magnetization vector [30].

We measured the critical line separating the AF and
BA phases using the following procedure. We bin the data
according to the measured magnetization, in bins of width 0.1
around an average magnetization from mz ≈ 0 to mz ≈ 0.8,
with residual fluctuations around δmz ≈ 0.02. Each data set
with given magnetization is fitted with a function of the form

n0 =
{

A0, q < qc,

A0 + A1
q−qc

q−qc+�q
, q � qc.

(5)

This form ensures the existence of a sharp boundary deter-
mined by qc, a constant background value for low q, and a
well-defined asymptotic value for large q, and reproduces the
observed data fairly well, as shown in Fig. 2 for a specific
example with mz ≈ 0.4. At low fields, n0 is not strictly zero
but takes values of a few percent, which can be explained by the
presence of a small noncondensed fraction (f ′ ≈ 2%–3% per
component). As such small populations are near our detection
limit (∼3% for the fractional populations, limited by the
optical shot noise associated with the imaging process), we do
not attempt to determine them and consider in the following
that the condensate is essentially at zero temperature. At high
fields, n0 is very close to the expected value 1 − mz [see
Fig. 4(a)], again within a few percent.

We show in Fig. 4(b) the measured boundary Bc = √
qc/qB

between the two phases, which we find in good agreement with
the prediction of Eq. (4) in the whole range investigated. The
comparison is made with the value Us/h ≈ 65.6 Hz, obtained
from a numerical solution of the Gross-Pitaevskii equation
using the scattering lengths given in [31] and the measured
trapping parameters and average atom number, and thus does
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FIG. 4. (Color online) (a) Asymptotic value of n0 for large q

[determined from A0 + A1 in Eq. (5)]. The solid line shows the value
1 − mz expected at zero temperature. (b) Measured critical field Bc

versus magnetization. The solid line shows the values expected from
Eq. (4) and qc = qBB2

c , using Us/h ≈ 65.6 Hz. The gray area shows
the uncertainty on the theoretical value of Bc, dominated by the
15% uncertainty on the spin-dependent scattering length as . For both
plots, vertical error bars show statistical uncertainties on the measured
values (one standard deviation).

not require any fitting parameter. Our results are in line with
previous measurements in [14], which were restricted to the
range mz > 0.5 and B > 0.2 G and performed with much
larger samples well in the Thomas-Fermi regime. Here, we are
able to characterize this transition down to zero magnetization
and zero applied field, in a system where spin domains (as

observed in [14] during the relaxation towards equilibrium)
are not expected to form.

Mean-field theory also quantitatively describes our data
above the critical line. We compare the calculated n0 directly
to the data in Figs. 3(a) and 3(b). There are no adjustable
parameters in this comparison, since the parameters used in
the theory are either measured or computed independently. The
shape and magnitude of the calculated phase diagram matches
the measured one within 10% at worst, except very close to the
origin B ≈ 0 and mz ≈ 0. In this corner of the phase diagram,
we observe larger deviations from the mean-field prediction
and correspondingly higher fluctuations in n0. We will present
a detailed study of these findings in another presentation.

In conclusion, we have explored experimentally the phase
diagram of spin-1 BECs with antiferromagnetic interactions.
Two phases are found, reflecting the competition between
the spin-dependent interactions and the quadratic Zeeman
energy. The measurements are in quantitative agreement with
mean-field theory, which quantitatively predicts the phase
boundary but also the observed spin populations above the
transition. In this paper, the population of noncondensed atoms
was small (a few percent, below our detection level). Although
interesting effects beyond the mean field are predicted at
very low temperatures [32], they would require much better
sensitivity and lower temperatures to be addressed. On the
other hand, at higher temperatures the thermodynamics should
differ substantially from the scalar case [7,33]. Both paths
provide interesting directions for future work.
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